RouteNet: Routability Prediction for Mixed-Size Designs Using Convolutional Neural Network

Zhiyao Xie¹, Yu-Hung Huang², Guan-Qi Fang², Haoxing Ren³, Shao-Yun Fang², Yiran Chen¹, Jiang Hu⁴

¹Duke University, Durham, NC, USA ²National Taiwan University of Science and Technology, Taipei, TW ³Nvidia Corporation, Austin, TX, USA ⁴Texas A&M University, College Station, TX, USA

ICCAD 2018

- Challenges in Routability Prediction:
 - Predict routability at placement stage
 - Predict by 'fast trial global routing'
 - Not fast enough
 - Predict locations of Design Rule Checking (DRC) hotspots
 - Predict by global routing
 - Not accurate enough

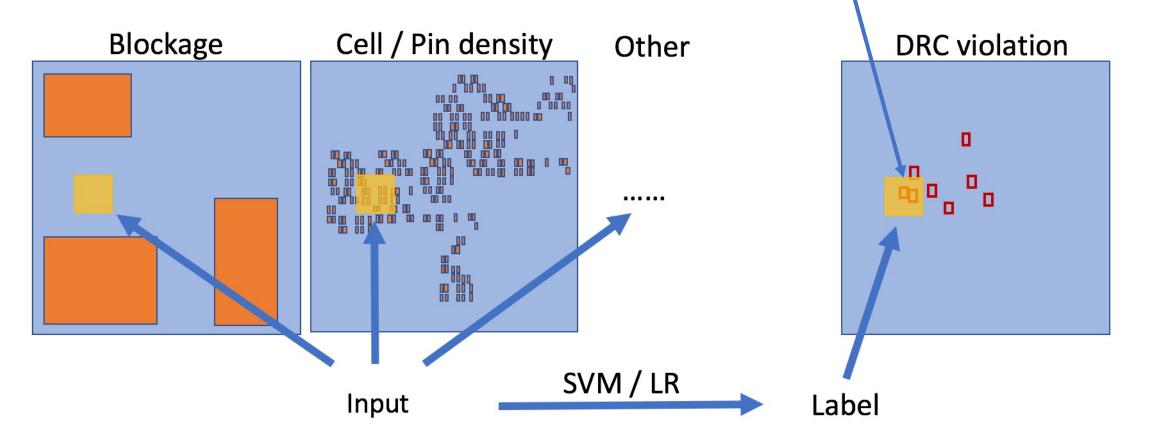
- Our Attempt on Such Challenges:
 - Fast routability forecast for placement
 - In terms of number of Design Rule Violations (#DRV)
 - To identify more routable placements among many candidates
 - Prediction of DRC hotspot locations
 - To proactively modify solutions to prevent design rule violations

- Previous solutions:
 - Many fail to consider macros
 - Some require Global Routing information for #DRV prediction

	Methods	Use GR?	Predict #DRV?	Predict hotspot?	Handle macros?
	[18] (Qi, et al., ICCD14)	Y	Y	Ν	Y
	[26] (Zhou, et al., ASQED15)	Y	Y	Ν	Ν
	[3] (Chan, et al., ICCD16)	Ν	Y	Ν	Ν
	[4] (Chan, et al., ISPD17)	Y	Ν	Y	Ν
Our ∫	RouteNet #DRV prediction	N	Y	Ν	Y
Method 1	RouteNet hotspot prediction	Y	Ν	Y	Y

GR means global routing **#DRV** means number of DRC violations

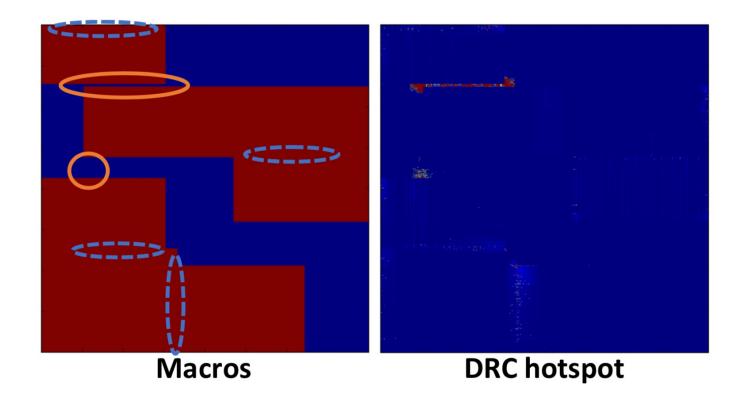
- Previous solutions:
 - Many apply machine learning on every *small cropped region*



- Challenges of Macros on #DRV prediction:
 - Correlation between pin density and #DRV largely disappears with macro

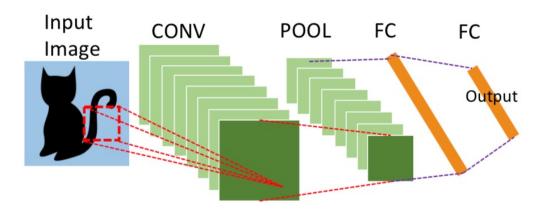


- Challenges of Macros on hotspot detection:
 - Hotspots tend to aggregate at small gaps between neighboring macros

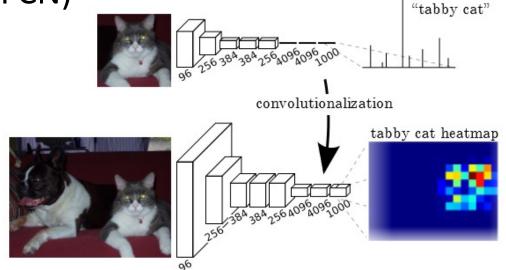


- Challenges of Macros:
 - A layout with macros is much less homogeneous
 - Homogeneity implies resemblance among different regions of layout
 - Need a larger region to capture global view
 - Use deep neural network!

 Convolutional Neural Network (CNN)



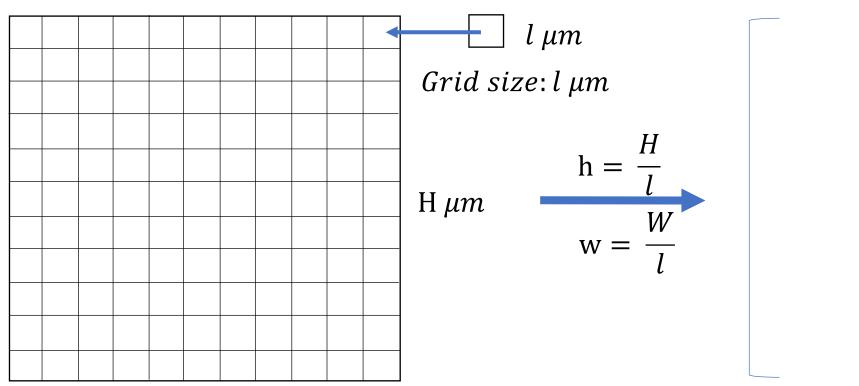
Convolutional (CONV), Pooling (POOL) and Fully Connected (FC) layers Widely used in image classification • Fully Convolutional Network (FCN)



Eliminate FC layers May use transposed-convolutional to up-sample Used in image segmentation, object detection

- RUDY (Rectangular Uniform wire DensitY) (P. Spinder et al. 2007)
 - RUDY is a pre-routing congestion estimator
 - At (x, y), for k th net with bounding box $\{x_{min}^k, x_{max}^k, y_{min}^k, y_{max}^k\}$:

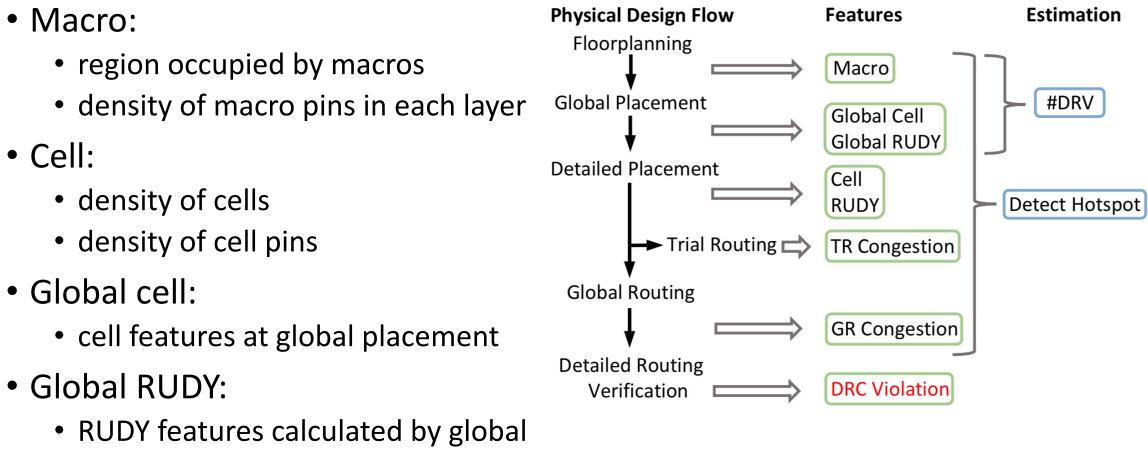
• $X_{ij} = j th$ feature in *i* th placement



 $X_{ij} \in \mathbb{R}^{w \times h}$

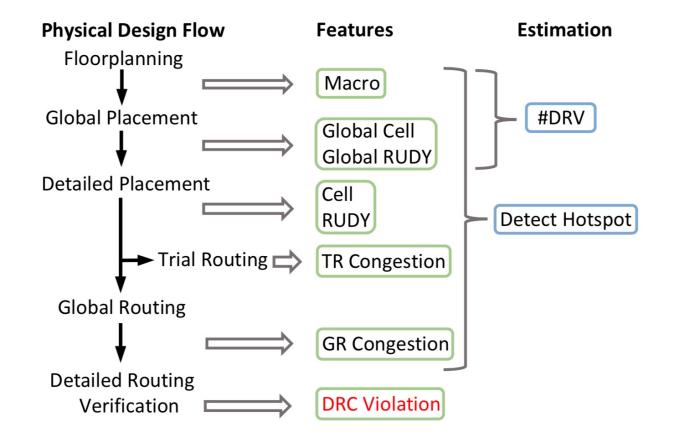
 $W \ \mu m$

 $w \times h$

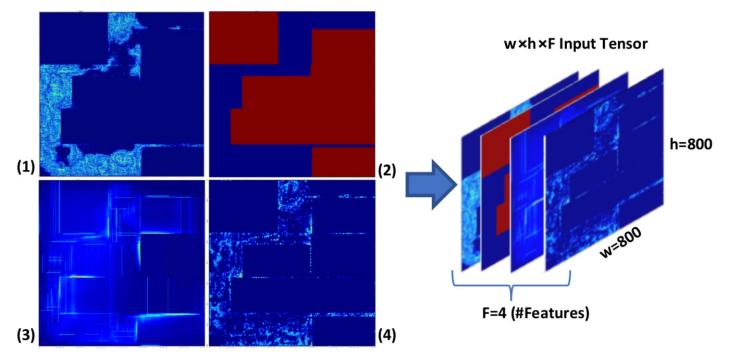


placement results

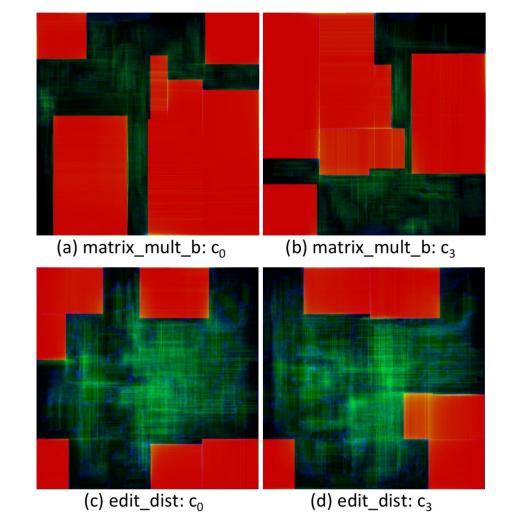
- RUDY
 - long-range RUDY
 - RUDY from long-range nets
 - short-range RUDY
 - DURY from short-range nets
 - RUDY pins
 - pins with density value equal to the RUDY value of its net
- Congestion
 - trial global routing congestion
 - global routing congestion
- DRC violation
 - prediction target / label



For i^{th} placement with size $w \times h$ and F features: $X_i \in \mathbb{R}^{w \times h \times F}$



Input tensor constructed by stacking 2D features: (1) Pin density, (2) macro (3) long-range RUDY, (4) RUDY pins



Input features for #DRV prediction. Red: macro region Green: global long-range RUDY Blue: global RUDY pins

Proposed Model

Problem 1 (**#DRV prediction**). Find an estimator $f_{\#DRV}^*$ of DRV count in a placement:

$$f_{\#DRV} : X_i^{(\#DRV)} \in \mathbb{R}^{w \times h \times F_1} \to y_i \in \mathbb{N}$$
$$f_{\#DRV}^* = \underset{f}{\operatorname{arg\,min\,Loss}} (f(X_i^{(\#DRV)}), y_i)$$

Convolutional Neural Network (CNN)

Problem 2 (Hotspot prediction). Find a detector $f_{hotspot}^*$ of hotspots. It reports locations of all DRC hotspots in a placement.

$$\begin{aligned} f_{hotspot} &: X_i^{(hotspot)} \in \mathbb{R}^{w \times h \times F_2} \to V_i \in \{0, 1\}^{w \times h} \\ f_{hotspot}^* &= \operatorname*{arg\,min}_{f} Loss(f(X_i^{(hotspot)}), V_i) \\ Y_i \in \mathbb{R}^{w \times h} \qquad V_{i_{mn}} = \mathbb{1}(Y_{i_{mn}} > \epsilon) \end{aligned}$$

Fully Convolutional Network (FCN)

Proposed Model- #DRV Prediction

Algorithm 1 Algorithm of RouteNet for #DRV Prediction

Input: Number of training placements: *N*, Features: $\{X_i \in \mathbb{R}^{w \times h \times 3} \mid i \in [1, N]\}$, Targets: $\{y_i \in \mathbb{R} \mid i \in [1, N]\}$ **Preprocess**:

```
1: for each int i \in [1, N] do
```

2: Resize $X_i \in \mathbb{R}^{w \times h \times 3}$ into $X_i^{\#DRV} \in \mathbb{R}^{224 \times 224 \times 3}$

- 3: Find 25%, 50%, 75% quantizes of y_i : q_1 , q_2 , q_3 4: **for** each int $i \in [1, N]$ **do**
- 5: $C_i \leftarrow 0$
- 6: **for** each int $t \in [1,3]$ **do**

7: **if**
$$y_i > q_t$$
 then

- 8: $C_i \leftarrow t$, break
- 9: Form dataset $\{(X_i^{\#DRV}, C_i) | i \in [1, N]\}$
- 10: Training set { $(X_i^{\#DRV}, C_i) | C_i = 0 \text{ or } C_i = 3$ }

Training:

- 1: Get pretrained ResNet18 $f_{Res} : \mathbb{R}^{224 \times 224 \times 3} \rightarrow \mathbb{R}^{1000}$
- 2: Replace output layer, s.t. $f_{\#DRV} : \mathbb{R}^{224 \times 224 \times 3} \to \mathbb{R}$
- 3: Choose MSE as loss function, SGD for optimization
- 4: Train $f_{\#DRV}$ with preprocessed dataset for ~30 epoches

Output: $f_{\#DRV}$ estimating #DRV level

Resize input to 224*224, to utilize models pre-trained on images with size 224*224

Proposed Model - #DRV Prediction

Algorithm 1 Algorithm of RouteNet for #DRV Prediction

Input: Number of training placements: *N*, Features: ${X_i \in \mathbb{R}^{w \times h \times 3} \mid i \in [1, N]}, \text{Targets: } {y_i \in \mathbb{R} \mid i \in [1, N]}$ **Preprocess**:

1: for each int $i \in [1, N]$ do

Resize $X_i \in \mathbb{R}^{w \times h \times 3}$ into $X_i^{\#DRV} \in \mathbb{R}^{224 \times 224 \times 3}$ 2:

3: Find 25%, 50%, 75% quantizes of *y*_{*i*}: *q*₁, *q*₂, *q*₃ 4: for each int $i \in [1, N]$ do

 $C_i \leftarrow 0$ 5:

```
for each int t \in [1,3] do
6:
```

if $y_i > q_t$ then 7: 8:

 $C_i \leftarrow t$, break

9: Form dataset { $(X_i^{\#DRV}, C_i) | i \in [1, N]$ } 10: Training set { $(X_i^{\#DRV}, C_i) | C_i = 0 \text{ or } C_i = 3$ }

Training:

- 1: Get pretrained ResNet18 $f_{Res} : \mathbb{R}^{224 \times 224 \times 3} \rightarrow \mathbb{R}^{1000}$
- 2: Replace output layer, s.t. $f_{\#DRV} : \mathbb{R}^{224 \times 224 \times 3} \to \mathbb{R}$
- 3: Choose MSE as loss function, SGD for optimization
- 4: Train $f_{\#DRV}$ with preprocessed dataset for ~30 epoches

Output: $f_{\#DRV}$ estimating #DRV level

Assign placements to 4 different classes (c_0, c_1, c_2, c_3) based on their level of violations (#DRV)

 c_0 represents least #DRV, while c_3 represents most

Proposed Model - #DRV Prediction

Algorithm 1 Algorithm of RouteNet for #DRV Prediction

```
Input: Number of training placements: N, Features:
{X_i \in \mathbb{R}^{w \times h \times 3} \mid i \in [1, N]}, \text{ Targets: } {y_i \in \mathbb{R} \mid i \in [1, N]}
Preprocess:
 1: for each int i \in [1, N] do
          Resize X_i \in \mathbb{R}^{w \times h \times 3} into X_i^{\#DRV} \in \mathbb{R}^{224 \times 224 \times 3}
  2:
 3: Find 25%, 50%, 75% quantizes of y_i: q_1, q_2, q_3
 4: for each int i \in [1, N] do
          C_i \leftarrow 0
  5:
          for each int t \in [1,3] do
 6:
               if y_i > q_t then
 7:
                    C_i \leftarrow t, break
  8:
 9: Form dataset {(X_i^{\#DRV}, C_i) | i \in [1, N]}
10: Training set {(X_i^{\#DRV}, C_i) | C_i = 0 \text{ or } C_i = 3}
Training:
 1: Get pretrained ResNet18 f_{Res} : \mathbb{R}^{224 \times 224 \times 3} \to \mathbb{R}^{1000}
 2: Replace output layer, s.t. f_{\#DRV} : \mathbb{R}^{224 \times 224 \times 3} \rightarrow \mathbb{R}
 3: Choose MSE as loss function, SGD for optimization
 4: Train f_{\#DRV} with preprocessed dataset for ~30 epoches
```

Output: *f*_{#*DRV*} estimating #DRV level

Download a pre-trained CNN model named ResNet18

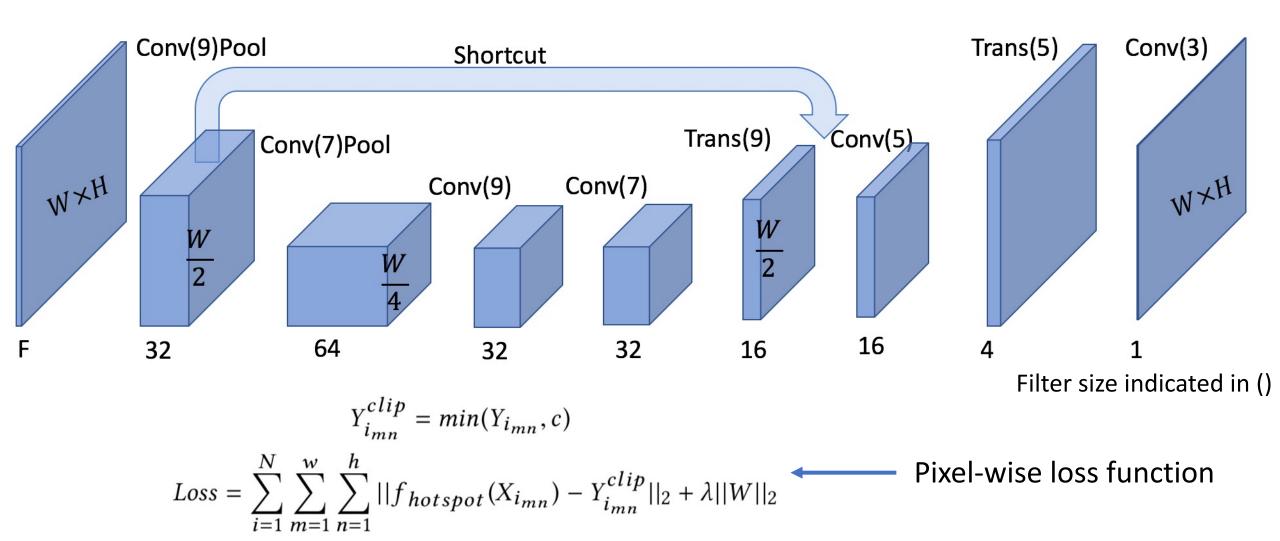
Proposed Model - #DRV Prediction

Algorithm 1 Algorithm of RouteNet for #DRV Prediction

```
Input: Number of training placements: N, Features:
{X_i \in \mathbb{R}^{w \times h \times 3} \mid i \in [1, N]}, \text{Targets: } {y_i \in \mathbb{R} \mid i \in [1, N]}
Preprocess:
 1: for each int i \in [1, N] do
          Resize X_i \in \mathbb{R}^{w \times h \times 3} into X_i^{\#DRV} \in \mathbb{R}^{224 \times 224 \times 3}
  2:
 3: Find 25%, 50%, 75% quantizes of y_i: q_1, q_2, q_3
 4: for each int i \in [1, N] do
          C_i \leftarrow 0
  5:
          for each int t \in [1,3] do
 6:
               if y_i > q_t then
 7:
                    C_i \leftarrow t, break
  8:
 9: Form dataset {(X_i^{\#DRV}, C_i) | i \in [1, N]}
10: Training set {(X_i^{\#DRV}, C_i) | C_i = 0 \text{ or } C_i = 3}
Training:
 1: Get pretrained ResNet18 f_{Res} : \mathbb{R}^{224 \times 224 \times 3} \rightarrow \mathbb{R}^{1000}
 2: Replace output layer, s.t. f_{\#DRV} : \mathbb{R}^{224 \times 224 \times 3} \to \mathbb{R}
 3: Choose MSE as loss function, SGD for optimization
 4: Train f_{\#DRV} with preprocessed dataset for ~30 epoches
Output: f_{\#DRV} estimating #DRV level
```

Fine-tune CNN with preprocessed data

Proposed Model- Hotspot Detection



- Five designs from ISPD 2015
- ~300 different placements by placing macros in different way
- When each design tested, model trained only on four other designs
- SVM and Logistic Regression (LR) methods for comparison

Circuit Name	#Macros	#Cells	#Nets	Width (µm)	#Placements
des_perf	4	108288	110283	900	600
edit_dist	6	127413	131134	800	300
fft	6	30625	32088	800	300
matrix_mult_a	5	149650	154284	1500	300
matrix_mult_b	7	146435	151614	1500	300

#DRV Prediction Evaluation

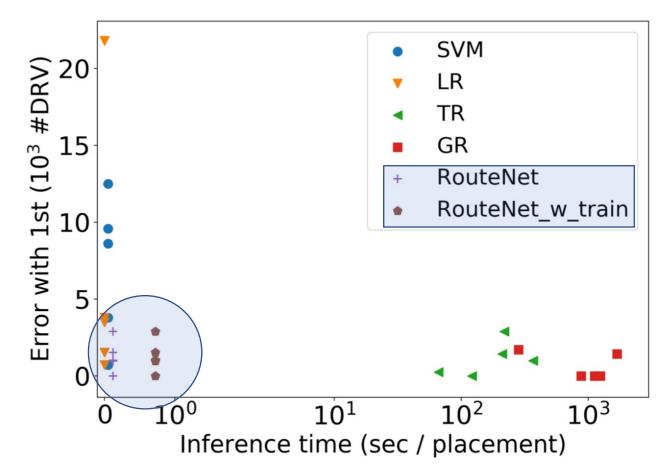
 How methods recognize placements with the lowest #DRV level (c₀)

- The quality of placements selected by each method
 - The **best rank** of <u>top ten placements</u> predicted to have least #DRV

	c_0/c	$_{1}+c_{2}+$	$-c_3$ ac	curac	ey (%)		Best ra	ank ir	top 10	0
Circuit Name	SVM	LR	TR	GR	Route Net	SVM	LR	TR	GR	Route Net
des_perf	63	74	80	77	80	87 th	15^{th}	2 nd	1 st	2 nd
edit_dist	69	68	78	77	76	17 th	17 th	3 rd	3 rd	2^{nd}
fft	66	62	73	70	75	6 th	6 th	2 nd	33 rd	1^{st}
matrix_mult_a	66	65	78	74	72	30 th	5^{th}	1^{st}	1 st	5^{th}
matrix_mult_b	63	62	76	73	76	22 nd	93 rd	4^{th}	1 st	4 th
Average	65	66	77	74	76	32 nd	27 th	2 nd	8 th	3 rd

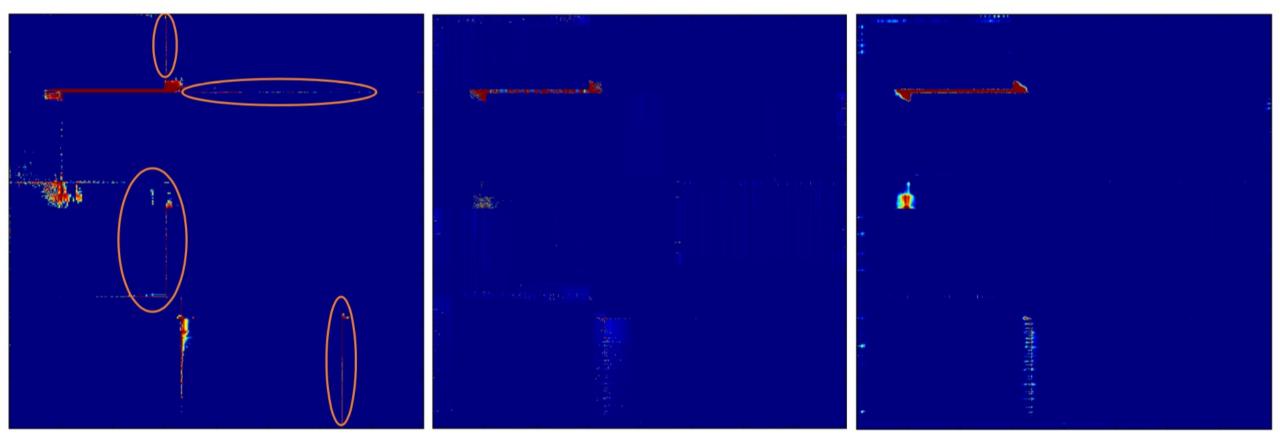
#DRV Prediction Evaluation

- Y: gap between the 'best in 10' and the actually 1st-ranked placement with least #DRV
- X: inference time taken for each method
- RouteNet achieves low inference time and high accuracy at the same time



- Same decision threshold is used for all designs
- Slight different FPR, but all under 1%
- RouteNet is superior to all methods and improves global routing accuracy by 50%

	FPR			TP	PR (%)		_		D 1		
Circuit Name	(%)	TR	GR	LR	SVM	RouteNet			Predicti	on Result	1
	~ /						-		Positive	Negative	Evaluation
des_perf	0.54	17	56	54	42	74		r		0	
edit_dist	1.00	25	36	38	28	64		Positive	TP	FN	$TPR = \frac{TP}{TP + FN}$
fft	0.30	21	45	54	31	71	Label	Negative	FP	TN	$FPR = \frac{FP}{FP + TN}$
matrix_mult_a	0.21	13	30	34	12	49					FP + TN
matrixb	0.24	13	37	41	20	53		Т	PR (True	e Positive	e Rate)
Average	0.46	18	41	44	27	62		F	PR (Fals	e Positiv	e Rate)



Ground Truth

RouteNet

• Variations of FCN

- Infer seen: Training and inference on different placements of the same circuit
- Less data: Trained on data from less designs
- No short: Shortcut structure is removed
- Less conv: Three convolutional layers are removed
- No pool: Pooling layers are removed

	FPR			TP	R	. (%)	_		
Circuit Name	(%)	Infer seen	Less data	No short		Less conv		No pool	Route Net
des_perf	0.54	77	71	71		73		68	74
edit_dist	1.00	68	61	63		62		55	64
fft	0.30	74	70	68		68		69	71
matrix_mult_a	0.21	51	46	45		45		45	49
matrix_mult_b	0.24	58	50	51		50		50	53
Average	0.46	66	60	60		60		57	62

Importance of large receptive region and global information.

- Variations of baselines
 - 5×5: Use window size of 5×5 grid cells to capture neighboring features of each grid cell.
 - 9×9: 9 × 9 grid cells of window size.

	FPR			T	PR (%)		
Circuit Name	(%)	LR	5×5 LR	9×9 LR	SVM	5×5 SVM	9×9 SVM
des_perf	0.54	54	58	58	42	47	29
edit_dist	1.00	38	39	38	28	29	20
fft	0.30	54	56	54	31	41	23
matrix_mult_a	0.21	34	36	35	12	32	9
matrix_mult_b	0.24	41	44	42	20	39	16
Average	0.46	44	47	45	27	38	19

Large receptive region gives better results

But even larger window blurs local information

RouteNet is better choice

Conclusion

- We propose RouteNet:
 - Enables a global view for less homogeneous layout
 - Faster overall routability forecast at placement
 - More accurate hotspot detection at global routing

Thanks

zhiyao.xie@duke.edu yiran.chen@duke.edu haoxingr@nvidia.com jianghu@tamu.edu