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Introduction: IR Drop Problem

* Dynamic IR drop is voltage drop at power pin of a cell

* Problem

* IR drop increases cell delay and may cause time violation
* IR drop becomes more serious as technology node shrinks

* Reason for IR drop
* V=IR, high current demand, high resistive path
* High cell and power density (spatial)
* Timing window overlap (temporal)



Introduction: Previous Works

* Design independency:
* model transferable to new designs that not in training set

* Vector-based IR drop compared with Vectorless IR drop:
* requires many simulation patterns to cover most regions, can be very slow
e accurate power simulation patterns not available in early design process
* much easier to be estimated by ML models (will be discussed)

ML Methods Model Design Independent PowerNet can be design independent
Yamato et al. (ITC 12) Linear Regression No
Ye etal. (VTS 14) SVM No
Dhotre et al. (ATS 17) Clustering Unsupervised PowerNet solve both vector-based
Linetal. (VTS 13) ANN No & vectorless IR predictions, while
Fang et al. (ECHD 10) uSSlie No focusing on vectorless scenario.
PowerNet Max-CNN Yes




Method: Features Extraction for Each Cell

* Power: Three types of power values are extracted.

* Internal power (p)) Overall power: p,; =p; + ps + D
* Switching power (p.) Scaled overall power: py., = Iy, ™ (i T Ps) T P
« Leakage power (p|) Resistance i1s assumed uniform (will be discussed)

* Coordinates: The cell location after placement.
* Min and max x axis (Xin, Xmax)

 Min and max y axis (Y Yimay)

* Signal arrival time: The min and max signal arrival times in one clock cycle.
* Min arrival time (t;,)

* Max arrival time (t,.,)

* Toggle rate: how often output changes with regard to a given clock input. (ry,)

* IR drop value as label. (IR)



Method: Space Decomposition

1 um 1 um

For each type of power, the power for analyzed grid is:

P,.y=P,+P,+P,+P,/3+P:/2
grid 1 2 3+ P,/ s/ Calculate power density



Method: Time Decomposition

Time: 0 ns rime:Tns D€fine N time frames within one cycle.

| Period |
For each time frame j, generate one

Cell 1: Do e
Coll e o o time-decomposed power map P,[j]:
Cell3: | i — .

- R For each grid:

bmin i ¢ Umax For each cell in it:
Only if j*t € [toyin, traxl:
/A \ Count the p.., of this cell
1+t 2%t jxt P,[j] € RW X" Psca

To capture the worst transient local IR drop

7



Method: PowerNet Architecture

Decomposed Power
(PLj11J € [1LN]) .

Conv(3) + Pool + BN

K Conv(3) + Pool + BN
Linear

5 a Conv(3) + BN Conv(3)+ BN
CNN Oj m —0 Linear
max %
‘ (=4
. 1

# Features C=16 C=16 C=8 C=8

Pir Psr Pscaf Pall Pt[N]

Common features CNN structure

|Idea: calculate IR drop for N instants and take the worst one.



Results: Experiments Setup

* D1-D4 measure prediction accuracy, MD1 & MD2 measure the
performance on IR drop mitigation (hotspot portions much lower)

* All designs in sub-10nm technology

* The label is vectorless IR drop measured by commercial tool

* IR drop hotspot threshold is 56mV , 6% of the supply voltage (0.94V)
* Data extracted after CTS stage (can also be applied to other stages)

Design Dl D2 D3 D4 MD1 MD?2
# cells (million) 1.7 0.81 2.0 1.9 1.7 2.4
Hotspot Portion | 5.6% 7.7% 3.1% 3.1% | 0.65% 0.50%




Results: Accuracy Measured by ROC Curve

Measured in 1 grid length *1 grid length Measured in 5 grid length * 5 grid lefgth



Results: Accuracy Measured by MSE & Rank

 MSE (Mean squared error)

* High MSE may be contributed by a consistent bias for all inferenced tiles

 Kendall rank coefficient

C is number of concordant pairs
D is number of disconcordant pairs

n is overall number of elements

C-D
Rank 7 = D)2 €|—1,1]

How well predictions rank grids by IR drop
compared with ground-truth ranking



Results: Visualization of Predictions
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Results: IR Drop Mitigation with PowerNet

* Add very thin PG straps (0.04 um) at the PowerNet-estimated hotspots

e Use this conservative method to prevent using much routing resources

* Averaged IR drop for all tiles improves only 0.4 mV

* Averaged IR drop for actual hotspots improves 4.3 mV and 2.6 mV

* PG enhancement is effective at the right places

* 26% and 31% reduction on #hotspots

: Violated # All Hotspot : Violated # All Hotspot
Design MD1 Cell  Hotspots IR (mV) IR (nIl)V) Wssien M2 Cell  Hotspots IR (mV) IR (an)
Before Mitigate 22185 5092 26.4 66.6 Before Mitigate 31097 3627 314 62.2
After Mitigate 17052 3778 26.0 62.3 After Mitigate 23941 2489 31.0 59.6
Improvement 23% 26% 0.4 4.3 Improvement 23% 31% 0.4 2.6




Results: Inference Time

* Tested on a design with around two million cells

* The 2.5 hour for the commercial tool only includes analysis time,
overall it takes 4 hours

* PowerNet achieves a 30x speedup over the commercial tool

e PowerNet is slower than the baseline ML methods because its CNN f
generates N outputs o, for each grid

Method | Commercial Tool PowerNet CNN XGBoost

Time 2.5 hour 5 min 1.5 min 1.5 min




Discussion: Time Decomposition Mechanism

Omax € {035 040}

* Measure correlation between features & IR




Discussion: Time Decomposition Mechanism

IRvs P,
IRvsP.,

IR vs P,[20

IR vs P,[27

R vs Y511g[0;

Omax € {018 .- 021} IR

* Measure correlation between features & IR




Discussion: Influence of Resistance

* The standard deviation in resistance across the whole design is only
2.80), 0.6% of average resistance

* Thus we choose not to spend extra time calculating per-cell resistance

* We provide another variation of PowerNet where each cell’s power is
scaled with resistance, named PRNet

* PRNet can be further applied to designs with non-uniform PDNs.

470
‘ ' TABLE VI: Inference Accuracy in ROC AUC (0.01%)
460
ML Methods Dl D2 D3 D4 | Ave
450 PowerNet (1 x 1 tiles) | 92.1 954 914 926 | 929

PRNet (1 x 1 tiles) | 924 955 90.5 93.6 | 93.0

440 PowerNet (5 x b tiles) | 954 96,7 94.8 97.0 | 96.0
- PRNet (5 x 5 tiles) | 95.7 968 932 97.5 12958




Discussion: Vector-based IR Drop Estimation

* The correlation between power and IR drop
value turns out to be very strong

* We also perform vector-based estimation on four
other industrial designs VD1 to VD4

* All methods provide better estimation than the
vectorless scenario

* PowerNet still gives the best accuracy

1 x 1 tiles H X 5 tiles
ML Methods | 31 yp2 vD3 vD4 | VDI VD2 VD3 VD4
XGBoost 97 08 08 96 99 97 08 97
CNN 9% 93 95 95 | 98 92 97 96
PowerNet 08 08 99 97 100 08 100 08




Conclusion

* We propose a CNN-based dynamic IR drop estimator named PowerNet

* The model is general and transferable to new designs

* PowerNet takes an order of magnitude less estimation time than
commercial tools

* PowerNet outperforms other ML methods for both vector-based and
vectorless IR drop in accuracy

* IR drop mitigation tool guided by PowerNet reduces IR drop by >20%
with very limited PG modification



Thanks!



