

Truly Intelligent Circuit Design and Implementation

Zhiyao Xie

Dept. Electrical & Computer Engineering

Duke University

Outline of My Talk

Part 1: My Ph.D. Works

Part 2: My Future Plan

Electronic Devices are Everywhere

Designers Try to Deliver Generational Gains

iPhone 8, X

Apple A11

10nm 4.3 B trasistors

iPhone XS, XR

Apple A12

7nm 6.9 B trasistors

iPhone 11

Looks good!
Any challenges?

iPhone 12

Apple A14

5nm 11.8 B trasistors

iPhone 13

Apple A15

5nm 15 B trasistors

Chip Design Challenges

Diminishing performance gain and increasing design cost

Per-Core Performance Gain is Diminishing

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

International Business Strategies, 2020

Chip Design Challenges

Not only costly, also long turn-around time

It took **several thousand** engineers **several** years to create, at an approximate development cost of **\$3 billion**. – Jensen Huang, CEO of Nvidia

Nvidia GPU Technology Conference (GTC), 2017

This is Real Problem!

Challenges at advanced node

- Pressure from IPC and frequency
- Peak power keeps increasing
- Power delivery technique is
- Increasing design rules to m
- Increasing wire parasitics, ca wire delay and noise

Inefficient chip design methodologies

For one Arm CPU core with ~3 million gates

Intelligent design methodologies & solutions!

power simulation takes ~2 weeks

ation in physical design take ~1 week

repeatedly constructed from scratch

rely on designer intuition

https://github.com/ageitgey/face recognition

https://towardsdatascience.com/using-tensorflow-objectdetection-to-do-pixel-wise-classification-702bf2605182

http://matclinic.com/2017/05/18/the-teambehind-the-future-of-ai-in-healthcare/

Self-driving Cars

Autopilot Drone

Smart Grid

Robots

Financial Service

Smart Home

HPC

Health Monitor

Security

Personal Assistant

Gaming

Simple Plug-in and Use of ML Engines?

- 100s * 100s pixels
- No extra information
- Any human can tell the label
- Data is everywhere

Circuits (Arm Neoverse N1 CPU core)

- Millions of connected components
- 100s GB of raw information
- Need simulations to get the label
- Data is hard to get

Innovative Customized Solutions are Desired!

Many Excellent Exploration in Academia and Industry

ML for Chip Design

Electronics Research Initiative (ERI) – Design Goal: 24 hours turnaround time & no human

Traditional Chip Design

What I Believe We Should Target

Unified ML for Both Design & Runtime

Auto-ML for Chip Design

Higher-level of

automation

Benefit the whole chip life cycle

ML for Chip Design

Well-studied in recent years

Traditional Chip Design

My Related Works

Power & Power Delivery Challenges Power [ICCAD'20], [ASPDAC'20], [MICRO'21] (Best Paper Award) **Timing & Interconnect Challenges Performance PPA** [ICCAD'20], [ASPDAC'21], [TCAD'21] (under review) **Routability Challenges** Area [ICCAD'18], [DATE'18], [ICCAD'21] **Overall Flow Tuning**

[ASPDAC'20]

Covered in this talk

Case Study 1:

Routability Challenges

Routability Background

- Design Rule Checking (DRC)
 - Meeting manufacturing requirements
 - Less DRC violations (DRV) -> better routability
- DRV mitigation at early stages
 - Requires routability prediction/estimation
- Previous routability (DRV) estimations
 - Inaccurate or not fast enough

DRC violations (white) on circuit layout

First Deep Learning Method for Routability Prediction

Task 1: which one will result in less DRV count?

Customized CNN methods

Task 2: where are DRC violations?

Customized FCN methods

First Deep Learning Method for Routability Prediction

• Task 1: which one will result in less DRV count?

Requires global routing:

Hours * Number of Layouts

In seconds, with similar accuracy

Task 2: where are DRC violations?

Requires detailed routing
 More nours * Iterations

In seconds, outperform previous works

Many Excellent Deep Learning Methods

RouteNet [Xie, et al., ICCAD'18]

J-Net [Liang, et al., ISPD'20]

PROS [Chen, et al., ICCAD'20]

Tremendous Engineering Efforts Required!

What I Believe We Should Target

Traditional Chip Design

Automatic Estimator Development – Search Space

Automatic Estimator Development – Searching Algorithm

- 1. Sample from the completely-ordered graph (G_i) to get (S_i)
- 2. Evaluate the sampled model by training and testing
- 3. Update the sampling probability by evaluation result
- Result: outperforms previous works in both tasks; developed without human in one day

Auto-developed Model Structures

- Human-designed models:
 - Highly hierarchical and organized architecture
 - Limited operation types
- Auto-developed model:
 - Construct parallel branches and flexible interactions
 - Supports different operators

Auto-developed Model Structures

Auto-developed model for DRC hotspot detection is significantly more complex

Case Study 2:

Power & Power Delivery Challenges

What I Believe We Should Target

Unified ML for Both Design & Runtime **Auto-ML** for Chip Design Benefit the whole **ML** for Chip chip life cycle Higher-level of Design automation Well-studied in recent years

Traditional Chip Design

Challenge 1 – Design-time Power Introspection

Many-core CPU with more transistors

Source: Arm Neoverse V1, 2021

- Delivering generational performance gains adversely impacts CPU power
- Power-delivery resources not keeping pace with CPU power demands
- Increasing power-sensitivity drives the need for design-time introspection

Challenge 2 – Run-time Power Introspection

Modelling power on one µarch block

Estimated Power with Manual Proxies

- Peak-Power mitigation requires accurate power estimation to drive throttling
 - Manually inferring proxies is very difficult in complex modern CPUs
- Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

Challenge 3 - Workload Power Characterization

- Need power-characterization of real-world workloads
 - Simple micro-benchmarks not longer sufficient
- Single SPEC simpoint can take weeks on the expensive emulator
 - Power measurement is expensive
- Only average power consumption available
 - Impossible to scale to di/dt event analysis

Industry-Standard Emulator-Driven Power Flow

Challenges from Both Design-time and Runtime

A unified solution for both scenarios

Runtime Challenges Summary

- Peak power mitigation
 - Difficult to manually infer proxies
- Voltage droop (Ldi/dt) mitigation
 - Require very low response latency

Design-time Challenges Summary

- Simulation on realistic workloads
 - Expensive and slow
 - Limited temporal-resolution

APOLLO: A Unified Power Modeling Framework

- Fast, yet accurate design-time simulation
- Low-cost, yet accurate runtime monitoring
- Design-agnostic automated development

APOLLO Feature Generation & Model Training

In .fsdb/.vcd file format

M > **500,000** in Neoverse N1

M > 1,000,000 in Cortex-A77

Train the ML model: F(X) = y

Simple Key Ideas

- Linear model can estimate power accurately
- Small portion of signals (proxies) can provide enough information

Linear model with **M** RTL signals

$$P = \sum_{i=1}^{M} x_i * w'_i$$

Linear model with *Q* selected proxies

$$P = \sum_{i=1}^{\mathbf{Q}} s_i * w_i$$

ML-Based Power Proxies Selection

Model construction in two steps

Minimax concave penalty (MCP) for pruning

Model Training and Testing

Neoverse N1 (infra)
Deployed in AWS Graviton

Cortex A77 (mobile)
Deployed In Snapdragon 865

- Experiments on 3GHz 7nm Arm commercial microprocessors Neoverse N1 and Cortex A77
- Automatically generate a "diverse" set of random micro-benchmarks for training
- Testing on various Arm power-indicative workloads

Prediction Accuracy as Design-Time Power Model

Per-cycle prediction from APOLLO with Q=159 proxies

- MAE = 7.19%
- $R^2 = 0.953$

Prediction trace shows great agreement with ground-truth

Prediction Accuracy as Design-Time Power Model

Per-cycle prediction from APOLLO with Q=159 proxies

Accuracy on Multi-Cycle Power Estimation

128-cycle prediction from APOLLO with Q=70 proxies

- MAE = 2.82%
- $R^2 = 0.993$
- Higher accuracy

Automated Low-Cost Runtime OPM Implementation

APOLLO is designed to be hardware-friendly

Verify OPM accuracy

Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

- Trade-off accuracy and hardware cost
- Sweep proxy num $oldsymbol{Q}$ and quantization bits $oldsymbol{W}$

OPM Gate Area Overhead:

Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

- Trade-off accuracy and hardware cost
- Sweep proxy num $oldsymbol{Q}$ and quantization bits $oldsymbol{W}$
- Strategy
 - Keep quantization W = 10 to 12 bits
 - Vary Q for different solutions
- For an OPM with Q=159, W=11
 - < 0.2% area overhead of Neoverse N1
 - < **10**% in the error

Summary and Takeaway

- Problem: Increasing Challenges in Chip Design
 - Cost, time-to-market, reliance on designers, diminishing performance return,
- ML in chip design
 - Less simulation time, faster feedback, less designer effort
- **AutoML** in chip design
 - Reduces months of model development to hours, no developers
- **Unified ML** in both design & runtime
 - Benefit the entire chip life cycle

Future Research Plan

Auto-ML for Chip Design

ML for Chip Design

Traditional Chip Design

Unified ML for Both Design & Runtime

Future Works: Collaborative Framework

Collaborative ML in Chip Design

- Model quality depends on data
- Circuit data from different companies
- Design data is highly confidential

Federated Learning:

Train on local data

Communicate weights

Example — Collaborative Training

		Test on 9 Clients (C1 to C9)									
		C1	C2	C3	C4	C5	C6	C7	C8	C9	Avg
Train on 9 Clients	C1	0.68	0.59	0.59	0.58	0.58	0.56	0.65	0.60	0.52	0.59
	C2	0.49	0.52	0.50	0.51	0.52	0.50	0.53	0.52	0.37	0.50
	C3	0.55	0.56	0.55	0.50	0.52	0.46	0.57	0.57	0.49	0.53
	C4	0.52	0.49	0.51	0.53	0.51	0.53	0.52	0.52	0.46	0.51
	C5	0.71	0.53	0.59	0.55	0.55	0.61	0.60	0.47	0.80	0.60
	C6	0.71	0.51	0.57	0.51	0.52	0.58	0.68	0.60	0.78	0.61
	C7	0.73	0.54	0.62	0.56	0.47	0.52	0.72	0.61	0.72	0.61
	C8	0.76	0.60	0.65	0.60	0.55	0.55	0.71	0.64	0.57	0.63
	C9	0.73	0.54	0.65	0.59	0.50	0.61	0.73	0.61	0.91	0.65
Train & Test Same Client		0.68	0.52	0.55	0.53	0.55	0.58	0.72	0.64	0.91	0.63
FedProx 0		0.63	0.83	0.71	0.72	0.66	0.67	0.63	0.57	0.42	0.65
FedProx + Finetuning 0.		0.83	0.86	0.76	0.75	0.74	0.75	0.81	0.72	0.90	0.79

One same model in a row

Nine different models in a row

Assuming data distributed to 9 clients (C1 to C9)

Future Research Plan

framework

Fully-automated & Collaborative reliable framework

Short-term milestone

Ph.D.

Future Works: Fully-Automated & Reliable Framework

Fully-Auto ML in Chip Design

- Automated feature selection
- Automated data selection
- Automated data augmentation

Reliable ML in Chip Design

- Designs very sparsely distributed
- Almost impossible to perform well on every test case
- How can we trust each prediction?

Future Research Plan

Need knowledge on optimization, computer architecture, etc.

Multi-domain/objective, efficient optimization

Comprehensive framework from system-level to testing

Accommodates emerging tech

Longer-term milestone

Future Funding and Collaboration Opportunities

- Agencies:
 - General Research Fund (GRF), Early Career Scheme, NSFC, ITF
- US companies:
 - Cadence, Synopsys, Nvidia, Arm, NXP
- Chinese companies:
 - Huawei, Alibaba T-head, Chinese EDA start-ups like UniVista

China's New Semiconductor Policies: Issues for Congress

US restricts software exports to Chinese chip companies

Semiconductor switching to Asia, including 'Greater Bay Area'

A great chance to overtake leading EDA companies

Previous Collaborations and Grant Writing Experiences

Many thanks for my advisors and collaborators:

Prof. Yiran Chen	Prof. Hai "Helen" Li	Prof. Jiang Hu	Dr. Brucek Khailany	Dr. Haoxing Ren
Duke University	Duke	TAMU	Nvidia	Nvidia
Dr. Shidhartha Das	Dr. Xiaoqing Xu	Dr. Brian Cline	Dr. Chand Kashyap	Dr. Aiqun Cao
Arm	Arm	Arm	Cadence	Synopsys

- My previous grant writing experiences (funded):
 - NSF: Revitalizing EDA from a Machine Learning Perspective
 - SRC: A Machine Learning Approach for Cross-Level Optimizations
 - SRC: A Collaborative Machine Learning Approach to Fast and High-Fidelity Design Prediction
 - Industry (Cadence): NAS-based Fully Automatic ML Estimator Development Flow in EDA
 - Industry (Cadence): A Machine-Learning based Pre-placement Wirelength Estimator

Courses I am Qualified to Teach

- Computer Architecture and Circuit Courses
 - Digital VLSI design, digital integrated circuits
 - Chip design methodologies
 - Digital logic & systems (TA of undergraduate course at Duke)
 - Computer organization and architecture
- Machine Learning Courses
 - Linear algebra for engineering (TA of graduate course at Duke)
 - Data mining, artificial intelligence, machine learning
 - Computer vision, deep learning

