

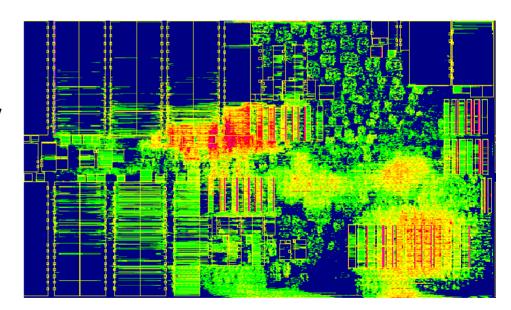
A Collaborative Machine Learning Approach to Fast and High-Fidelity Design Prediction

Task 2810.021 Jiang Hu Dept of ECE Texas A&M University Task 2810.022 Yiran Chen Dept of ECE Duke University

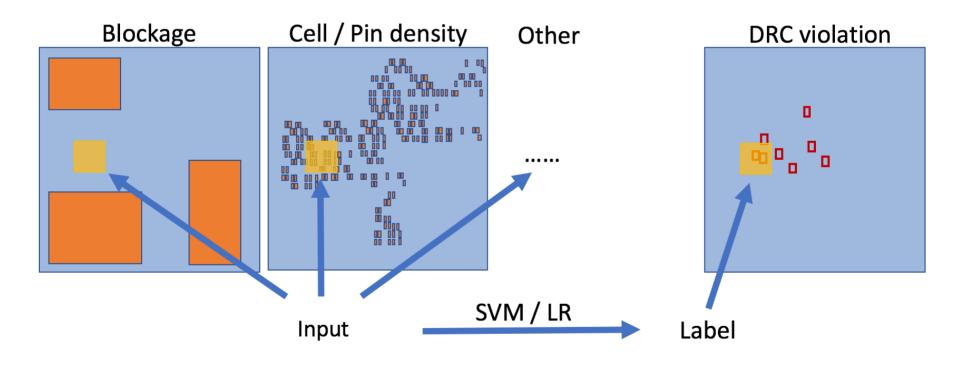
- Center: Texas Analog Center of Excellence (TxACE)
- Thrust: Computer-Aided Design and Test (CADT)
- Subthrust: System, Logic and Physical Design (SLPD)
- Task leaders
 - Jiang Hu, Texas A&M Univ, Task 2810.021
 - Yiran Chen, Duke Univ, Task 2810.022
- Start date: January 1, 2019
- Industrial liaisons
 - Gi-Joon Nam, IBM
 - Xiaoqing Xu, ARM
 - Divya Prasad, ARM
 - Savithri Sundareswaran, NXP

- Machine learning-based techniques for fast and highfidelity prediction of
 - circuit routability
 - timing
 - power
 - crosstalk noise
- Routability/crosstalk predictions will be useful for analog and mixed-signal designs
- Will show how the predictions improve macro/cell placement and system level models

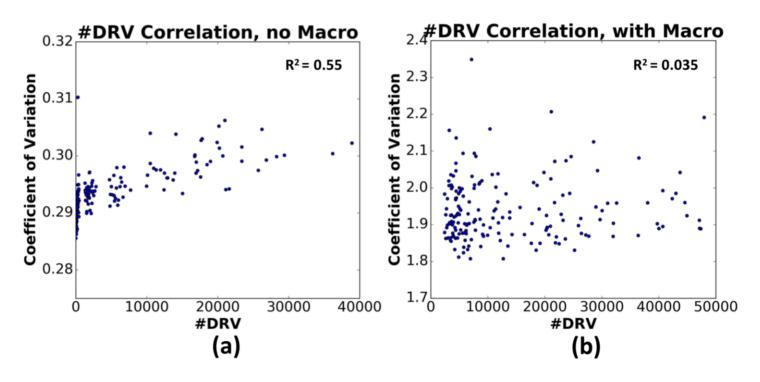
- Machine learning-based early routability prediction for digital and analog IC designs. (12/2019)
- Machine learning-based early timing prediction for digital IC designs. (12/2019)
- Machine learning-based early crosstalk noise prediction for digital and analog IC designs. (12/2020)
- Machine learning-based early power prediction for digital IC designs. (12/2020)
- Machine learning-guided placement for routability, timing, power and signal integrity improvement. (12/2021)
- Application of machine learning-based prediction in system-level models for hardware IPs. (12/2021)



- Decisions in early design steps have large impact
- Need fast and high-fidelity predictions
- Existing techniques
 - Analytical: fast but inaccurate
 - Trial design: accurate but very slow
- Machine learning
 - Extracting design knowledge from data
 - Emulating design experience

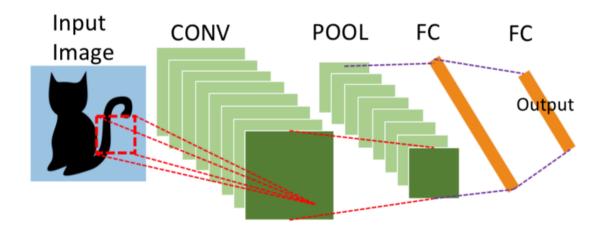


- Routability: post-routing design rule violations
- Early prediction at placement stage
- Analytical techniques
 - Very fast
 - Not enough fidelity
- Trial routing
 - Acceptable fidelity
 - Not fast enough


Learning on *small cropped regions*

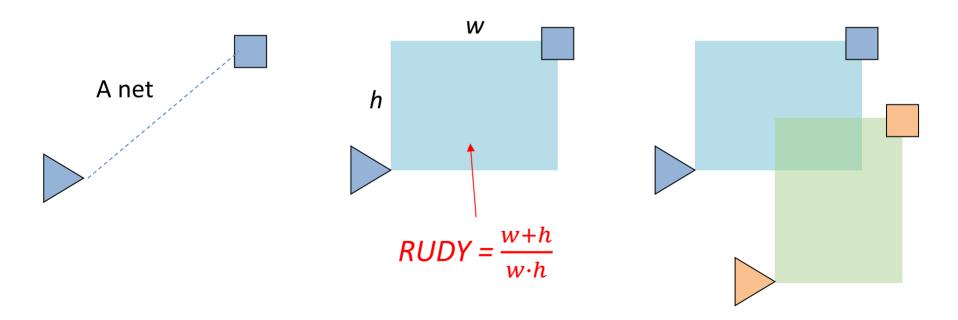
- Layout is less homogeneous
- Correlation between pin density and #DRV becomes weak

Each point corresponds to one placement

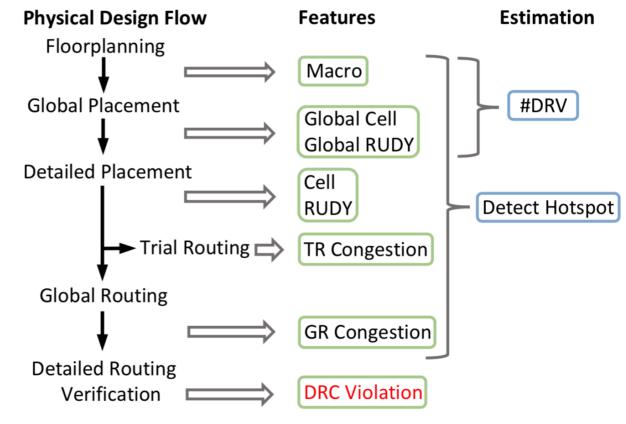


- Predicting overall number of design rule violations (#DRV)
 - Given two placement solutions, tell which is more routable with high fidelity
- DRV hotspot detection
 - Given a relatively routable placement solution, pinpoint DRV hotspots such that mitigation measures are well targeted

Given a cell placement, classify it among four routability levels, c_0 , c_1 , c_2 , c_3 , c_0 has the least #DRVs



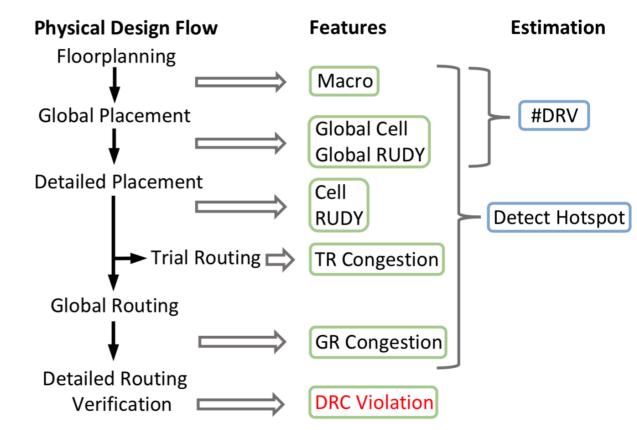
Convolutional (CONV), Pooling (POOL) and Fully Connected (FC) layers Widely used in image classification

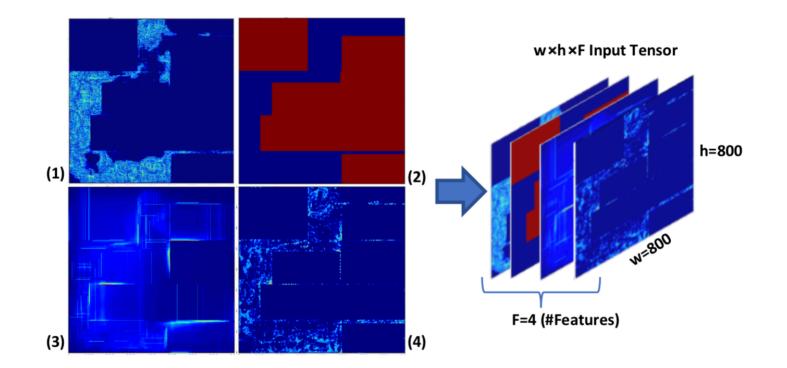

- RUDY (Rectangular Uniform wire DensitY) (P. Spinder et al. DATE07)
- RUDY at a point is superposition of RUDYs of multiple nets

RC Features for #DRV Prediction

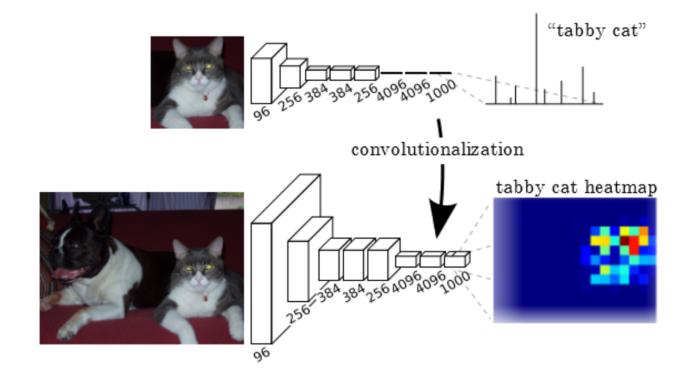
Macro: Physical Desig region occupied by Floorplannin macros density of macro pins Global Placem

- density of macro pins in each layer
- Cell:
 - density of cells
 - density of cell pins
- Global cell:
 - cell features at global placement
- Global RUDY:
 - RUDY features calculated by global placement results





- RUDY
 - long-range RUDY
 - RUDY from longrange nets
 - short-range RUDY
 - DURY from shortrange nets
 - RUDY pins
 - pins with density value equal to the RUDY value of its net
- Congestion
 - trial global routing congestion
 - global routing congestion
- DRC violation
 - prediction target / label



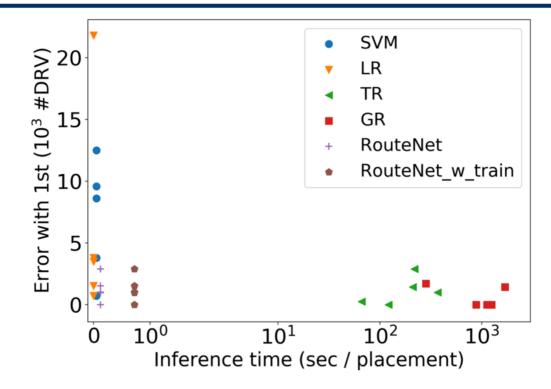
Input tensor constructed by stacking 2D features: (1) Pin density, (2) macro (3) long-range RUDY, (4) RUDY pins

Fully Convolutional Network for Hotspot Prediction

Eliminate FC layers May use transposed-convolutional to up-sample Used in image segmentation, object detection

- Five designs from ISPD 2015 placement contest, 45nm technology
- ~300 different placements by placing macros in different ways
- Placement, routing and DRC are done by Cadence tool
- When a circuit is tested, the model trained with the other circuits
- SVM and Logistic Regression (LR) methods for comparison

Circuit Name	#Macros	#Cells	#Nets	Width (µm)	#Placements
des_perf	4	108288	110283	900	600
edit_dist	6	127413	131134	800	300
fft	6	30625	32088	800	300
matrix_mult_a	5	149650	154284	1500	300
matrix_mult_b	7	146435	151614	1500	300


- How recognize placements with the lowest #DRV level (c_0)
- The **best rank** of <u>top ten placements predicted to have least #DRV</u>

	$c_0/c_1+c_2+c_3$ accuracy (%)				Best rank in top 10					
Circuit Name	SVM	LR	TR	GR	Route Net	SVM	LR	TR	GR	Route Net
des_perf	63	74	80	77	80	87 th	15^{th}	2 nd	1 st	2 nd
edit_dist	69	68	78	77	76	17 th	17^{th}	3 rd	3 rd	2 nd
fft	66	62	73	70	75	6 th	6 th	2 nd	33 rd	1 st
matrix_mult_a	66	65	78	74	72	30 th	5 th	1 st	1 st	5 th
matrix_mult_b	63	62	76	73	76	22 nd	93 rd	4^{th}	1 st	$4^{ ext{th}}$
Average	65	66	77	74	76	32 nd	27 th	2 nd	8 th	3 rd

TR: Trial Routing GR: Global Routing

#DRV Prediction Error vs. Time

- Y: gap between the 'best in 10' and the actually 1st-ranked placement with least #DRV
- X: inference time
- RouteNet achieves low inference time and high accuracy at the same time

- Same decision threshold is used for all designs
- Slight different False Positive Rate (FPR), all under 1%
- **RouteNet** has the highest True Positive Rate (TPR)

Circuit Name	FPR	TPR (%)					
Circuit Maine	(%)	TR	GR	LR	SVM	RouteNet	
des_perf	0.54	17	56	54	42	74	
edit_dist	1.00	25	36	38	28	64	
fft	0.30	21	45	54	31	71	
matrix_mult_a	0.21	13	30	34	12	49	
matrix_mult_b	0.24	13	37	41	20	53	
Average	0.46	18	41	44	27	62	
	•						

- Improving routability prediction by considering pin access
- Routability prediction for analog and mixed-signal IC designs
- Pre-routing timing prediction

- Zhiyao Xie, Duke University, expected graduation: 2021
- Rongjian Liang, TAMU, expected graduation: 2021
- Planned internship: Rongjian Liang, IBM, summer 2019

- Regular web meetings with IBM
- Site visit to ARM
- Site visit to Mentor Graphics
- Web meeting with NXP

Thank You!