

Truly Intelligent Circuit Design and Implementation

Zhiyao Xie

Dept. Electrical & Computer Engineering Duke University

Outline of My Talk

• Part 1: My Ph.D. Works

Part 2: My Future Plan

Electronic Devices are Everywhere

Designers Try to Deliver Generational Gains

*Source: TechInsights Inc.

Chip Design Challenges

Per-Core Performance Gain is Diminishing

Diminishing performance gain and increasing design cost

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

IBS Design Cost is Skyrocketing

International Business Strategies, 2020

Chip Design Challenges

Not only costly, also long turn-around time

It took **several thousand** engineers **several** years to create, at an approximate development cost of **\$3 billion**. – Jensen Huang, CEO of Nvidia

Nvidia GPU Technology Conference (GTC), 2017

This is Real Problem!

Challenges at advanced node

- **Pressure** from IPC and frequency
- Peak power keeps increasing
- Power delivery technique is
- Increasing design rules to media
- Increasing wire parasitics, ca wire delay and noise

Intelligent design methodologies & solutions!

Inefficient chip design methodologies

For one Arm CPU core with ~3 million gates

es power simulation takes ~2 weeks ation in physical design take ~1 week repeatedly constructed from scratch rely on designer intuition

https://github.com/ageitgey/face recognition

https://towardsdatascience.com/using-tensorflow-objectdetection-to-do-pixel-wise-classification-702bf2605182

Self-driving Cars

8

Manufacturing

Smart Grid

Financial Service

HPC

Security

Health Monitor

http://matclinic.com/2017/05/18/the-teambehind-the-future-of-ai-in-healthcare/ Personal Assistant

Why ML/Intelligence Helps Circuit Design?

Producing solutions repeatdly from scratch

Why ML/Intelligence Helps Circuit Design?

- Producing solutions repeatdly from scratch
- Why not learn from prior solutions?

Simple Plug-in and Use of ML Engines?

- 100s * 100s pixels
- No extra information
- Any human can tell the label
- Data is everywhere

Circuits (Arm Neoverse N1 CPU core)

- Millions of connected components
- 100s GB of raw information
- Need simulations to get the label
- Data is hard to get

Innovative Customized Solutions are Desired!

Many Excellent Exploration in Academia and Industry

What I Believe We Should Target

Unified ML for Both **Design & Runtime** Auto-ML for Chip Design Benefit the whole **ML** for Chip chip life cycle Higher-level of Design automation Well-studied in recent years

Traditional Chip Design

My Related Works

PPA	Power	Power & Power Delivery Challenges [ICCAD'20], [ASPDAC'20], [MICRO'21] (Best Paper Award)
	Performance	Timing & Interconnect Challenges [ICCAD'20], [ASPDAC'21], [TCAD'21] (under review)
	Area	Routability Challenges [ICCAD'18], [DATE'18], [ICCAD'21]
		Overall Flow Tuning [ASPDAC'20]

Covered in this talk

My Related Works

	Power	Power & Power Delivery Challenge [ICCAD'20], [ASPDAC'20], [MICRO'21] (Best Paper Award)	es
PPA	Performance	Timing & Interconnect Challenges [ICCAD'20], [ASPDAC'21], [TCAD'21] (under review)	
	Area	Routability Challenges [ICCAD'18], [DATE'18], [ICCAD'21]	
		Overall Flow Tuning [ASPDAC'20]	Covered in this talk

Routability Challenges

Routability Background

- Design Rule Checking (DRC)
 - Meeting manufacturing requirements
 - Less DRC violations (DRV) -> better routability
- DRV mitigation at early stages
 - Requires routability prediction/estimation
- Previous routability (DRV) estimations
 - > ML model on small cropped regions
 - Limited receptive field and missing global information

DRC violations (white) on circuit layout

First Deep Learning Method for Routability Prediction

• Task 1: which one will result in less DRV count?

Customized CNN methods

• Task 2: where are DRC violations?

Customized FCN methods

First Deep Learning Method for Routability Prediction

• Task 1: which one will result in less DRV count?

 Requires global routing: Hours * Number of Layouts
In seconds, with similar accuracy

• Task 2: where are DRC violations?

Requires detailed routing
More nours * Iterations

In seconds, outperform previous works

Many Excellent Deep Learning Methods

What I Believe We Should Target

Chip Design

Automatic Estimator Development – Search Space

Automatic Estimator Development – Searching Algorithm

- **1**. Sample from the completely-ordered graph (G_i) to get (S_i)
- 2. Evaluate the sampled model by training and testing
- 3. Update the sampling probability by evaluation result
- **Result**: **outperforms** previous works in both tasks; developed without human in **one day**

Auto-developed Model Structures

- Human-designed models:
 - Highly hierarchical and organized architecture
 - Limited operation types
- Auto-developed model:
 - Construct parallel branches and flexible interactions
 - Supports different operators

Auto-developed Model Structures

• Auto-developed model for DRC hotspot detection is significantly more complex

Case Study 2:

Power & Power Delivery Challenges

What I Believe We Should Target

Traditional Chip Design

Challenge 1 – Design-time Power Introspection

- Delivering generational performance gains adversely impacts CPU power
- Power-delivery resources **not keeping pace** with CPU power demands
- Increasing power-sensitivity drives the need for design-time introspection

APOLLO [Xie, et al., MICRO'21] (Best Paper Award)

Challenge 2 – Run-time Power Introspection

Measured di/dt event on Arm A72 SoC

- **Peak-Power mitigation** requires accurate power estimation to drive throttling ۲
 - Manually inferring proxies is very difficult in complex modern CPUs
- Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

Challenge 3 - Workload Power Characterization

- Need power-characterization of real-world workloads
 - Simple micro-benchmarks not longer sufficient
- Single SPEC simpoint can take weeks on the expensive emulator
 - Power measurement is expensive
- Only average power consumption available
 - Impossible to scale to di/dt event analysis

Industry-Standard Emulator-Driven Power Flow

Challenges from Both Design-time and Runtime

A unified solution for both scenarios

Runtime Challenges Summary

- Peak power mitigation
 - **Difficult to manually** infer proxies
- Voltage droop (Ldi/dt) mitigation
 - Require very **low** response latency

Design-time Challenges Summary

- Simulation on realistic workloads
 - Expensive and slow
 - Limited temporal-resolution

What is An "Ideal" Power Estimator?

- **1.** Accurate yet fast
- 2. Achieve high temporal resolution
- **3.** Low runtime on-chip overheads
- 4. Easily extensible to diverse designs

APOLLO: A Unified Power Modeling Framework

- Fast, yet accurate design-time simulation
- Single-cycle temporal resolution
- Low-cost, yet accurate <u>runtime</u> monitoring
- Design-agnostic **automated** development

A Workload Execution Preview of APOLLO

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles

- ~2 weeks execution time reduced to few minutes on the emulator
- Unprecedented power-introspection due to single-cycle temporal resolution

APOLLO Feature Generation & Model Training

Simple Key Ideas

- Linear model can estimate power accurately
- **Small** portion of signals (proxies) can provide enough information

Linear model with *M* RTL signals

Linear model with Q selected proxies $P = \sum_{i=1}^{Q} s_i * w_i$

ML-Based Power Proxies Selection

Model construction in two steps

M Features

Minimax concave penalty (MCP) for pruning

y^T is the label of each window; $p^{\tau}[1], ..., p^{\tau}[\frac{T}{\tau}]$ are power predic

Why MCP for Pruning?

- To make $Q \ll M$, penalty is set to be very large.
- Lasso degrades model accuracy under large penalty
- MCP protects large weights thus maintains model accuracy

Model Training and Testing

- Experiments on 3GHz 7nm Arm commercial microprocessors Neoverse N1 and Cortex A77
- Automatically generate a "diverse" set of random micro-benchmarks for training
- Testing on **various** Arm power-indicative workloads

Prediction Accuracy as Design-Time Power Model

Prediction Accuracy as Design-Time Power Model

Accuracy on Multi-Cycle Power Estimation

128-cycle prediction from APOLLO with **Q=70** proxies

Automated Low-Cost Runtime OPM Implementation

APOLLO is designed to be hardware-friendly

Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies

- MAE = 7.19%
- R² = 0.953

Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies Label **APOLLO's Prediction** (scaled) 40 MAE = 7.19%30 $R^2 = 0.953$ Power 10 0 Negligible 2000 4000 6000 8000 10000 12000 14000 0 Negligible difference difference Prediction from runtime OPM with Q=159 proxies **APOLLO OPM Hardware** Label Power (scaled) MAE = 7.19%40 $R^2 = 0.953$ 30 20 10 W=11 bits after 0 **↓** 0 quantization 2000 6000 8000 10000 12000 14000 4000 Timing window index (unit: 1 clock cycle)

Overview of the OPM Hardware Design

• No multipliers or dividers, only Q binary inputs and W-bit quantized weights

Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

- Trade-off accuracy and hardware cost
- Sweep proxy num Q and quantization bits W

Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

- Trade-off accuracy and hardware cost
- Sweep proxy num $oldsymbol{Q}$ and quantization bits $oldsymbol{W}$
- Strategy
 - Keep quantization W= 10 to 12 bits
 - Vary **Q** for different solutions
- For an OPM with *Q*=159, *W*=11
 - < 0.2% area overhead of Neoverse N1
 - < 10% in the error</p>

Potential Application: Design-time Power Introspection

Trained **only** with **more meaningful signals** as initial feature candidates

Distribution of power proxies on Neoverse N1

Better interpretability

Identify power contributors for designers!

Potential Application: Runtime dl/dt Mitigation

Enable CPU-driven Proactive dI/dt Mitigation!

What I Believe We Should Target

Traditional Chip Design

Summary and Takeaway

- Problem: Increasing Challenges in Chip Design
 - Cost, time-to-market, reliance on designers, diminishing performance return,
- ML in chip design
 - Less simulation time, faster feedback, less designer effort
- AutoML in chip design
 - Reduces months of model development to hours, no developers
- Unified ML in both design & runtime
 - Benefit the entire chip life cycle

Future Research Plan

Future Works: Collaborative Framework

Collaborative ML in Chip Design

- Model quality depends on data
- Circuit data from different companies
- Design data is highly confidential

Federated Learning: Train on local data Communicate weights

Example – Collaborative Training

C1 0.68 0.49 0.55 0.52 0.71	C2 0.59 0.52 0.56 0.49	C3 0.59 0.50 0.55 0.51	C4 0.58 0.51 0.50 0.53	C5 0.58 0.52 0.52	C6 0.56 0.50 0.46	C7 0.65 0.53 0.57	C8 0.60 0.52 0.57	C9 0.52 0.37	Avg 0.59 0.50
0.68 0.49 0.55 0.52 0.71	0.59 0.52 0.56 0.49	0.59 0.50 0.55 0.51	0.58 0.51 0.50 0.53	0.58 0.52 0.52	0.56 0.50 0.46	0.65 0.53 0.57	0.60 0.52 0.57	0.52 0.37 0.49	0.59 0.50
0.49 0.55 0.52 0.71	0.52 0.56 0.49	0.50 0.55 0.51	0.51 0.50 0.53	0.52 0.52	0.50 0.46	0.53 0.57	0.52 0.57	0.37	0.50
0.55 0.52 0.71	0.56 0.49	0.55 0.51	0.50 0.53	0.52	0.46	0.57	0.57	0.40	0.50
0.52 0.71	0.49	0.51	0.53	0.51				0.45	0.53
0.71				0.51	0.53	0.52	0.52	0.46	0.51
	0.53	0.59	0.55	0.55	0.61	0.60	0.47	0.80	0.60
0.71	0.51	0.57	0.51	0.52	0.58	0.68	0.60	0.78	0.61
0.73	0.54	0.62	0.56	0.47	0.52	0.72	0.61	0.72	0.61
0.76	0.60	0.65	0.60	0.55	0.55	0.71	0.64	0.57	0.63
0.73	0.54	0.65	0.59	0.50	0.61	0.73	0.61	0.91	0.65
0.68	0.52	0.55	0.53	0.55	0.58	0.72	0.64	0.91	0.63
0.63	0.83	0.71	0.72	0.66	0.67	0.63	0.57	0.42	0.65
0.83	0.86	0.76	0.75	0.74	0.75	0.81	0.72	0.90	0.79
	0.76 0.73 0.68 0.63 0.83	0.76 0.60 0.73 0.54 0.68 0.52 0.63 0.83 0.83 0.86	0.76 0.60 0.65 0.73 0.54 0.65 0.68 0.52 0.55 0.63 0.83 0.71 0.83 0.86 0.76	0.76 0.60 0.65 0.60 0.73 0.54 0.65 0.59 0.68 0.52 0.55 0.53 0.63 0.83 0.71 0.72 0.83 0.86 0.76 0.75	0.76 0.60 0.65 0.60 0.55 0.73 0.54 0.65 0.59 0.50 0.68 0.52 0.55 0.53 0.55 0.63 0.83 0.71 0.72 0.66 0.83 0.86 0.76 0.75 0.74	0.76 0.60 0.65 0.60 0.55 0.57 0.73 0.54 0.65 0.59 0.50 0.61 0.68 0.52 0.55 0.53 0.55 0.58 0.63 0.83 0.71 0.72 0.66 0.67 0.83 0.86 0.76 0.75 0.74 0.75	0.76 0.60 0.65 0.60 0.55 0.71 0.73 0.54 0.65 0.59 0.50 0.61 0.73 0.68 0.52 0.55 0.53 0.55 0.58 0.72 0.63 0.83 0.71 0.72 0.66 0.67 0.63 0.83 0.86 0.76 0.75 0.74 0.75 0.81	0.76 0.60 0.65 0.60 0.55 0.71 0.64 0.73 0.54 0.65 0.59 0.50 0.61 0.73 0.61 0.68 0.52 0.55 0.53 0.55 0.58 0.72 0.64 0.63 0.83 0.71 0.72 0.66 0.67 0.63 0.57 0.83 0.86 0.76 0.75 0.74 0.75 0.81 0.72	0.760.600.650.600.550.550.710.640.570.730.540.650.590.500.610.730.610.910.680.520.550.530.550.580.720.640.910.630.830.710.720.660.670.630.570.420.830.860.760.750.740.750.810.720.90

One same model in a row

Nine different models in a row

Assuming data distributed to 9 clients (C1 to C9)

Future Research Plan

Ph.D.

Short-term milestone

Future Works: Fully-Automated & Reliable Framework

Fully-Auto ML in Chip Design

- Automated feature selection
- Automated data selection
- Automated data augmentation

Example – Feature Selection

# Features	ROC-AUC
2 (🔜)	0.866
4 (🔜 + 🔜)	0.867
24 (all)	0.867

Selected Features:

- 0. Pin density
- 12. MST fly lines
- 22. DFF cell density
- 23. Clock tree cell density

Future Works: Fully-Automated & <u>Reliable</u> Framework

Reliable ML in Chip Design

- Designs very sparsely distributed
- Almost impossible to perform well on every test case
- How can we trust each prediction?

Example – Design Difference

Future Research Plan

Future Funding and Collaboration Opportunities

- Agencies:
 - General Research Fund (GRF), Early Career Scheme, NSFC, ITF
- US companies:
 - Cadence, Synopsys, Nvidia, Arm, NXP
- Chinese companies:
 - Huawei, Alibaba T-head, Chinese EDA start-ups like UniVista

China's New Semiconductor Policies: Issues for Congress

US restricts software exports to Chinese chip companies

Semiconductor switching to Asia, including 'Greater Bay Area'

A great chance to overtake leading EDA companies

Semiconductor manufacturing capacity (%)

Previous Collaborations and Grant Writing Experiences

• Many thanks for my advisors and collaborators:

Prof. Yiran Chen	Prof. Hai "Helen" Li	Prof. Jiang Hu	Dr. Brucek Khailany	Dr. Haoxing Ren
Duke University	Duke	TAMU	Nvidia	Nvidia
Dr. Shidhartha Das	Dr. Xiaoqing Xu	Dr. Brian Cline	Dr. Chand Kashyap	Dr. Aiqun Cao
Arm	Arm	Arm	Cadence	Synopsys

- My previous grant writing experiences (funded):
 - **NSF**: Revitalizing EDA from a Machine Learning Perspective
 - SRC: A Machine Learning Approach for Cross-Level Optimizations
 - SRC: A Collaborative Machine Learning Approach to Fast and High-Fidelity Design Prediction
 - Industry (Cadence): NAS-based Fully Automatic ML Estimator Development Flow in EDA
 - Industry (Cadence): A Machine-Learning based Pre-placement Wirelength Estimator

Courses I am Qualified to Teach

- Circuit and Computer Engineering Courses
 - Digital VLSI design, digital integrated circuits (CAD admin at Duke)
 - Chip design methodologies
 - Digital logic & systems (TA of undergraduate course at Duke)
 - Computer organization and architecture
- Machine Learning Courses
 - Linear algebra for engineering (**TA of graduate course at Duke**)
 - Data mining, artificial intelligence, machine learning
 - Computer vision, deep learning

Thanks! Questions?

If you have further questions, please contact me: zhiyao.xie@duke.edu

