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Executive Summary

Problems: High-performance features create power-delivery challenges in CPUs

Key Idea: 0.05% of RTL signals can provide enough information for power
estimation in single-cycle temporal resolution

Contributions:
1. Fast and accurate design-time power model handling millions-of-cycles

benchmarks in minutes

2. An unprecedented low-cost runtime OPM (on-chip power meter)
supporting per-cycle power tracing

3. Fully automated development process for any given design

Evaluations:
- Two high-volume 3GHz 7nm Arm microprocessors Neoverse N1, Cortex-A77

- Proven with multiple Arm power-indicative workloads
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Problem 1 — Design-time CPU Power Introspection

* Delivering generational gains in IPC and FMAX adversely impacts CPU power
- Diminishing returns with speculation, wide-issue and vectored execution

* Power consumption is adversely impacted and trends upwards
- Efficiency gains through Moore’s law scaling has effectively stalled
- Parallel execution and greater transistor integration => increased switching activities

* Power-delivery resources not keeping pace with CPU power demands
- Resistive interconnects at scaled technology nodes => greater sensitivity to peak-power
- Package technology unable to sustain di/dt demands

* Increasing power-sensitivity drives the need for design-time introspection
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Problem 2 — Run-time Introspection

Modelling power on parch blocks _ Measured di/dt event on Arm A72 SoC
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* Peak-Power mitigation requires accurate power-estimation to drive throttling decisions
- Manually inferring proxies is difficult, particularly in modern CPUs with complex underlying parch

* Micro-architectural interactions (branch-mispredicts, ROB issue, hit-after-miss) trigger abrupt
changes in CPU current-demand leading voltage-droop due to di/dt events
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Problem 3 - Workload Power Characterization

Compile
Simpoint :
. . . . . workload with
* Dimensioning power-delivery networks requires binary L

gcc in Linux
power-characterization of real-world workloads

: : . Simulate workload
- Simple micro-benchmarks no longer sufficient
P 5 on gate-level netIist]_7/ Gate—l_evel /
on Emulator netlist
* Single SPEC simpoint executed on CPU can take
weeks on emulator — an expensive resource [Off"”e windowed per‘]
: o : node sim. trace
- Signoff-level power-measurement quality is expensive
. Power anaIyS|s with
* Extends only to windowed-average power EDA tools
consumption
- Impossible to scale to Ldi/dt analysis Wmdowed
average power

Industry-Standard Emulator-Driven Power Flow
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APOLLO — Key Objectives and Attributes

Problem: Prior art suffers from stark trade-offs between accuracy and speed

Accuracy versus Speed Trade-offs
High accuracy & fast  (Qualitative)

‘ Netlist Simulation
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minutes hours days
Speed
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Automated Power-Proxy Extraction
- Use ML techniques to identify correlated events

Fast, yet accurate on-chip metering
« Proven on commercial CPUs with >95% accuracy
« 0.2% area overhead over Neoverse N1 core

Per-cycle temporal resolution
- Unify simulation, Ldi/dt mitigation, emulator-
tracing within the same framework

Extensible to higher abstraction simulation
- Trade-off accuracy for pre-identified events
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APOLLO Includes Design-time Model and Runtime OPM

Neoverse N1 CPU floorplan
APOLLO P

BN e IR B I ’ opm
Zwi*xi

T e 11 1 L .
A — -3 Design-time Runtime
...... power on-chip

model power meter

Simulation traces of signals Selected CPU power proxies
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A Workload Execution Preview of APOLLO

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles

w
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| — APOLLO's Prediction — 50-Cycle Averaged hmmer (SPEC 2006) simpoint
on the Neoverse N1 CPU core
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« ~2 weeks execution time reduced to few minutes on the emulator
- Instead of full netlist emulation, only the RTL is emulated
- Storage requirement reduced 100x to proxies only (150 in this example)

* Unprecedented power-introspection due to single-cycle temporal resolution

8 © 2021 Arm a r m



APOLLO Feature Generation & Model Traini
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ML-Based Power Proxies Selection

|V|Od€| construction in two steps Please check our paper for detailed
discussion on MCP method

M Features Reach Q non-zero weights

Q retrained weights

O Wy

Step2: ‘Relax’

Stepl: Pruning

I/
Training with Wu-1# 0 Ratrain with Wa
strong penalty weak penalty
strength ® strength
!/

_ _ w0
M , wy =0 P=_.Si*w;
P=Zi=1xi*Wi
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https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0

Our Proposed Power Modeling Approach

A “diverse” set of random (micro-)benchmarks is critical

Training data automatically generated Model training & testing
* Micro-architecture agnostic genetic algorithm * Experiments on 3GHz 7nm microprocessors
to automatically generate max-power virus Neoverse N1 and Cortex A77
* A “diverse” set is generated: lower-power in * Testing on Arm power-indicative workloads
early generations and higher-power in later - Steady-state, transient, and throttling regions
generations - High- and low-power-consumption regions
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Our Proposed Power Modeling Approach

A “diverse” set of random (micro-)benchmarks is critical

Model training & testing

* Experiments on 3GHz 7nm microprocessors
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Prediction Accuracy as Design-Time Power Model
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Per-cycle prediction from APOLLO with Q=159 proxies

Please check our paper for detailed
comparisons with baselines
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https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0

Power (scaled)

Prediction Accuracy as Design-Time Power Model

Per-cycle prediction from APOLLO with Q=159 proxies
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Power (scaled)
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Accuracy on Multi-Cycle Power Estimation

Please check our paper for detailed multi-

. cycle APOLLO methods & evaluations
APOLLO accommodates any measurement window Y
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https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0

Automated Low-Cost Runtime OPM Implementation

APOLLO is designed to be hardware-friendly Please check our paper for
detailed OPM implementation
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https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0
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Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies
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Prediction Accuracy from Design-time Model & OPM
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Per-cycle prediction from APOLLO with Q=159 proxies
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Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

* Trade-off accuracy and hardware cost

N
(92

* Sweep proxy num Q and quantization bits W

I—'|—I|\3
© uv o

(%) MH uo painsea|n ISINY

OPM Gate Area  pupgr— N |

Overhead: 0.1% 0.2% 0:3% 0.4% a I'm




Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

Trade-off accuracy and hardware cost
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Future Work (1) : Design-time Power Introspection

Integer
Rename . .
Commit xecution Gated
Fetch Clock
L2 Signals

Gated Clock e Q=118 proxies

‘ Signals . MAE = 13%
I e Sufficient for

Load design decisions

Store

Vector Execution

Distribution of power Trained only with transaction-
proxies on Neoverse N1. qualifiers as raw input feature-list

Micro-architects require accurate handle on power contributors during RTL development

Restrict the proxy-search to an enumerated list of architectural transaction-qualifiers
Can be “valid-signals” or “clock-gating enables” or designer-identified control-plane qualifiers
Modify the fundamental APOLLO algorithm to train for signal “levels” instead of “toggles”
Trade-off model accuracy for much greater interpretablity, benefiting design decisions

[ ]
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Future Work (2): CPU-driven Proactive di/dt Mitigation
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Please check our paper for
details on proactive droop

mitigation using the OPM

* OPM-generated current readings are differentiated to obtain di/dt events

23

Excellent correlation is obtained for deep droop and deep overshoot events
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https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0

Summary and Conclusions

24

Fast power-modelling has a material impact in how we design and deploy CPUs

Micro-architecture agnostic methodology is automated and can scale to multiple
compute-solutions — CPUs, GPUs, NPUs and even for sub-blocks

Potential applications extend from power/thermal management in many-core
SoCs to CPU-driven proactive droop-mitigation

ML/Data-Science approaches are potential disruptors to many aspects of design
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