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• Background

• An overview of ML-based IR drop estimators

• Static IR drop estimators

• Dynamic IR drop estimators

• General challenges and possible solutions
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• To optimize PPA & meet 
constraint, IR drop mitigation 
may takes many iterations

• Accurate IR drop simulation by 
commercial tools is very time 
consuming

• Fast IR drop estimation with 
machine learning (ML) !

Challenge: Faster IR Drop Es7mator Desired
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Dynamic IR Analysis

Early rail analysis by Voltus. [*]

[*] Cadence, Voltus User Guide.  

Static IR Analysis

Power Es6ma6on

Structural Analysis

Power Planning

Optimization 1

Optimization 2



• Static IR drop
• Usually measures the average current 
• Identify the weakness of PDN

• Dynamic IR drop
• Captures the peak transient current 
• Whether toggling vectors required:
• Yes: Vector-based IR drop
• No: Vectorless IR drop

• Power Supply Noise (PSN)
• Comprises both IR drop & 𝐿 ∗ 𝑑𝑖/𝑑𝑡

Background: IR Drop Types
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Sta4c and dynamic analysis. [*]

[*] Nithin, et al., ISQED  



Methods: IR Drop Es7mators Overview 
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The existing ML estimators cover different types of IR drop:
• Static IR drop
• Dynamic IR drop
• Power Supply Noise (PSN) 



Methods: IR Drop Estimators Overview 
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The existing ML estimators cover different ML models:
• One-dimensional input: Linear Regression, ANN, XGBoost, ….
• Two-dimensional input: CNN, NLP…



Cross-design:
• Model applies to new designs that are not in the training set
• Test and training design differ at least at netlist level

Methods: IR Drop Estimators Overview 
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Methods: IR Drop Estimators Overview 

8

{𝐼!, 𝐼"} Current:
• 𝐼! : Average or peak current measured on each cell instance 
• 𝐼" : Current loads or the total current on power grids 

{𝑅!, 𝑅"} Resistance:
• 𝑅! : resistance on the path from power pad to each cell instance 
• 𝑅" : resistance measured on power grids and power nodes 



Methods: IR Drop Es7mators Overview 
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{PDN}: The informaWon about PDN

{𝑃!} Power: Power dissipaWon of each cell instance (internal, switching, leakage)

{𝐺} Global informaOon: process, voltage, temperature, frequency, layout size

{𝑐} Cell informaOon: cell area, cell load, cell type 



Methods: IR Drop Estimators Overview 
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{𝑟#$"} Toggling activity
• Switching activity of each cell. Usually measured by toggle rate.

{𝑡!} Timing window
• The timing interval of switching for each cell. Min/max signal arrival time.



Methods for Static IR Drop

• Similarities between IncPIRD & XGBIR:
• ML model: both use XGBoost

• Special property of IncPIRD :
• Model used for iterative PDN design
• Use ‘update condition’ to decide whether model needs to be retrained
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Features in IncPIRD Features in XGBIR

IncPIRD: Ho, et al., ICCAD 19  
XGBIR: Pao, et al., DATE 20  



Dynamic IR Drop with Power Only [*]

• A linear model for each cell instance
• IR drop = k * power + b
• Captures correlation between IR drop and

power

• Discussion:
• Impact from neighboring cells not captured.
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[*] Yamato, et al., ITC 12

Power

IR drop

Power vs. IR-drop on cells with high correla<on.
[*]



Global !: [PVT, frequency, IP type, total toggle rate, ……]   

PSN

Switching factors "#$% density
Cell instance density
……

Sub-blocks of a SOC IP

(a) (b)

Dynamic IR Drop with Spatial Info [*]

• Predict the overall PSN of the whole SOC
• Method:
• Input (local) features: Togging rate density map + cell density map
• Use CNN to capture spa&al informa&on at local region
• Global informaWon about the whole chip provided in FC layers

• Discussion:
• Timing informa&on not incorporated
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[*] Mozaffari, et al., ITC 19



Dynamic IR Drop with Spatial & Timing Info [*]
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[*] Fang, et al., ICCAD 18  

• Predict the IR drop of each cell, considering Oming info
• Method:
• Local current & power maps around the target cell as 2D input
• Timing window & locaWon of each cell directly provided in 1D input
• Compared with Mozaffari, et al., similar 2D & 1D inputs through CNN

21

11



Dynamic IR Drop with Spatial & Timing Info [*]
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[*] Xie, et al., ASPDAC 20  

• Predict IR drop of each grid. Capture the Ome instant with peak IR.
• Method (features):
• Power maps as features 𝑃%&#'(&)*, 𝑃+,%#!-%&", 𝑃#$#)*, ……
• Divide clock cycle into 𝑁 Wme instants.
• For each grid, measure Wme-decomposed power maps 𝑃# 1 −𝑃# 𝑁 around it
• Only the cells that can switch at instant 𝑗 contribute to 𝑃# 𝑗
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Dynamic IR Drop with Spatial & Timing Info [*]
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• Predict IR drop of each grid. Capture the time instant with peak IR.
• Method (model):
• Use the same CNN model to process all N input features 𝑃# 1 −𝑃# 𝑁 in parallel
• Generate N outputs 𝑜.− 𝑜/, corresponding to 𝑁 transient IR drops
• Take the 𝐦𝐚𝐱([𝑜.: 𝑜/ ]) as estimated IR. It measures the highest transient IR

[*] Xie, et al., ASPDAC 20  



Challenges & Future Works

• Challenge 1: Evaluation & comparison

• Challenge 2: Human effort

• Challenge 3: Robustness & generalization 
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Challenges & Possible Solu7on

• Challenge 1: difficulty in evaluation & comparison among models
• For static IR drop: IncPIRD vs XGBIR?
• For dynamic IR drop: Fang et al. vs PowerNet vs …?
• Similar for other tasks: routability, parameter tuning, …….

• Possible solution: open-sourced benchmark for ML applications 
• Designs & flows dedicated to ML applications on multiple design objectives 
• Benefit:
• Enable rapid and clear comparisons 
• Ensure high-quality training & validation data
• Relieve researchers from data generation 
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Challenges & Possible Solution

• Challenge 2: model development & maintenance take human effort
• EsWmators tuned for both feature selecWon and model architecture 
• EsWmators may vary for different dataset & applicaWon scenarios
• Tuning heavily rely on human experWse. 

• Possible soluOon: search ML algorithms automaOcally
• Search both appropriate features combinaWon and ML model structure 
• Automated machine learning (AutoML)
• NAS (Neural Architecture Searching)
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Challenges & Possible Solution

• Challenge 3: model’s robustness & generalization not verified
• How model will perform on previously unseen data
• Not likely to perform well on every new cases (designs/technology nodes)
• Risky every time when inferring a new test case. 

• Possible solution: measure model’s robustness before inference
• Quantify similarity between training & testing cases
• Example: the ‘update condition’ in IncPIRD, deciding whether ML model 

needs to be retrained [1]

20[1] Ho, et al., ICCAD 19  



Conclusion

• We summarize the latest progress in ML models for fast IR drop 
estimation 

• We introduce the innovations and technical details of 
representative methods

• We discuss some general challenges in ML estimators
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Thank You! 
Questions?
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