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ﬁ Task Overview

* Center: Texas Analog Center of Excellence (TxACE)
e Thrust: Computer-Aided Design and Test (CADT)
e Subthrust: System, Logic and Physical Design (SLPD)
e Task leaders

* Jiang Hu, Texas A&M Univ, Task 2810.021

* Yiran Chen, Duke Univ, Task 2810.022
e Start date: January 1, 2019
* Industrial liaisons

* Gi-Joon Nam, IBM

e Xiaoqing Xu, ARM

e Divya Prasad, ARM

e Savithri Sundareswaran, NXP



ﬁ Anticipated Results @

 Machine learning-based techniques for fast and high-
fidelity prediction of
e circuit routability
* timing
e power
e crosstalk noise

* Routability/crosstalk predictions will be useful for
analog and mixed-signal designs

e Will show how the predictions improve macro/cell
placement and system level models



ﬁ Planned Deliverables

Machine learning-based early routability prediction for digital and
analog IC designs. (12/2019)

Machine learning-based early timing prediction for digital IC
designs. (12/2019)

Machine learning-based early crosstalk noise prediction for digital
and analog IC designs. (12/2020)

Machine learning-based early power prediction for digital IC
designs. (12/2020)

Machine learning-guided placement for routability, timing, power
and signal integrity improvement. (12/2021)

Application of machine learning-based prediction in system-level
models for hardware IPs. (12/2021)



ﬁ Background and Motivation @

 Decisions in early design steps have large impact
 Need fast and high-fidelity predictions
e Existing techniques
* Analytical: fast but inaccurate
* Trial design: accurate but very slow
 Machine learning
e Extracting design knowledge from data
 Emulating designh experience




ﬁ Early Routability Prediction @

* Routability: post-routing design rule violations

* Early prediction at placement stage

* Analytical techniques
* Very fast

* Trial routing
* Acceptable fidelity
* Not fast enough




E Prior Machine Learning Approaches GRC

Learning on small cropped regions

Blockage Cell / Pin density Other DRC violation

SVM /LR
Input / Label



ﬁ Placement with Macros
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ﬁ Problem Formulations

* Predicting overall number of design rule

violations (#DRV)
* Given two placement solutions, tell which is more

routable with high fidelity
DRV hotspot detection
* Given a relatively routable placement solution,
pinpoint DRV hotspots such that mitigation
measures are well targeted



ﬁ CNN for #DRV Prediction @

Given a cell placement, classify it among four
routability levels, ¢, c;, ¢, ¢; ¢, has the least #DRVs

Input — conv POOL  FC FC
Image

____________________

Convolutional (CONV), Pooling (POOL) and Fully Connected (FC) layers

Widely used in image classification
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ﬁ An Important Feature @

 RUDY (Rectangular Uniform wire DensitY) (P. Spinder et al.
DATEOQ7)
 RUDY at a point is superposition of RUDYs of multiple nets

w
A net //,,/,, h
+h
RUDY = W_

w-h D
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BB Features for #DRV Prediction &

* Macro:
* region occupied by
macros
* density of macro pins
in each layer
e Cell:

* density of cells
* density of cell pins
* Global cell:
e cell features at global
placement
* Global RUDY:
 RUDY features
calculated by global
placement results

Physical Design Flow Features Estimation
Floorplanning —
———» Macro
Global Placement = | #DRV

Global Cell
‘ : Global RUDY
Detailed Placement Cell

: RUDY == | Detect Hotspot

Trial Routing > | TR Congestion

Global Routing

‘ ———)> GRCongestion

=

Detailed Routing

Verification ©—————) | DRC Violation
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ﬁ® Other Features @

RUDY

long-range RUDY
* RUDY from long-
range nets
short-range RUDY
* DURY from short-
range nets
RUDY pins
* pins with density
value equal to the
RUDY value of its
net

Congestion

trial global routing
congestion

global routing
congestion

DRC violation

prediction target / label

Physical Design Flow Features Estimation
Floorplanning —
———» Macro
Global Placement = | #DRV
Global Cell
‘ : Global RUDY _
Detailed Placement Cell

—— RupY — [Detect Hotspot
Trial Routing > | TR Congestion

Global Routing

‘ ———)> GRCongestion

=

Detailed Routing

Verification ©—————) | DRC Violation
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ﬁ Feature Illustration

w xh xF Input Tensor

h=800

F=4 (#Features)

(4)

Input tensor constructed by stacking 2D features:
(1) Pin density, (2) macro (3) long-range RUDY, (4) RUDY pins
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ﬁ®

Fully Convolutional Network for
Hotspot Prediction

“tabby cat”
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tabby cat heatmap

Eliminate FC layers
May use transposed-convolutional to up-sample

Used in image segmentation, object detection

15



ﬁ Experiment Setup

%

* Five designs from ISPD 2015 placement contest, 45nm technology
e ~300 different placements by placing macros in different ways

* Placement, routing and DRC are done by Cadence tool
* When a circuit is tested, the model trained with the other circuits
e SVM and Logistic Regression (LR) methods for comparison

Circuit Name #Macros #Cells  #Nets Width (um) #Placements
des_perf 4 108288 110283 900 600
edit_dist 6 127413 131134 800 300
fft 6 30625 32088 800 300
matrix mult a 5 149650 154284 1500 300
matrix_mult b 7 146435 151614 1500 300
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ﬁ #DRYV Prediction Fidelity @

* How recognize placements with the lowest #DRV level (cj)
* The best rank of top ten placements predicted to have least #DRV

co/c1+ca+c3 accuracy (%) Best rank in top 10
Circuit Name Route Route
SVM LR TR GR 7o |SYM LR TR GR |\
des_perf 63 74 80 77 80 |87 q5th gnd gst | pnd
edit_dist 69 68 78 77 76 | 17th q7th 3rd qrd | ond
fft 66 62 73 70 75 oth gth ognd g3rd | st

matrix mult a | 66 65 78 74 72 | 30th 5th st qst | s5th
matrix mult b | 63 62 76 73 76 | 227 o9g3rd  gth st oyth

Average 65 66 77 74 76 |32nd 7th pnd  gth o} grd

TR: Trial Routing
GR: Global Routing
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B3 #DRV Prediction Error vs. Time &
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* Y:gap between the ‘best in 10’ and the actually 1st-ranked
placement with least #DRV
e X:inference time

* RouteNet achieves low inference time and high accuracy at the

same time
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ﬁ DRV Hotspot Detection

%

 Same decision threshold is used for all designs
* Slight different False Positive Rate (FPR), all under 1%

 RouteNet has the highest True Positive Rate (TPR)

Circuit Name tPR TPR (%)
(%) | TR GR LR SVM |RouteNet

des_perf 054 | 17 56 54 42 74
edit_dist 1.00 | 25 36 38 28 64
fit 0.30 | 21 45 54 31 71
matrix mult a | 0.21 | 13 30 34 12 49
matrix mult b | 0.24 | 13 37 41 20 53
Average 046 | 18 41 44 27 62
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BB% Future Plan for Year 1 &

* Improving routability prediction by considering pin

access
e Routability prediction for analog and mixed-signal IC

designs
* Pre-routing timing prediction
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ﬁ Students on Task 2810.021, 2810.022 @

* Zhiyao Xie, Duke University, expected graduation: 2021
 Rongjian Liang, TAMU, expected graduation: 2021
 Planned internship: Rongjian Liang, IBM, summer 2019
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ﬁ Interactions with SRC Companies @

* Regular web meetings with IBM
* Site visit to ARM

 Site visit to Mentor Graphics
 Web meeting with NXP
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