
1

Truly Intelligent
Circuit Design and
Implementation

Zhiyao Xie
Dept. Electrical & Computer Engineering
Duke University

Outline of My Talk

• Part 1: My Ph.D. Works

• Part 2: My Future Plan

2

Electronic Devices are Everywhere

3 *These images are found in public domain

Increased integration and architecture improvements

Designers Try to Deliver Generational Gains

4

Apple A14Apple A12 Apple A13 Apple A15

iPhone 13iPhone 8, X iPhone XS, XR iPhone 11 iPhone 12

Apple A11

5nm
15 B trasistors

5nm
11.8 B trasistors

7nm
8.5 B trasistors

7nm
6.9 B trasistors

10nm
4.3 B trasistors

*Source: TechInsights Inc.

Looks good!

Any challenges?

Chip Design Challenges
Diminishing performance gain and increasing design cost

5

Per-Core Performance Gain is Diminishing

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data Design Cost is Skyrocketing

International Business Strategies, 2020

(Not including manufacturing)

Chip Design Challenges
Not only costly, also long turn-around time

6

It took several thousand engineers several years
to create, at an approximate development cost of
$3 billion. – Jensen Huang, CEO of Nvidia

Nvidia Tesla V100
Graphics Card Nvidia GPU Technology Conference (GTC), 2017

Inefficient chip design methodologies

This is Real Problem!

7

For one Arm CPU core
with ~3 million gates

• Accurate power simulation takes ~2 weeks

• One iteration in physical design take ~1 week

• Solutions repeatedly constructed from scratch

• Solutions rely on designer intuition

• ……

Challenges at advanced node

• Pressure from IPC and frequency

• Peak power keeps increasing

• Power delivery technique is limited

• Increasing design rules to meet

• Increasing wire parasitics, causing
wire delay and noise

• ……

Intelligent design

methodologies

& solutions!

Source: The Kirin 990 SoC. TechInsights Inc.

Personal AssistantHealth MonitorSmart HomeRobotsSelf-driving Cars Autopilot Drone

Manufacturing Smart Grid Financial Service HPC Security Gaming

https://github.com/ageitgey/face_recognition http://matclinic.com/2017/05/18/the-team-
behind-the-future-of-ai-in-healthcare/

https://towardsdatascience.com/using-tensorflow-object-
detection-to-do-pixel-wise-classification-702bf2605182

8

https://github.com/ageitgey/face_recognition
http://matclinic.com/2017/05/18/the-team-behind-the-future-of-ai-in-healthcare/
https://towardsdatascience.com/using-tensorflow-object-detection-to-do-pixel-wise-classification-702bf2605182

Why ML/Intelligence Helps Circuit Design?

9

……

Various metrics (bad)

Various metrics (good)

Verilog

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

……

• Producing solutions repeatdly from scratch

N iterations

*Source: Kahng et al., VLSI physical design

Why ML/Intelligence Helps Circuit Design?

10

……

Various metrics (bad)

Various metrics (good)

Verilog

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

……

• Producing solutions repeatdly from scratch
• Why not learn from prior solutions?

N iterationsFast & high-fidelity ML prediction

(trial 1)

(trial N)

Simple Plug-in and Use of ML Engines?

11

• 100s * 100s pixels

• No extra information

• Any human can tell the label

• Data is everywhere

• ……

Images Circuits (Arm Neoverse N1 CPU core)

• Millions of connected components

• 100s GB of raw information

• Need simulations to get the label

• Data is hard to get

• ……

Innovative Customized Solutions are Desired!

Many Excellent Exploration in Academia and Industry

12

Increasing number of publications
on ML for chip design automation

UT Austin UCSD CUHK

TAMU Duke Cornell

module a
input in [2];

……
endmodule

Fabrication

Verification

Layout

Synthesis

ML for EDA in
commercial tools

Cadence InnovusTM

Synopsys ICCTM II

……

Google Nvidia GaTech

ML for Chip Design

Traditional
Chip Design

Electronics Research Initiative (ERI) – Design
Goal: 24 hours turnaround time & no human

What I Believe We Should Target

13

ML for Chip
Design

Auto-ML for
Chip Design

Unified ML for Both
Design & Runtime

Traditional
Chip Design

Well-studied in
recent years

Higher-level of
automation

Benefit the whole
chip life cycle

My Related Works

14

PPA

Power

Performance

Area

Power & Power Delivery Challenges

[ICCAD’20], [ASPDAC’20],

[MICRO’21] (Best Paper Award)

Routability Challenges

[ICCAD’18], [DATE’18], [ICCAD’21]

Timing & Interconnect Challenges

[ICCAD’20], [ASPDAC’21],

[TCAD’21] (under review)

Overall Flow Tuning

[ASPDAC’20] Covered in this talk

My Related Works

15

PPA

Power

Performance

Area

Power & Power Delivery Challenges

[ICCAD’20], [ASPDAC’20],

[MICRO’21] (Best Paper Award)

Routability Challenges

[ICCAD’18], [DATE’18], [ICCAD’21]

Timing & Interconnect Challenges

[ICCAD’20], [ASPDAC’21],

[TCAD’21] (under review)

Overall Flow Tuning

[ASPDAC’20] Covered in this talk

16

Case Study 1:

Routability Challenges

Routability Background

• Design Rule Checking (DRC)

Ø Meeting manufacturing requirements

Ø Less DRC violations (DRV) -> better routability

• DRV mitigation at early stages

Ø Requires routability prediction/estimation

• Previous routability (DRV) estimations

Ø ML model on small cropped regions

Ø Limited receptive field and missing global information

17

DRC violations (white) on circuit layout

First Deep Learning Method for Routability Prediction
• Task 1: which one will result in less DRV count?

• Task 2: where are DRC violations?

18

cat / dog

cat

Customized CNN methods

Customized FCN methods

Layout 1 Layout 2

Layout 1 Layout 1

RouteNet [Xie, et al., ICCAD’18]

First Deep Learning Method for Routability Prediction
• Task 1: which one will result in less DRV count?

• Task 2: where are DRC violations?

19 RouteNet [Xie, et al., ICCAD’18]

• Requires global routing:
Hours * Number of Layouts

• Requires detailed routing
More hours * Iterations

In seconds, with similar accuracy

In seconds, outperform previous works

Many Excellent Deep Learning Methods

20

RouteNet [Xie, et al., ICCAD’18] J-Net [Liang, et al., ISPD’20] PROS [Chen, et al., ICCAD’20]

F 32 64 32 16

Conv(9) Pool

Conv(7)
Trans(9)

32

Conv(5)

16

Conv(3)

4

Trans(5)

1

Conv(9)
Conv(7) Pool

Shortcut

[Yu, et al., DAC’19] Painting [Yu, et al., DAC’19] Tremendous Engineering Efforts Required!

What I Believe We Should Target

21

ML for Chip
Design

Auto-ML for
Chip Design

Traditional
Chip Design

Well-studied in
recent years

Higher-level of
automation

Automatic Estimator Development – Search Space

22

Standard convolution
Mixed (depth-wise)

convolution

Candidate node operations

Atrous/dilated
convolution

Input
features

Down-
sampling

Down-
sampling

Shortcut

Down-
sampling

Segmentation
/ Regression

DRC hotspot
/ Violated net

Shortcut Shortcut

Sampled-
DAG !!

Sampled-
DAG !"

Sampled-
DAG !#

Sampled-
DAG !$

Sampled-
DAG !%

Sampled-
DAG !&

C32 C64 Atr Mix

[Chang, et al., ICCAD’21]

Sampling
sub-graph

Automatic Estimator Development – Searching Algorithm

1. Sample from the completely-ordered graph (𝐺!) to get (𝑆!)
2. Evaluate the sampled model by training and testing

3. Update the sampling probability by evaluation result

• Result: outperforms previous works in both tasks; developed without human in one day

23

DS

C64
C32

C64

Atr

Atr

Mix

DS

Atr

Mix

Atr

DS
Regression
head

C32

C64

DS

Mix

Segmentation
head

C64

Atr

C64

Mix

Atr

Mix

Mix
Atr

C32 Atr

DS

Atr Mix C32

Mix

Atr

Atr

DS

C32 C64

Mix

Mix Mix

Mix

C64

Fixed shortcut

Fixed shortcut

Auto-developed model for DRC hotspot detection (fine-grained task 2)

Auto-developed Model Structures
• Human-designed models:

• Highly hierarchical and organized architecture
• Limited operation types

• Auto-developed model:
• Construct parallel branches and flexible interactions
• Supports different operators

24

DS

C64
C32

C64

Atr

Atr

Mix

DS

Atr

Mix

Atr

DS
Regression
head

C32

C64

DS

Mix

Segmentation
head

C64

Atr

C64

Mix

Atr

Mix

Mix
Atr

C32 Atr

DS

Atr Mix C32

Mix

Atr

Atr

DS

C32 C64

Mix

Mix Mix

Mix

C64

Fixed shortcut

Fixed shortcut

Auto-developed Model Structures

• Auto-developed model for DRC hotspot detection is significantly more complex

25

DS

C64
C32

C64

Atr

Atr

Mix

DS

Atr

Mix

Atr

DS
Regression
head

C32

C64

DS

Mix

Segmentation
head

C64

Atr

C64

Mix

Atr

Mix

Mix
Atr

C32 Atr

DS

Atr Mix C32

Mix

Atr

Atr

DS

C32 C64

Mix

Mix Mix

Mix

C64

Fixed shortcut

Fixed shortcut

Auto-developed model for DRC hotspot detection (fine-grained task 2)

Auto-developed model for violated count prediction (coarse-grained task 1)

Simpler model

More complex model

26

Case Study 2:

Power & Power Delivery Challenges

What I Believe We Should Target

27

ML for Chip
Design

Auto-ML for
Chip Design

Unified ML for Both
Design & Runtime

Traditional
Chip Design

Well-studied in
recent years

Higher-level of
automation

Benefit the whole
chip life cycle

Challenge 1 – Design-time Power Introspection

28

• Delivering generational performance gains adversely impacts CPU power

• Power-delivery resources not keeping pace with CPU power demands

• Increasing power-sensitivity drives the need for design-time introspection

Many-core CPU with
more transistors

Wider issue

8-wide

5-8-wide

15-wide

Fetch

Decode/Rename

Issue

Source: Arm Neoverse V1, 2021

More vectored execution

256b

256b
256b+ =

256b SVE

256b

256b
256b+ =

APOLLO [Xie, et al., MICRO’21] (Best Paper Award)

Challenge 2 – Run-time Power Introspection

29

O
n-

Ch
ip

 S
up

pl
y

Vo
lta

ge
 (V

)

Time (ns)

Measured di/dt event on Arm A72 SoC

• Peak-Power mitigation requires accurate power estimation to drive throttling
• Manually inferring proxies is very difficult in complex modern CPUs

• Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

Estimated Power with Manual Proxies

G
ro

un
d

Tr
ut

h
Po

w
er

Modelling power on one µarch block
Different workloads

Limited accuracy

Challenge 3 - Workload Power Characterization

• Need power-characterization of real-world
workloads
• Simple micro-benchmarks not longer sufficient

• Single SPEC simpoint can take weeks on the
expensive emulator
• Power measurement is expensive

• Only average power consumption available
• Impossible to scale to di/dt event analysis

Industry-Standard Emulator-Driven Power Flow

Offline windowed
simulation trace

Power analysis

Windowed
average power

Simulate on netlist
on emulator

Compile
workload

Gate-level
netlist

Simpoint
binary

30

Runtime Challenges Summary
• Peak power mitigation

• Difficult to manually infer proxies

• Voltage droop (Ldi/dt) mitigation
• Require very low response latency

Design-time Challenges Summary
• Simulation on realistic workloads

• Expensive and slow
• Limited temporal-resolution

Challenges from Both Design-time and Runtime
A unified solution for both scenarios

31

1. Accurate yet fast

2. Achieve high temporal resolution

3. Low runtime on-chip overheads

4. Easily extensible to diverse designs

What is An “Ideal” Power Estimator?

APOLLO: A Unified Power Modeling Framework

• Fast, yet accurate design-time simulation

• Single-cycle temporal resolution

• Low-cost, yet accurate runtime monitoring

• Design-agnostic automated development

32

A Workload Execution Preview of APOLLO

• ~2 weeks execution time reduced to few minutes on the emulator

• Unprecedented power-introspection due to single-cycle temporal resolution

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles
hmmer (SPEC 2006) simpoint
on the Neoverse N1 CPU core

APOLLO Feature Generation & Model Training

34

cycle1

cycle2

A design in RTL level.

𝐹 =

𝑀 RTL signals

…
…

……

𝑋

Train the ML model: 𝐹 𝑋 = 𝑦

𝑦

…
…

P0

P1

P2

P0

P1

P2

Power

A

B

C

D

E
cycle0 cycle1 cycle2

In .fsdb/.vcd file format 𝑴 > 500,000 in Neoverse N1
𝑴 > 1,000,000 in Cortex-A77

cycle0
A B C D E

Simple Key Ideas

• Linear model can estimate power accurately

• Small portion of signals (proxies) can provide enough information

Linear model with 𝑴 RTL signals
𝑃 = ∑!"#𝑴 𝑥! ∗ 𝑤′!

Each cycle:
A B C D E

𝑀 signals

……
𝑥! 𝑥" 𝑥# 𝑥$ 𝑥%

Linear model with 𝑸 selected proxies
𝑃 = ∑!"#

𝑸 𝑠! ∗ 𝑤!

Auto-
Selection

Each cycle:
A B C D E

𝑄 selected proxies

……
𝒔𝟏=𝑥! 𝒔𝟐=𝑥$

Linear model with 𝑴 RTL signals
𝑃 = ∑!"#𝑴 𝑥! ∗ 𝑤′!

35

ML-Based Power Proxies Selection

36

Step1: Pruning
Training with

strong penalty
strength

Step2: ‘Relax’
Retraining

……

𝑴 Features

𝑥!

𝑥(

𝑤′(

𝑤′!𝑥"

𝜮

𝑃 = ∑!"#𝑴 𝑥! ∗ 𝑤′!

𝑸 retrained weights

𝜮

𝑤!

𝑤)

𝑃 = ∑!"#
𝑸 𝑠! ∗ 𝑤!

……

Reach 𝑸 non-zero weights

𝑤′! ≠ 0

𝑤′(*! ≠ 0

𝜮

𝑤′(= 0

Minimax concave penalty (MCP) for pruning

Model construction in two steps

Why MCP for Pruning?

• To make 𝑸 ≪ 𝑴, penalty is set to be very large.

• Lasso degrades model accuracy under large penalty

• MCP protects large weights thus maintains model accuracy

The hyper-parameter g in MCP sets a threshold (gl) be-
tween large and small weights. Figure 4(b) visualizes PLasso
and PMCP with l = 1 and g = 3. The absolute derivative of a
penalty term indicates the weight shrinking rate during train-
ing [44]. Since |∂PLasso/∂w0

j|= l , all weights shrink at the
same rate l in Lasso. In comparison, the absolute derivative
of MCP penalty is shown in Equation (7). Compared with the
uniform shrinking rate for PLasso, large weights with values
> gl in MCP do not shrink at all, since derivatives of their
penalty terms are zero. For weights with values < gl , smaller
weights shrink faster. As such, MCP leaves large weights
unpenalized and thereby benefits the prediction accuracy of
the generated power model. In our experiment, this MCP-
based model is efficiently optimized by adopting both the
coordinate descent method [59] and the proximity operator
of MCP [58]. The penalty strength l in PMCP can be adjusted
to control the number of power proxies Q.

|
∂PMCP(w0

j,g > 1)
∂w0

j
|=

(
l � |w0

j |
g if |w0

j| gl
0 if |w0

j|> gl
(7)

(a)

𝛾𝜆−𝛾𝜆

(b)

Figure 4: (a) APOLLO model construction process, (b)
Penalty terms of MCP and Lasso.

4.4 Final Model Construction
After power proxy selection by pruning with MCP, we

have trained a temporary model p0 = ÂM
j=1 w0

j · x j with Q
selected proxies SQ and corresponding non-zero weight terms
w0

j. This temporary model can already provide rather accurate
predictions. However, even though the MCP protects larger
weights, many remaining weights are still penalized by the
large penalty strength l to a certain extent. In order to further
boost the model accuracy, we train a new linear model p =

ÂQ
j=1 w j ·x j from scratch with only selected power proxies SQ.

In this new linear model, the ordinary L2 penalty, i.e., ridge
penalty [26], is applied, with a much weaker penalty strength
compared with the l used in the previous proxy selection
step. This weak ridge penalty is applied to reduce overfitting
on the training data.

As shown in Figure 4(a), this step is named relaxation and
generates the final APOLLO power model. During the power
proxy selection, to shrink most weights to zero, the penalty
term P dominates the loss, and the prediction error L is less
optimized. This relaxation can be viewed as a fine-tuning
stage to better optimize L. Since L2 is not a sparsity-inducing
penalty, the number of power proxies Q remains unchanged.

Section 8 further quantifies the benefits of both pruning with
MCP and relaxation in Figure 4(a).

4.5 Multi-Cycle Power Modeling

……
!!: Average Power over ! cycles

""[1] !
"……

!!: Average Power over ! cycles

""[1] ""[2] ……

Example: The power measurement window size is ! cycles.
Selected fixed window " cycles; Update interval # = 1 cycle.
$! is the label of each window; %"[1], …, %"[!"] are power predictions.

……

"
""[2] ""[]

!
"""[]

Figure 5: An example of multi-cycle power modeling.

In previous sections, we construct the APOLLO model
for per-cycle power tracing. In practice, designers may ex-
plore the trade-off between temporal granularity with model
efficiency or accuracy. Here we provide an accurate general-
ization of the per-cycle APOLLO model to any given timing
window size. This multi-cycle model estimates the average
power over a timing window with T cycles.

We firstly differentiate two concepts: the power measure-
ment window size T and the estimation update interval U .
The window size T controls how the ground-truth power
label is measured, and the update interval U decides how
frequently the model updates its power estimation. In the
example in Figure 5, the power label at each window is aver-
aged over T cycles, while the update interval U between the
two neighboring windows equals one cycle. For the per-cycle
power tracing in APOLLO, both window size T and interval
U equal one cycle. As for multi-cycle power modeling, it
can work for any window size T > 1 cycle with the update
interval U = 1 cycle.

The most straightforward multi-cycle solutionis to directly
use the average of T per-cycle power predictions pT over the
T -cycle window1. It keeps using a similar per-cycle model
for any given T . But considering multi-cycle scenarios allow
accessing the toggling activities over multiple cycles at each
estimation, several times more input information is available
compared with the per-cycle scenario. This solution does not
capture such additional available information.

Another solution in previous approaches [33] is to average
initial inputs before model construction starts. For example,
one may use the averaged toggling counts over T cycles
as raw inputs, which can be denoted as xT

1 , ...,xT
M . In this

solution, the model learns the pattern behind the correlation
between the T -cycle averaged toggling numbers xT and the
corresponding T -cycle averaged power label yT . However, it
means the pattern to learn is dependent on the given value of
T , which ranges from one to thousands or millions depending
on various application scenarios.

In our solution, for any given window size T , we propose
to select a fixed small timing window with t cycles. An ex-
ample is shown in Figure 5. For each t-cycle window i, we
1We use the superscript of a variable to denote the average of the
variable over a timing window with multiple cycles.

6

MCP protects large weights

Lasso penalize all weights

37

Model Training and Testing

• Experiments on 3GHz 7nm Arm commercial microprocessors Neoverse N1 and Cortex A77

• Automatically generate a “diverse” set of random micro-benchmarks for training

• Testing on various Arm power-indicative workloads

38

dhr
ysto

ne
max

pwr
_cp

u

dca
che

_mi
ss

saxp
y_si

md

max
pwr

_l2

icac
he_

mis
s

cach
e_m

iss

dax
py

mem
cpy

_l2

thro
ttlin

g_1

thro
ttlin

g_2

thro
ttlin

g_3

Neoverse N1 (infra)
Deployed in AWS Graviton

Cortex A77 (mobile)
Deployed In Snapdragon 865

Prediction Accuracy as Design-Time Power Model
Per-cycle prediction from APOLLO with 𝑸=159 proxies

dhr
ysto

ne
max

pwr
_cp

u

dca
che

_mi
ss

saxp
y_si

md

max
pwr

_l2

icac
he_

mis
s

cach
e_m

iss

dax
py

mem
cpy

_l2

thro
ttlin

g_1

thro
ttlin

g_2

thro
ttlin

g_3

• MAE = 7.19%
• R2 = 0.953

Prediction trace shows great
agreement with ground-truth

39

Prediction Accuracy as Design-Time Power Model

40

dhr
ysto

ne
max

pwr
_cp

u

dca
che

_mi
ss

saxp
y_si

md

max
pwr

_l2

icac
he_

mis
s

cach
e_m

iss

dax
py

mem
cpy

_l2

thro
ttlin

g_1

thro
ttlin

g_2

thro
ttlin

g_3

Per-cycle error
can be averaged

Per-cycle prediction from APOLLO with 𝑸=159 proxies

• MAE = 7.19%
• R2 = 0.953

40

Accuracy on Multi-Cycle Power Estimation

41

128-cycle prediction from APOLLO with 𝑸=70 proxies

• MAE = 2.82%
• R2 = 0.993
• Higher accuracy

……
Average Power over ! = #$% cycles

……

Automated Low-Cost Runtime OPM Implementation
APOLLO is designed to be hardware-friendly

42

No multipliers required

Only 𝑸 binary inputs

{0, 1}

{0, 1}

{0, 1}

{0, 1}

𝜮

𝑤!

𝑤)

𝑾-bit quantized
fixed-point weights

𝚺

Weight
Quantization

{0, 1}

Implement

Configurable
OPM template

in C++

High-Level
Synthesis

OPM in RTL

Verify OPM accuracy

Verifying

Prediction Accuracy from Design-time Model & OPM

• MAE = 7.19%
• R2 = 0.953

Per-cycle prediction from APOLLO with 𝑸=159 proxies

43

Prediction Accuracy from Design-time Model & OPM

• MAE = 7.19%
• R2 = 0.953

• MAE = 7.19%
• R2 = 0.953

• 𝑾=11 bits after
quantization

Per-cycle prediction from APOLLO with 𝑸=159 proxies

Prediction from runtime OPM with 𝑸=159 proxies
Negligible
difference

Negligible
difference

44

Overview of the OPM Hardware Design

• No multipliers or dividers, only Q binary inputs and W-bit quantized weights

45

Accuracy vs. Hardware Cost (Area Overhead) of the OPM
Runtime OPM implementation on Neoverse N1

46

ErrorM
easured on HW

 (%
)

Num of B
its

 (𝑊
)

Num of Power Proxies (Q)

0.1% 0.2% 0.3% 0.4%

OPM Gate Area
Overhead:

• Trade-off accuracy and hardware cost
• Sweep proxy num 𝑸 and quantization bits 𝑾

Accuracy vs. Hardware Cost (Area Overhead) of the OPM
Runtime OPM implementation on Neoverse N1

47

• Trade-off accuracy and hardware cost
• Sweep proxy num 𝑸 and quantization bits 𝑾
• Strategy
• Keep quantization 𝑾= 10 to 12 bits
• Vary 𝑸 for different solutions

• For an OPM with 𝑸=159, 𝑾=11
• < 0.2% area overhead of Neoverse N1
• < 10% in the error

Num of B
its

 (𝑊
)

Num of Power Proxies (Q)

One OPM
solution

0.1% 0.2% 0.3% 0.4%

OPM Gate Area
Overhead:

ErrorM
easured on HW

 (%
)

Identify power contributors for designers!

Potential Application: Design-time Power Introspection

48

Trained only with more meaningful
signals as initial feature candidates

Distribution of power
proxies on Neoverse N1 Better interpretability

Enable CPU-driven Proactive 𝒅𝑰/𝒅𝒕Mitigation!

Potential Application: Runtime dI/dt Mitigation

49

Log-scale 𝑑𝐼/𝑑𝑡 Observed (scaled)

𝑑𝐼
/𝑑
𝑡P

re
di

ct
ed

 (s
ca

le
d)

What I Believe We Should Target

50

ML for Chip
Design

Auto-ML for
Chip Design

Unified ML for Both
Design & Runtime

Traditional
Chip Design

Well-studied in
recent years

Higher-level of
automation

Benefit the whole
chip life cycle

Summary and Takeaway
• Problem: Increasing Challenges in Chip Design

• Cost, time-to-market, reliance on designers, diminishing performance return, ……

• ML in chip design
• Less simulation time, faster feedback, less designer effort

• AutoML in chip design
• Reduces months of model development to hours, no developers

• Unified ML in both design & runtime
• Benefit the entire chip life cycle

51

Vision

Intelligent SolutionsChip design & implementation

Future Research Plan

52

ML for Chip
Design

Auto-ML for
Chip Design

Unified ML for Both
Design & Runtime

Traditional
Chip Design

Collaborative
framework

Ph.D. Timeline

Collaborative ML in Chip Design
• Model quality depends on data

• Circuit data from different companies

• Design data is highly confidential

Future Works: Collaborative Framework

53

Example − Collaborative Training

• Assuming data distributed to 9 clients (C1 to C9)

One same model in a row Nine different models in a row

Federated Learning:

Train on local data

Communicate weights

Future Research Plan

54

Ph.D. Short-term milestone

Fully-automated &
reliable frameworkCollaborative

framework

Future Works: Fully-Automated & Reliable Framework

55

Fully-Auto ML in Chip Design
• Automated feature selection

• Automated data selection

• Automated data augmentation

FeatureModel

Data

ML

Example − Feature Selection

• The first conv layer:
32 kernels with size 3x3x24 24 feature weight vectors

Features ROC-AUC

2 () 0.866

4 (+) 0.867

24 (all) 0.867

Selected Features:
0. Pin density
12. MST fly lines
22. DFF cell density
23. Clock tree cell density

Future Works: Fully-Automated & Reliable Framework

56

Reliable ML in Chip Design
• Designs very sparsely distributed

• Almost impossible to perform well on
every test case

• How can we trust each prediction?

Example − Design Difference

ISPD-1

ISPD-2

Faraday

ITC’99

ISCAS’89

OpenCore

Future Research Plan

57

Fully-automated &
reliable framework

Comprehensive framework
from system-level to testing

Multi-domain/objective,
efficient optimization

Ph.D. Short-term milestone Longer-term milestone

Need knowledge on ML,
circuits, software, etc.

Need knowledge on optimization,
computer architecture, etc.

Collaborative
framework

Accommodates
emerging tech

True intelligence
in chip design

Future Funding and Collaboration Opportunities
• Agencies:

• General Research Fund (GRF), Early Career Scheme, NSFC, ITF

• US companies:
• Cadence, Synopsys, Nvidia, Arm, NXP

• Chinese companies:
• Huawei, Alibaba T-head, Chinese EDA start-ups like UniVista

58

Semiconductor switching to Asia,
including ‘Greater Bay Area’

US restricts software exports to
Chinese chip companies

A great chance to overtake
leading EDA companies

Semiconductor manufacturing capacity (%)
US China (mainland)

Previous Collaborations and Grant Writing Experiences
• Many thanks for my advisors and collaborators:

• My previous grant writing experiences (funded):
• NSF: Revitalizing EDA from a Machine Learning Perspective
• SRC: A Machine Learning Approach for Cross-Level Optimizations
• SRC: A Collaborative Machine Learning Approach to Fast and High-Fidelity Design Prediction
• Industry (Cadence): NAS-based Fully Automatic ML Estimator Development Flow in EDA
• Industry (Cadence): A Machine-Learning based Pre-placement Wirelength Estimator

59

Prof. Hai “Helen” Li
Duke

Prof. Yiran Chen
Duke University

Prof. Jiang Hu
TAMU

Dr. Brucek Khailany
Nvidia

Dr. Haoxing Ren
Nvidia

Dr. Shidhartha Das
Arm

Dr. Xiaoqing Xu
Arm

Dr. Aiqun Cao
Synopsys

Dr. Chand Kashyap
Cadence

Dr. Brian Cline
Arm

Courses I am Qualified to Teach
• Circuit and Computer Engineering Courses

• Digital VLSI design, digital integrated circuits (CAD admin at Duke)
• Chip design methodologies
• Digital logic & systems (TA of undergraduate course at Duke)
• Computer organization and architecture

• Machine Learning Courses
• Linear algebra for engineering (TA of graduate course at Duke)
• Data mining, artificial intelligence, machine learning
• Computer vision, deep learning

60

Thanks! Questions?

If you have further questions, please contact me:
zhiyao.xie@duke.edu

61

