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Challenge: Faster IR Drop Estimator Desired

* To optimize PPA & meet Power Planning

constraint, IR drop mitigation .
may takes many iterations Structural Analysis

Power Estimation

e Accurate IR drop simulation by I
commercial tools is very time t

. Static IR Analysis Optimization 1
consuming

. , , Dynamic IR Analysis. Bptimizationz
* Fast IR drop estimation with

machine Iearnmg (ML) | Early rail analysis by Voltus. [*]

[*] Cadence, Voltus User Guide. °



Background: IR Drop Types

e Static IR drop
* Usually measures the average current .
¢ |dent|fy the weakness of PDN Average current 1

Clock 1

(a) Dynamic current 1

* Dynamic IR drop
* Captures the peak transient current Clgele2

Average current 2

 Whether toggling vectors required:
* Yes: Vector-based IR drop R s e
* No: Vectorless IR drop ] Dynamic current 2

Static and dynamic analysis. [*]
e Power Supply Noise (PSN)
e Comprises both IR drop & L * di/dt

[*] Nithin, et al., ISQED *



Methods: IR Drop Estimators Overview

Cross-

Methods Type of IR Drop § Time | ML Model Basii Features Objective
IncPIRD Static IR 2019 | XGBoost Yes Iy, Ry, PDN, G IR mitigation
XGBIR 2020 | XGBoost - Ig, Ry, PDN PDN design
Yamato et al. 2012 | Linear Regression | No Pe IR-aware timing
Dhotre et al. 2017 | Clustering Yes Ttog: € IR prediction
Lin et al. Vector-based IR §,01¢ | ANN No Pe, Res te, Frog, ¢ | IR mitigation
Fang et al. 2018 | CNN, XGBoost No Pe, I, Re, tc, 'tog, ¢ | IR mitigation
PowerNet Vectorless IR 2020 | CNN Yes P, tc, r'tog IR mitigation
Mozaftari et al. || Sillicon PSN 2019 | ANN, CNN, NLP Yes Ttog, G PSN prediction
—r—

The existing ML estimators cover different types of IR drop:

e Static IR drop
* Dynamic IR drop

 Power Supply Noise (PSN)




Methods: IR Drop Estimators Overview

Cross-

Methods Type of IR Drop | Time| ML Model Basii Features Objective
IncPIRD Static IR 2019 || XGBoost Yes Iy, Ry, PDN, G IR mitigation
XGBIR 2020 || XGBoost - Ig, Ry, PDN PDN design
Yamato et al. 2012 || Linear Regression || No Pe IR-aware timing
Dhotre et al. 2017 || Clustering Yes Ttog: € IR prediction
Lin et al. Vector-based IR | 01 ¢ || ANN No Pe, Res te, Frog, ¢ | IR mitigation
Fang et al. 2018 || CNN, XGBoost No Pe, I, Re, tc, 'tog, ¢ | IR mitigation
PowerNet Vectorless IR 2020 || CNN Yes P, tc, r'tog IR mitigation
Mozaftari et al. | Sillicon PSN 2019 || ANN, CNN, NLP Yes Ttog, G PSN prediction

The existing ML estimators cover different ML models:

—r-

* One-dimensional input: Linear Regression, ANN, XGBoost, ....
 Two-dimensional input: CNN, NLP...




Methods: IR Drop Estimators Overview

Cross-

Methods Type of IR Drop | Time | ML Model Basii Features Objective
IncPIRD Static IR 2019 | XGBoost Yes Iy, Ry, PDN, G IR mitigation
XGBIR 2020 | XGBoost - Ig, Ry, PDN PDN design
Yamato et al. 2012 | Linear Regression || No Pe IR-aware timing
Dhotre et al. 2017 | Clustering Yes Ttog: € IR prediction
Lin et al. Vector-based IR | 01 ¢ | ANN No Pe, Res te, Frog, ¢ | IR mitigation
Fang et al. 2018 | CNN, XGBoost No Pe, I, Re, tc, 'tog, ¢ | IR mitigation
PowerNet Vectorless IR 2020 | CNN Yes P, tc, r'tog IR mitigation
Mozaftari et al. | Sillicon PSN 2019 | ANN, CNN, NLP Yes Ttog, G PSN prediction
2

Cross-design:
 Model applies to new designs that are not in the training set
* Test and training design differ at least at netlist level




Methods: IR Drop Estimators Overview

Cross-

Methods Type of IR Drop | Time | ML Model Basii Features Objective
IncPIRD Static IR 2019 | XGBoost Yes Iy, Ry, PDN, G IR mitigation
XGBIR 2020 | XGBoost - Ig, Ry, PDN PDN design
Yamato et al. 2012 | Linear Regression | No Pe IR-aware timing
Dhotre et al. 2017 | Clustering Yes Ttog: € IR prediction
Lin et al. Vector-based IR | 15 | ANN No Pe, Res te, Frog> ¢ | IR mitigation
Fang et al. 2018 | CNN, XGBoost No P, I, Re, te, iog, ¢ | IR mitigation
PowerNet Vectorless IR 2020 | CNN Yes P, tc, r'tog IR mitigation
Mozaftari et al. | Sillicon PSN 2019 | ANN, CNN, NLP Yes Ttog, G PSN prediction
{IC/ -

I;} Current:

* [.:Average or peak current measured on each cell instance
* Ig : Currentloads or the total current on power grids

{R¢, Ry} Resistance:
* R, :resistance on the path from power pad to each cell instance
* Ry :resistance measured on power grids and power nodes




Methods: IR Drop Estimators Overview

Cross-

Methods Type of IR Drop | Time | ML Model Basii Features Objective
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Mozaftari et al. | Sillicon PSN 2019 | ANN, CNN, NLP Yes Ttog, G PSN prediction
—r—

{PDN}: The information about PDN

{P.} Power: Power dissipation of each cell instance (internal, switching, leakage)

{G} Global information: process, voltage, temperature, frequency, layout size

{c} Cell information: cell area, cell load, cell type




Methods: IR Drop Estimators Overview

Cross-

Methods Type of IR Drop | Time | ML Model Basii Features Objective
IncPIRD Static IR 2019 | XGBoost Yes Iy, Ry, PDN, G IR mitigation
XGBIR 2020 | XGBoost - Ig, Ry, PDN PDN design
Yamato et al. 2012 | Linear Regression | No Pe IR-aware timing
Dhotre et al. 2017 | Clustering Yes Ttog: € IR prediction
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—r—

{rtog} Toggling activity
e Switching activity of each cell. Usually measured by toggle rate.

{t;} Timing window
* The timing interval of switching for each cell. Min/max signal arrival time.
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Methods for Static IR Drop

e Similarities between IncPIRD & XGBIR:
e ML model: both use XGBoost

Features in IncPIRD Features in XGBIR
Category Description of Feature on node n Category | Description of Feature on node n
. Pitch of all metal layers The number of power tracks
Chip / PDN Width / height of the chip Chip / PDN | Distance between n and boundary

Power track segmental resistance
Pullup: Voltage sources’ impact on n
Pulldown: Current loads’ impact on n
V2I: Resistance between voltage
sources and current loads

Pullup: The effective resistance at n
Electrical Pulldown: The symbolic IR drop at n
Pullup and Pulldown of n’s neighbors Electrical

 Special property of IncPIRD :
* Model used for iterative PDN design

* Use ‘update condition’ to decide whether model needs to be retrained

IncPIRD: Ho, et al., ICCAD 19
XGBIR: Pao, et al., DATE 20
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Dynamic IR Drop with Power Only U]

* A linear model for each cell instance IR drop
* IRdrop =k * power + b

e Captures correlation between IR drop and
power

* Discussion:
* Impact from neighboring cells not captured.

.8
‘:00

Power
Power vs. IR-drop on cells with high correlation.

[*]

[*] Yamato, et al., ITC 12



Dynamic IR Drop with Spatial Info "

* Predict the overall PSN of the whole SOC

* Method:
* Input (local) features: Togging rate density map + cell density map
e Use CNN to capture spatial information at local region
* Global information about the whole chip provided in FC layers

e Discussion:

* Timing information not incorporated _
[*] Mozaffari, et al., ITC 19
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Dynamic IR Drop with Spatial & Timing Info [

* Predict the IR drop of each cell, considering timing info

* Method:

* Local current & power maps around the target cell as 2D input
* Timing window & location of each cell directly provided in 1D input
* Compared with Mozaffari, et al., similar 2D & 1D inputs through CNN

Sum of total power of cells in each partition

[*] Fang, et al., ICCAD 18

Convolution layers Fully connected layers
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Cell type & load
(b) Switching time_l;



Dynamic IR Drop with Spatial & Timing Info "

* Predict IR drop of each grid. Capture the time instant with peak IR.

 Method (features):

* Power maps as features P ternat Pswitching, Piotars -eeer
* Divide clock cycle into N time instants.

* For each grid, measure time-decomposed power maps P;[1]-P;|N] around it
* Only the cells that can switch at instant j contribute to P;| j]

Tira: 0ns Time: T ns Time-decomposed power map {P,[ j]}

h Period |

cellle 0 = @ [ P[]
Cell 2: _ :
Cell3: : : e /

R /

TS | ™ 2

: [*] Xie, et al., ASPDAC 20

1*/t' Z\*t ]\*t P j] € RW X h \ g 15
P¢[N]




Dynamic IR Drop with Spatial & Timing Info "’

* Predict IR drop of each grid. Capture the time instant with peak IR.

* Method (model):
* Use the same CNN model to process all N input features P;[1]-P¢[N] in parallel
* Generate N outputs 01— oy, corresponding to N transient IR drops
* Take the max(|o4: oy ]) as estimated IR. It measures the highest transient IR

P[j] € R¥*"

- Time-decomposed power map {P;[ j1}
&
04
' IR drop
goj m—(’)f
“on [*] Xie, et al., ASPDAC 20
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Challenges & Future Works

* Challenge 1: Evaluation & comparison lﬁ
O
* Challenge 2: Human effort 5

* Challenge 3: Robustness & generalization &ﬁ}



Challenges & Possible Solution

* Challenge 1: difficulty in evaluation & comparison among models
* For static IR drop: IncPIRD vs XGBIR?
* For dynamic IR drop: Fang et al. vs PowerNet vs ...?
e Similar for other tasks: routability, parameter tuning, .......

* Possible solution: open-sourced benchmark for ML applications
* Designs & flows dedicated to ML applications on multiple design objectives
* Benefit:
* Enable rapid and clear comparisons

* Ensure high-quality training & validation data
* Relieve researchers from data generation



Challenges & Possible Solution

* Challenge 2: model development & maintenance take human effort
* Estimators tuned for both feature selection and model architecture
* Estimators may vary for different dataset & application scenarios
* Tuning heavily rely on human expertise.

* Possible solution: search ML algorithms automatically
e Search both appropriate features combination and ML model structure

e Automated machine learning (AutoML)
(C

* NAS (Neural Architecture Searching)



Challenges & Possible Solution

* Challenge 3: model’s robustness & generalization not verified
 How model will perform on previously unseen data
* Not likely to perform well on every new cases (designs/technology nodes)
* Risky every time when inferring a new test case.

* Possible solution: measure model’s robustness before inference
e Quantify similarity between training & testing cases
* Example: the ‘update condition’ in IncPIRD, deciding whether ML model

needs to be retrained [1]

[1] Ho, et al., ICCAD 19



Conclusion

* We summarize the latest progress in ML models for fast IR drop
estimation

e We introduce the innovations and technical details of
representative methods

* We discuss some general challenges in ML estimators
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Questions?



