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Executive Summary
Problems: High-performance features create power-delivery challenges in CPUs
Key Idea: 0.05% of RTL signals can provide enough information for power 
estimation in single-cycle temporal resolution
Contributions:

1. Fast and accurate design-time power model handling millions-of-cycles
benchmarks in minutes

2. An unprecedented low-cost runtime OPM (on-chip power meter)
supporting per-cycle power tracing

3. Fully automated development process for any given design
Evaluations:

• Two high-volume 3GHz 7nm Arm microprocessors Neoverse N1, Cortex-A77
• Proven with multiple Arm power-indicative workloads
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Problem 1 – Design-time CPU Power Introspection 

• Delivering generational gains in IPC and FMAX adversely impacts CPU power
• Diminishing returns with speculation, wide-issue and vectored execution

• Power consumption is adversely impacted and trends upwards
• Efficiency gains through Moore’s law scaling has effectively stalled
• Parallel execution and greater transistor integration => increased switching activities

• Power-delivery resources not keeping pace with CPU power demands
• Resistive interconnects at scaled technology nodes => greater sensitivity to peak-power
• Package technology unable to sustain di/dt demands 

• Increasing power-sensitivity drives the need for design-time introspection
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Problem 2 – Run-time Introspection

• Peak-Power mitigation requires accurate power-estimation to drive throttling decisions
• Manually inferring proxies is difficult, particularly in modern CPUs with complex underlying µarch

• Micro-architectural interactions (branch-mispredicts, ROB issue, hit-after-miss) trigger abrupt 
changes in CPU current-demand leading voltage-droop due to di/dt events 
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Problem 3 - Workload Power Characterization

• Dimensioning power-delivery networks requires 
power-characterization of real-world workloads
• Simple micro-benchmarks no longer sufficient

• Single SPEC simpoint executed on CPU can take 
weeks on emulator – an expensive resource 
• Signoff-level power-measurement quality is expensive

• Extends only to windowed-average power 
consumption
• Impossible to scale to Ldi/dt analysis

Industry-Standard Emulator-Driven Power Flow 

Offline windowed per-
node sim. trace

Power analysis with 
EDA tools

Windowed 
average power
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Compile 
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APOLLO – Key Objectives and Attributes
Problem: Prior art suffers from stark trade-offs between accuracy and speed

Accuracy versus Speed Trade-offs 
(Qualitative)
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Automated Power-Proxy Extraction 
• Use ML techniques to identify correlated events

Fast, yet accurate on-chip metering
• Proven on commercial CPUs with >95% accuracy 
• 0.2% area overhead over Neoverse N1 core

Per-cycle temporal resolution
• Unify simulation, Ldi/dt mitigation, emulator-

tracing within the same framework

Extensible to higher abstraction simulation
• Trade-off accuracy for pre-identified events 

APOLLO

High accuracy & fast 
speed

Arch Event-based
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APOLLO Includes Design-time Model and Runtime OPM

Neoverse N1 CPU floorplan

Runtime
on-chip

power meter
Simulation traces of RTL signals
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A Workload Execution Preview of APOLLO

• ~2 weeks execution time reduced to few minutes on the emulator
• Instead of full netlist emulation, only the RTL is emulated
• Storage requirement reduced 100x to proxies only (150 in this example)

• Unprecedented power-introspection due to single-cycle temporal resolution 

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles
hmmer (SPEC 2006) simpoint
on the Neoverse N1 CPU core
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APOLLO Feature Generation & Model Training
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cycle2
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ML-Based Power Proxies Selection
Model construction in two steps

Step1: Pruning
Training with 

strong penalty
strength

Step2: ‘Relax’
Retrain with 

weak penalty 
strength
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Please check our paper for detailed
discussion on MCP method

Minimax concave penalty (MCP) for pruning

https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0
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Our Proposed Power Modeling Approach
A “diverse” set of random (micro-)benchmarks is critical 

Training data automatically generated

• Micro-architecture agnostic genetic algorithm 
to automatically generate max-power virus 

• A “diverse” set is generated: lower-power in 
early generations and higher-power in later 
generations

Model training & testing

• Experiments on 3GHz 7nm microprocessors
Neoverse N1 and Cortex A77

• Testing on Arm power-indicative workloads
• Steady-state, transient, and throttling regions
• High- and low-power-consumption regions

Power virus 
generated
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Our Proposed Power Modeling Approach
A “diverse” set of random (micro-)benchmarks is critical 

Model training & testing

• Experiments on 3GHz 7nm microprocessors
Neoverse N1 and Cortex A77

• Testing on Arm power-indicative workloads
• Steady-state, transient, and throttling regions
• High- and low-power-consumption regions
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Prediction Accuracy as Design-Time Power Model
Please check our paper for detailed
comparisons with baselinesPer-cycle prediction from APOLLO with 𝑸=159 proxies
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• MAE = 7.19%
• RMSE = 9.13% 
• R2 = 0.953
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• MAE < 10% for
all workloads

Prediction trace has 
excellent agreement with 

ground-truth envelope

https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0
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Prediction Accuracy as Design-Time Power Model

Per-cycle error
can be averaged

• MAE = 7.19%
• RMSE = 9.13% 
• R2 = 0.953

Per-cycle prediction from APOLLO with 𝑸=159 proxies
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Accuracy on Multi-Cycle Power Estimation
Please check our paper for detailed multi-
cycle APOLLO methods & evaluationsAPOLLO accommodates any measurement window

128-cycle prediction from APOLLO with 𝑸=70 proxies

• MAE = 2.82%
• RMSE = 3.93%
• R2 = 0.993
• Higher accuracy

……
Average Power over ! = #$% cycles

……

https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0


17 © 2021 Arm

Automated Low-Cost Runtime OPM Implementation
APOLLO is designed to be hardware-friendly

No multipliers required

Only 𝑸 binary inputs

{0, 1}

{0, 1}

{0, 1}

{0, 1}

𝜮

𝑤'

𝑤*

Please check our paper for 
detailed OPM implementation

𝑾-bit quantized
fixed-point weights

𝚺

Weight
Quantization

{0, 1}

Implement

Configurable
OPM template

in C++

High-Level
Synthesis

OPM in RTL

Verify OPM accuracy

Verifying

https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0
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Prediction Accuracy from Design-time Model & OPM

• MAE = 7.19%
• RMSE = 9.13% 
• R2 = 0.953

Per-cycle prediction from APOLLO with 𝑸=159 proxies
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Prediction Accuracy from Design-time Model & OPM

• MAE = 7.19%
• RMSE = 9.15% 
• R2 = 0.953

• MAE = 7.19%
• RMSE = 9.13% 
• R2 = 0.953

• 𝑾=11 bits after 
quantization

< 0.02% 
difference

Per-cycle prediction from APOLLO with 𝑸=159 proxies

Prediction from runtime OPM with 𝑸=159 proxies
Negligible 
difference
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Accuracy vs. Hardware Cost (Area Overhead) of the OPM
Runtime OPM implementation on Neoverse N1
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• Trade-off accuracy and hardware cost
• Sweep proxy num 𝑸 and quantization bits 𝑾
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OPM Gate Area 
Overhead:



21 © 2021 Arm

Accuracy vs. Hardware Cost (Area Overhead) of the OPM
Runtime OPM implementation on Neoverse N1
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• Trade-off accuracy and hardware cost
• Sweep proxy num 𝑸 and quantization bits 𝑾
• Strategy
• Keep 𝑾= 10 to 12
• Vary 𝑸 for different solutions

• For an OPM with 𝑸=159, 𝑾=11
• < 0.2% area overhead of Neoverse N1 
• < 10% in the error (RMSE) 

One OPM 
solution

0.1%          0.2%           0.3%           0.4%

OPM Gate Area 
Overhead:
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Future Work (1) : Design-time Power Introspection 

Micro-architects require accurate handle on power contributors during RTL development
Restrict the proxy-search to an enumerated list of architectural transaction-qualifiers

• Can be “valid-signals” or “clock-gating enables” or designer-identified control-plane qualifiers
• Modify the fundamental APOLLO algorithm to train for signal “levels” instead of “toggles”
• Trade-off model accuracy for much greater interpretablity, benefiting design decisions

Trained only with transaction-
qualifiers as raw input feature-list

Distribution of power 
proxies on Neoverse N1.

• Q=118 proxies
• MAE = 13%
• Sufficient for

design decisions
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Future Work (2): CPU-driven Proactive di/dt Mitigation 

• OPM-generated current readings are differentiated to obtain di/dt events 
• Excellent correlation is obtained for deep droop and deep overshoot events

Deep droop
events

High-overshoot events

Log-scale

Pearson R=0.946

False Positive

False Negative

Please check our paper for
details on proactive droop 
mitigation using the OPM

https://www.dropbox.com/s/tlatcoacwy2wr9p/micro21-APOLLO.pdf?dl=0
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Summary and Conclusions
• Fast power-modelling has a material impact in how we design and deploy CPUs

• Micro-architecture agnostic methodology is automated and can scale to multiple 
compute-solutions – CPUs, GPUs, NPUs and even for sub-blocks

• Potential applications extend from power/thermal management in many-core 
SoCs to CPU-driven proactive droop-mitigation

• ML/Data-Science approaches are potential disruptors to many aspects of design
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