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Introduction: Design Flow Parameter Tuning

• Design parameters have strong impact on overall design quality 

• Manual parameter tuning process can be very 8me-consuming 
• Industrial design flows can take several hours or days to run
• Huge search space

• Design space explora8on (DSE) vs design flow parameter tuning
• DSE includes high-level synthesis design space explora=on 
• Design flow parameter tuning is more about logic synthesis & physical design
• Design flows take much longer to run & have more parameters
• Design flow parameter tuning has more prior data (other designs)
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Introduc8on: Defini8ons

• parameters or features: parameters tuned in logic synthesis or 
physical design scripts

• sample (s): one combination of parameter values

• solution quality or label: sample’s PPA measured after the
complete flow

• parameter space (S): some / all parameter value combinations

• sampling: select samples from parameter space (to run design flow)
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Introduction: An Highly Cited Work in DSE

• Idea: iterative refinement

• 1. Model-less Sampling
• Select p samples
• Run these p design flows, get their solution quality
• Train the model f with such p samples

• 2. Model-guided Sampling (Refinement)
• Use f to select the most promising unselected sample s
• Run design flow s, get its solution quality
• Add s to existing dataset !𝑆, retrain model f

Liu et al., 13’ DAC *

* H.-Y. Liu and L. P. Carloni, “On learning-based methods for design space exploraEon with high-level synthesis,” in DAC, 2013.

Iterate
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Method: Ideas that Motivate FIST

• Learn previous knowledge from already synthesized designs

• Knowledge: parameters’ impact (importance) on solution quality, 
similar across different designs

• Samples with the same values on important features have similar 
final solution quality. (Put them into the same cluster)

• Size of training dataset increases through iteration
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Method: An Example of FIST
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Method: An Example of FIST

• Calculate feature importance
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Method: An Example of FIST

• Calculate feature importance
• Cluster samples with the same 

values on important features
• Assume the same solution 

quality in the whole cluster 
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Method: An Example of FIST

• Calculate feature importance

• Cluster samples with the same 
values on important features
• Assume the same solution quality 

in the whole cluster 
• Select one sample, get solution 

quality, then put the whole cluster 
into the training set

1. Model-less Sampling
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Method: An Example of FIST

• Calculate feature importance

• Cluster samples with the same 
values on important features
• Assume the same solu:on quality 

in the whole cluster 
• Select one sample, get solu:on 

quality, then put the whole cluster 
into the training set

1. Model-less Sampling 2. Model-guided
Sampling
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Method: An Example of FIST

• Calculate feature importance
• Cluster samples with the same 

values on important features
• Assume the same solution quality 

in the whole cluster 
• Select one sample, get solution 

quality, then put the whole cluster 
into the training set

• Benefit: sample more data at the 
beginning, avoid selecting similar 
samples
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Method: FIST Summary
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• 1. Model-less Sampling
• Select p cluster of samples

• Model-guided Sampling (refinement) 
• 2. Explora=on (i < 𝜃)

• Keep selec(ng by clusters

• 3. Exploita=on (i > 𝜃)
• Now select by sample

• ML model:
• Use XGBoost instead of Random Forest
• Increase max tree depth (model 

complexity) during itera=on process

Step 1, 2

Step 3
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Method: FIST Compared with Previous Works

Previous DSE method FIST

Cluster samples based on the values of important features
In initial stages i < 𝜃, we select whole clusters instead of one sample14



• Nine designs from ITC 99
• 9 logic synthesis parameters
• For each design, exhaus8vely run 1728 samples in their

parameter space 

Result: Experiment Setup

Synthesis parameters include: 
set max fanout, set max transition, 
set max area, high fanout net threshold, 
set max capacitance, insert clock gating, 
leakage power optimization, compile type,
dynamic power optimization. 
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Best solution rank with the same sample cost Sample cost to reach the same solution rank 

Result: Single-Objective Tuning
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Best ADRS with the same sample cost. Sample cost to reach the same ADRS

Result: Multiple-Objectives Tuning

ADRS (Average Distance from Reference Set) considers multiple design objectives 17



Standard deviation σ of solution qualities among samples

Discussion: Similarity in Design Quality

• in-cluster sampling has much lower σ -> design quality of samples 
from the same cluster are indeed similar

• learned σ is close to ground truth -> the learned feature 
importance is accurate
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Applica8on: Setup

• FIST-based automatic parameter tuning flow for industrial designs
• Modules from a 16nm deep learning inference accelerator 
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Application: Setup

• Module PE: a 71K-gate Processing Element
• Module RISC-V: a 117K-gate RISC-V microprocessor
• Parameter space consists of 1,382,400 samples
• Impossible to collect data exhaustively like ITC99, thus compare with 

30 hand-tuned solutions from experienced designers
• Budget b ~= 200, <0.02% parameter space. Initial sampling p = 100
• Although taking more trials, FIST is fully automatic
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• Parameter tuning process 
in six stages on PE 
• Area (μm2) vs setup TNS (ns) 
• Black are baselines from human
• Red and yellow are Pareto points
• Step 1 perform model-less samp
• Step 2, 3 perform ‘explora8on’ 
• Step 4, 5, 6 perform ‘exploita8on’ 

• 1.82% improvement in area
• All samples from  4, 5, 6 

outperform human solu8ons
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• Parameter tuning process 
in six stages on RISC-V
• Area (μm2) vs setup TNS (ns) 
• Black are baselines from human
• Red and yellow are Pareto points
• Step 1 perform model-less samp
• Step 2, 3 perform ‘explora8on’ 
• Step 4, 5, 6 perform ‘exploita8on’ 

• 1.43% improvement in area
• All samples from  4, 5, 6 

outperform human solu8ons
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Conclusion

• Proposed an efficient machine learning approach for automatic 
parameter tuning.

• Leveraged prior knowledge from other already explored designs. 

• Introduced approximate (cluster) sampling, similar to ideas in semi-
supervised learning. 

• Incorporated FIST to the automatic tuning process of two complicated 
industrial designs with a huge parameter space. 
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Thanks!
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