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Outline of My Talk

 Part1: My Ph.D. Works

* Part 2: My Future Plan
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Electronic Devices are Everywhere

3 *These images are found in public domain Duke

UNIVERSITY



Designers Try to Deliver Generational Gains

iPhone 13

iPhone 8, X iPhone XS, XR iPhone 11

Looks good!

?
Apple A1l Apple A12 Any challenges: Apple Al4 Apple A15
10nm 7nm 5nm 5nm
4.3 B trasistors 6.9 B trasistors 11.8 B trasistors 15 B trasistors

Increased integration and architecture improvements

4 Duke

*Source: TECthightS Inc. UNIVERSITY




Chip Design Challenges

Diminishing performance gain and increasing design cost

Per-Core Performance Gain is Diminishing

107
10°
10°
10*

103

1970

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10 )

Frequency (MHz)

1980 1990
Year

48 Years of Microprocessor Trend Data

2000 2010

2020

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

Advanced Design Cost (M)

IBS Design Cost is Skyrocketing

$580

-
ey
w
(%]

$290

$145

$542.2
= ation
ototype
——Software
$297.8
| =
-__Phy5|cal
$174.4
I
$106.3 ' ——+Verification
$70.3 = 1
$285 9377 %513 - . B —-Architecture
— — S ——IP Qualification
65 40 28 22 16 10 7 5

Feature Size / Process Technology (nm)
(Not including manufacturing)

International Business Strategies, 2020
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Chip Design Challenges

Not only costly, also long turn-around time

Nvidia Tesla V100

Graphics Card

It took several thousand engineers several years
to create, at an approximate development cost of
S3 billion. —Jensen Huang, CEO of Nvidia

Nvidia GPU Technology Conference (GTC), 2017

Duke

UNIVERSITY



This is Real Problem!

Challenges at advanced node Inefficient chip desigh methodologies

* Pressure from IPC and frequency

For one Arm CPU core
with ~3 million gates

* Peak power keeps increasine

 Power delivery technique is

Intelligent design &

* Increasing design rules to mi thodo‘ogies 2 power simulation takes ~2 weeks

o o . o .. me
:/:/‘icrreegzllgs ;Nr:(rzlenF:)aingItICS’ - & SO\Ut’lOﬂS‘. ation in physical design take ~1 week

 repeatedly constructed from scratch

é __.wwuns rely on designer intuition
»® .

7 Duke

Source: The Kirin 990 SoC. TechlInsights Inc. UNIVERSITY




i .
Rebecca

@ "

https://qithub.com/ageitgey/face recognition https://towardsdatascience.com/using-tensorflow-object- http://matclinic.com/2017/05/18/the-team-
detection-to-do-pixel-wise-classification-702bf2605182 behind-the-future-of-ai-in-healthcare
Self-driving Cars Autopilot Drone Robots Smart Home Health Monitor Personal Assistant
P
L~

1D +

@ D)

Manufacturing Smart Grid Financial Service

&

Security

4



https://github.com/ageitgey/face_recognition
http://matclinic.com/2017/05/18/the-team-behind-the-future-of-ai-in-healthcare/
https://towardsdatascience.com/using-tensorflow-object-detection-to-do-pixel-wise-classification-702bf2605182

Why ML/Intelligence Helps Circuit Design?

Solvers (trial 1)

Verilog

Solvers (trial N)

‘ Various metrics (bad) '\

Simulators

g

>‘ N iterations

‘ Various metrics (good) _/

Simulators

* Producing solutions repeatdly from scratch

*Source: Kahng et al., VLSI physical design

Duke

UNIVERSITY



Why ML/Intelligence Helps Circuit Design?

Various metrics (bad
/ 2

| Verilog  Fast & high-fidelity ML prediction > N iterations

(trial N)

Various metrics (good) _/

* Producing solutions repeatdly from scratch
 Why not learn from prior solutions?

. Duke

IIIIIIIIII



Simple Plug-in and Use of ML Engines?

Images Circuits (Arm Neoverse N1 CPU core)
e 100s * 100s pixels * Millions of connected components
 No extra information  100s GB of raw information

* Any human can tell the label Need simulations to get the label

* Datais everywhere * Datais hard to get

Innovative Customized Solutions are Desired!



Many Excellent Exploration in Academia and Industry

Increasing number of publications mi?,(;ﬂlteiz 2]; ML for EDA in
on ML for chip design automation | | .. commercial tools
endmodule
— Synthesis
~~~ =
< : cadence
TEXAS ucsD
Cadence Innovus™
UT Austin UCSD — Layout
=2 | ®
- - SYNOPSYS
oy U. S e — Verification Synopsys ICCT™M || ML for Chip Design
TAMU Duke Cornell L
Google SAnvIDIA.  ceorgie Fabrication
Tech
Google Nvidia GaTech

Electronics Research Initiative (ERI) — Design
Goal: 24 hours turnaround time & no human Traditional

5 Chip Design Duke

UNIVERSITY




What | Believe We Should Target

Unified ML for Both
Design & Runtime

Auto-ML for
Chip Design \_/
\_/ Benefit the whole
ML for Chip chip life cycle
Design ngher—lev-el of
automation
N
Well-studied in

recent years

Traditional
Chip Design

13

Duke
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My Related Works

Power

PPA Performance

Area

14

Power & Power Delivery Challenges

[ICCAD’20], [ASPDAC’20],
[MICRO’21] (Best Paper Award)

Timing & Interconnect Challenges

[ICCAD’20], [ASPDAC’21],
[TCAD’21] (under review)

Routability Challenges
[ICCAD’18], [DATE’18], [ICCAD’21]

Overall Flow Tuning
[ASPDAC’20]

Covered in this talk



My Related Works

PPA

15

Power

Performance

Area

Power & Power Delivery Challenges

[ICCAD’20], [ASPDAC’20],
[MICRO’21] (Best Paper Award)

Timing & Interconnect Challenges

[ICCAD’20], [ASPDAC’21],
[TCAD’21] (under review)

Routability Challenges
[ICCAD’18], [DATE’18], [ICCAD’21]

Overall Flow Tuning
[ASPDAC’20]

Covered in this talk



Case Study 1:

Routability Challenges
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Routability Background

e Design Rule Checking (DRC)
» Meeting manufacturing requirements

» Less DRC violations (DRV) -> better routability

* DRV mitigation at early stages

» Requires routability prediction/estimation

* Previous routability (DRV) estimations

DRC violations (white) on circuit layout
» ML model on small cropped regions

» Limited receptive field and missing global information

. Duke

UNIVERSITY



First Deep Learning Method for Routability Prediction

e Task 1: which one will result in less DRV count?

%

Layout 1

Layout 2

e Task 2: where are DRC violations?

18

—

Layout 1

Customized FCN methods

RouteNet [Xie, et al., ICCAD’18]

Duke

UNIVERSITY



First Deep Learning Method for Routability Prediction

19

Task 1: which one will result in less DRV count?

Task 2: where are DRC violations?

Input Tensor

* Requires global routing:
yg* Number of Layouts

In seconds, with similar accuracy

* Requires detajled routing
My/{ours * [terations

In seconds, outperform previous works

RouteNet [Xie, et al., ICCAD’18] DUke

UNIVERSITY



Many Excellent Deep Learning Methods

Conv(9) Pool

f

Shortcut

Trans(5)

Conv‘s)
16 4

Trans(9)

16

Conv(7) Pool
Conv(9) Conv(7)

64 32 32

Z

UN

Feature extraction

Convl Max pooling Conv2 Max pooling

Design features

Conv(3) |
1

RouteNet [Xie, et al., ICCAD’18] DUke

IVERSITY

\
\
\
\
\

X DowN (ki*k1)

J-Net model

DOWN (k7*k7) )L X UP (k7*k7)

J-Net [Liang, et al., ISPD’20]

Classification

\
\
\

Fully connected

neural network Stgmoid.

% M2short (094)
Not M2 short (0.06)",

\
\
\
et e B W RO A

e @D s— QT C ‘
CETEEED s— QETTTCHD

Decoder

Encoder

1
] ' ! )
W,H,12 W/2,H/2,64 W/4,H/4,256 W/8,H/8,2048 W/4,H/4,128 W/2,H/2,32
AlM ,
PROS [Chen, et al., ICCAD’20]
""""""""""""""""""""""""" skip connections T
i._:,4,512 22512 7 2,2512 12
l‘:s,w,smu's‘z e
32,32,256

64,64,128




What | Believe We Should Target

Auto-ML for
Chip Design
\/
ML for Chip /
Design Higher—lev-el of
automation
N
Well-studied in

recent years

Traditional
Chip Design

21

Duke
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Automatic Estimator Development — Search Space

Guide-DAG

Candidate node operations

® @

Standard convolution

Atrous/dilated

3x3

channels

\J

Mixed (depth-wise)

LL

()

Input Tensor
/J\ L]
(5x5 ) --- kxk
e
Y ] \J \ 4
Output Tensor

Samphng convolution convolution

sub-graph !
1
v

Sampled- Sampled- Sampled-

LIHPLF Down- DAG S; Down- DAG S; N\.,| Down- DAG S Segmentation DRC hotspot
features samplin ling |] sampling || | /R i / Violated net )
e Sampled- e Sampled- e Sampled- e Fixed part
DAG S, DAG S, DAG S
Changeable part
Shortcut Shortcut Shortcut

22

[Chang, et al., ICCAD’21]

Duke

UNIVERSITY



Automatic Estimator Development — Searching Algorithm

Fixed part

Changeable part

1. Sample from the completely-ordered graph (G;) to get (S;)
2. Evaluate the sampled model by training and testing
3. Update the sampling probability by evaluation result

* Result: outperforms previous works in both tasks; developed without human in one day

. Duke
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Auto-developed Model Structures

* Human-designed models:

e Highly hierarchical and organized architecture
* Limited operation types

e Auto-developed model:

e Construct parallel branches and flexible interactions

e Supports different operators

Segmentation
head




Auto-developed Model Structures

* Auto-developed model for DRC hotspot detection is significantly more complex

Simpler model

More complex model

Segmentation
head




Case Study 2:

Power & Power Delivery Challenges
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What | Believe We Should Target

Unified ML for Both
Design & Runtime

Auto-ML for
Chip Design = \_/
\_/ Benefit the whole
ML for Chip chip life cycle
Design ngher—lev-el of
automation
N
Well-studied in

recent years

Traditional
Chip Design

27

Duke

UNIVERSITY



Challenge 1 — Design-time Power Introspection
256b SVE

8-wide
FETCH DATA
CORE 1 CORE 2

5-8-wide Decode/Rename

Issue

RERRARARRRNARY

Many-core CPU with Wider issue More vectored execution
more transistors

CORE 3 CORE 4

e Delivering generational performance gains adversely impacts CPU power
* Power-delivery resources not keeping pace with CPU power demands

* Increasing power-sensitivity drives the need for design-time introspection

28 APOLLO [Xie, et al., MICRO’21] (Best Paper Award) Source: Arm Neoverse V1, 2021 Duke



Challenge 2 — Run-time Power Introspection

Modelling power on one parch block __ Measured di/dt event on Arm A72 SoC
[. Diff kload ] Z 106 y Waitfor !

ah) ITferent workloads Q Fuents i Maximum Power Workload

> . o0 1.04 'I

o ® 2 1.02 - i

ER o & o

- ® . > 1

'5 .......... (5} >

2 o ® o S 098]

s L S 0.96

c ° e Limited accuracy ' o.94 4

= ©) ° o

o c 0927 <«— Sharp voltage-droop due

O Q 0.9 - to workload-driven di/dt
C
O o.s88

470 490 510 530 550 570 590

Estimated Power with Manual Proxies Time (ns)

* Peak-Power mitigation requires accurate power estimation to drive throttling
* Manually inferring proxies is very difficult in complex modern CPUs

* Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

29

Duke

UNIVERSITY



Challenge 3 - Workload Power Characterization

* Need power-characterization of real-world [ Sig‘f;?t H VS;’;E."QLZ /
workloads |
* Simple micro-benchmarks not longer sufficient [Simulate on netlistH Gate-level /
on emulator netlist

e Single SPEC simpoint can take weeks on the
expensive emulator

* Power measurement is expensive

Offline windowed
simulation trace

[ Power analysis ]4—
* Only average power consumption available

* Impossible to scale to di/dt event analysis Windowed
average power

Industry-Standard Emulator-Driven Power Flow

. Duke

UNIVERSITY



Challenges from Both Design-time and Runtime

A unified solution for both scenarios

Runtime Challenges Summary

e Peak power mitigation
 Difficult to manually infer proxies

* Voltage droop (Ldi/dt) mitigation
e Require very low response latency

Design-time Challenges Summary

e Simulation on realistic workloads
* Expensive and slow
* Limited temporal-resolution

31

What is An “Ideal” Power Estimator?

1.

Accurate yet fast

2. Achieve high temporal resolution
3.
4

Low runtime on-chip overheads

Easily extensible to diverse designs

Duke

UNIVERSITY



APOLLO: A Unified Power Modeling Framework

vy

32

APOLLO

/_/R

®

Design-time
power
model

OPM

Swies

Runtime
on-chip
power meter

Single-cycle temporal resolution

Neoverse N1 CPU floorplan

Fast, yet accurate design-time simulation

Low-cost, yet accurate runtime monitoring

Design-agnostic automated development

Duke

UNIVERSITY



A Workload Execution Preview of APOLLO

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles

Power (scaled)

w
o

| — APOLLO's Prediction —— 50-Cycle Averaged

NN
o !

[
%))

[
o

5_

hmmer (SPEC 2006) simpoint
on the Neoverse N1 CPU core

2760K 2770K 2780K

2790K 2800K

Timing window index (unit: 1 clock cycle)

~2 weeks execution time reduced to few minutes on the emulator

Unprecedented power-introspection due to single-cycle temporal resolution

Duke

UNIVERSITY



APOLLO Feature Generation & Model Trai

A BCDE Power
cycle0 | 1|0[(0|0]|0 PO

cyclel| 01111010 P1

cycle2| 0 (0111 P2
|
A AN BCDE )
B_E_‘—;— . cycle010000 PO
! — cydel| 0 [1|1(0]0]| .. .. 51
C | ' I NEL _
| -~ w F |ovez[oo]1]1]1 all
D | e _
. I|: R ; 5
E : | » Adesignin RTL level. : :
: / \ M RTL signals '/ .4
cycIeO cyclel cycIeZ '/

Train the ML model: F(X) =
In .fsdb/.vcd file format M > 500,000 in Neoverse N1 ( ) y

» M > 1,000,000 in Cortex-A77 Duke

UNIVERSITY



Simple Key Ideas

* Linear model can estimate power accurately

* Small portion of signals (proxies) can provide enough information

M signals () selected proxies
A Auto- A
fA BCDE Y Selection fAﬁ\\@\ D\E\ A
Eachcycle: |1 (0|00 |O| =" - Each cycle: Izl ------
x1 xz x3 X4_ x5 Slle SZ=X4
Linear model with M RTL signals Linear model with @ selected proxies
P =Z’i‘i1xi*w’i P =ZiQ:15i*Wi

, Duke

UNIVERSITY



ML-Based Power Proxies Selection

Model construction in two steps

M Features Reach Q non-zero weights

Q retrained weights

O Wy

Step2: ‘Relax’
Retraining Wa

Stepl: Pruning

!/
Training with Wy-1#0

strong penalty

strength ®
' 0

_ vy
v P=3L 5w
P=2i=1X*wW;

Minimax concave penalty (MCP) for pruning
y Duke

UNIVERSITY



Why MCP for Pruning?

* To make Q <K M, penalty is set to be very large.
* Lasso degrades model accuracy under large penalty

* MCP protects large weights thus maintains model accuracy

i

Lasso penalize all weights

w

_~ MCP protects large weights

Penalty P(w)
N

=

o

—4 ) 0 2 4
Weight Value (w)

Duke

37
UNIVERSITY



Model Training and Testing

teree
[m)]
&

m@

ettt sl i =]

[J]
adWS
T 30

) 2
v 3 2o
. 10
Neoverse N1 (infra) Cortex A77 (mobile) .

Deployed in AWS Graviton Deployed In Snapdragon 865 0 2000 4009 0000 8000 10000 32000 11000

Timing window index (unit: 1 clock cycle)

Experiments on 3GHz 7nm Arm commercial microprocessors Neoverse N1 and Cortex A77
* Automatically generate a “diverse” set of random micro-benchmarks for training

e Testing on various Arm power-indicative workloads

, Duke

UNIVERSITY




Prediction Accuracy as Design-Time Power Model

Power (scaled)
= N w =
o o o o

(=)

39

Per-cycle prediction from APOLLO with Q=159 proxies

MAE = 7.19%
R?=0.953

Label APOLLO's Prediction
O .S A €S S 2 \ g >
e R @7 N\ ) \ XIS SN
O el S R\ e S et N Al ,&\(‘ '6-\\(\ ,&\(‘
6‘(\“‘5 |«@TQ 6°?(x\ “"s’&* | @Q*Q [ .\@C“I cacIX‘ 6’&1& | 6\6«\ [ ,&(0 | '&‘0 [ ‘X\‘o
|
| | | 1 | | | | I
| | | | | | | |
| | | | | | |
| | |
| | |
|
I "
0 2000 4000 6000 8000 10000 12000 14000

Timing window index (unit: 1 clock cycle)

N\

Prediction trace shows great
agreement with ground-truth

Duke

UNIVERSITY



Power (scaled)

Prediction Accuracy as Design-Time Power Model

Per-cycle prediction from APOLLO with Q=159 proxies

B
o

W
o

Label

APOLLO's Prediction

* MAE=7.19%
* R2=0.953

W

/ |
N
\1
o : \ % . . / . \ . : / v A\
o 7 2000 4000 6000/ 8000 0000 12060 14000 M
/ N /7 \ 7
V4 > > L A
Label Label Label
40 —— Prediction 0 —— Prediction 0 —— Prediction
30 30 30
20 20 _‘_\J_-L‘JJ_I_F'-L,J—-PJ_ 20 _,-L,--|_|'|—r'|_,-\_,-'-|_|""-"|_
10| - | 10 10 \Per—cycle error
0 : 0 can be averaged
2000 2008 2016 8000 8008 8016 14000 14008 14016 uKe

40
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Power (scaled)

S
o

N W
o o

[
o

Accuracy on Multi-Cycle Power Estimation

<—— Average Power over T = 128 cycles ——

128-cycle prediction from APOLLO with Q=70 proxies

Label —— APOLLO's Prediction

(=)

41

2000 4000 6000 8000 10000
Timing window index (unit: 1 clock cycle)

12000

MAE = 2.82%
R2=0.993
Higher accuracy

Duke

UNIVERSITY



Automated Low-Cost Runtime OPM Implementation
APOLLO is designed to be hardware-friendly

’ Weight High-Level
Wq Quantization ——:f)—\ .~ Implement Synthesis
00— Ty <y - (O] -
0, 1) P x ) CPP
’ O—’/ 7 Configurable
{0, 1} Wo o~ OPM template OPM in RTL
’ in C++
- - W -bit quantized
Only @ binary inputs fixed-point weights ‘ Verifying

No multipliers required m

—

. Verify OPM accuracy DUke

UNIVERSITY




Power (scaled)

= N W B

o

o

o

(=)

(=]
o

Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies

Label —— APOLLO's Prediction

* MAE=7.19%
e R2=0.953

2000 4000 6000 8000 10000 12000 14000

43



Power (scaled)
= N W )
o o o o

(=)

Power (scaled)
= N W B
o o o o

o
(=]

Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies

Label APOLLO's Prediction
e MAE=7.19%
e R2=0.953
\
0 2000 4000 6000 8000 10000 12000 14000 \ o Neg“gible
Negligible difference
Prediction from runtime OPM with Q=159 proxies lefference
Label | —— APOLLO OPM Hardware j e MAE = 7.19%
e R2=0.953

W=11 bits after

2000 4000 6000 8000 10000 12000 14000 qua ntization
Timing window index (unit: 1 clock cycle)

I
N



Overview of the OPM Hardware Design

W1l0: W] )
- Sl — TD 7-.
X[1]
S2[0:1] walo:w]
- o[ 7TD 7_
VT = (+)
3 ||
=
. ;':,;, wslo:w]
-—=3 18Hm™ .
X[3]
Wy 0: W] )
- S4 — TD 7.
X[4]
TD | 1-bit toggle detector with one XOR and FF FF

FF out
D 0] o aa

rst

T-cycle counter

Output:
out [log(T): MSB]

Flip-flop

Neoverse N1 CPU floorplan

* No multipliers or dividers, only Q binary inputs and W-bit quantized weights

45
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Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

* Trade-off accuracy and hardware cost

* Sweep proxy num Q and quantization bits W

(%) MH UO painsea| 40443

OPM Gate Area _ _
Overhead: 0.1% 0_.2% 0:3% 0.4% D k
46 u e

UNIVERSITY




Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

* Trade-off accuracy and hardware cost

25 g e Sweep proxy num Q and quantization bits W
coltian, (205 - strategy
== i * Keep quantization W= 10 to 12 bits
:10 5  Vary Q for different solutions
6 ” iés * For an OPM with Q=159, W=11
100 5 Q«\ = * <0.2% area overhead of Neoverse N1
Nup, ., e <10% in the error
"er pro. 300 3007 13 &
s () N
OPM Gate Area S .

Overhead: 0 o "0 0
. 0.1% 0.2% 0.3% 0.4% Duke

UNIVERSITY



Potential Application: Design-time Power Introspection

Integer

Rename .
Execution

Commit
Fetch
L2

Gated Gated Clock

Clock
Signals ‘ Signals

Trained only with more meaningful

SLOad signals as initial feature candidates
tore

Vector Execution

Distribution of power

proxies on Neoverse N1 Better interpretability

Identify power contributors for designers!




Potential Application: Runtime di/dt Mitigation

iy
o
~

=
o

=
o
°

Observed: overvoltage
Predicted: undervoltage

False Positive

© o

|
-
o

|
[
o

dI /dt Predicted (scaled)

—102

Hi

rved: overvoltage
Predicted: overvoltage

gh-overshoot events

‘events

Deep droop

Observed: undervoltage
Predicted: unde%
L S v, Yy
Yy

False Negative

Observed: undervoltage
Predicted: overvoltage

Log-scale L’

Enable CPU-driven Proactive dI/dt Mitigation!

-102

-10° 0

dl /dt Observe

—10!

d (scaled)

102




What | Believe We Should Target

Unified ML for Both
Design & Runtime

Auto-ML for
Chip Design = \_/
\_/ Benefit the whole
ML for Chip chip life cycle
Design ngher—lev-el of
automation
N
Well-studied in

recent years

Traditional
Chip Design

50
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Summary and Takeaway

Problem: Increasing Challenges in Chip Design

e Cost, time-to-market, reliance on designers, diminishing performance return,

ML in chip design

* Less simulation time, faster feedback, less designer effort

* AutoML in chip design

51

e Reduces months of model development to hours, no developers

Unified ML in both design & runtime

* Benefit the entire chip life cycle

SEE L OO0
oeo™ s

Chip design & implementation

e

Vision

Intelligent Solutions

Duke

UNIVERSITY



Future Research Plan

Unified ML for Both

Design & Runtime
Auto-ML for

Chip Design \__/

ML for Chip -
Design
e Collaborative

framework

Traditional @
Chip Design "/
. -

Ph.D. Timeline Duke

UNIVERSITY




Future Works: Collaborative Framework

Collaborative ML in Chip Design

 Model quality depends on data

e Circuit data from different companies

* Design data is highly confidential

Developer

u zdb>
wrtl = z n_w EE} Output
n [CeemES]
k=1 m
/ \WK
chent 1 B C|Ient K
Cllent 2

For each client k, for E epochs,
Wi = W' — VLyg/pros(W', k)

53

Federated Learning:
Train on local data

Communicate weights

Example — Collaborative Training

Test on 9 Clients (C1 to C9)

c1
2
>
C4

Train on 9 Clients | C5

C6

87,

C8

@9

Train & Test Same Client ¢

FedProx

FedProx + Finetuning

cit[c2[c3]cafcs[ce]c7]cs [ co[ Avg
0.65

0.71

0.71 0.68 0.78

0.73 . 0.72

0.76 0.65 0.71 [ 02 0.63

0.73 0.65 0.73 0.65

: 72 =02 0.63

0.63 0.71 | 0.72 | 0.66 | 0.67 | 0.63 | 0.65
0.76 | 0.75 | 0.74 | 0.75 |

One same model in a row

Nine different models in a row

* Assuming data distributed to 9 clients (C1 to C9)

Duke

UNIVERSITY



Future Research Plan

Fully-automated &
Collaborative reliable framework

>

framework
N/ @
I
Ph.D. Short-term milestone

54
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Future Works: Fully-Automated & Reliable Framework

Fully-Auto ML in Chip Design Example — Feature Selection

 Automated feature selection « The first conv layer:

e Automated data selection 32 kernels with size 3x3x24 » 24 feature weight vectors

¥

* Automated data augmentation 0.08 1
£ 0.06 -

2 0.04
0.02 -
0.00 -

0 5 10 15 20
Features
ROC-AUC SeIeFted Fef';\tures:
0. Pin density
2 (B9) 0.866

12. MST fly lines
4 (I + ) 0.867 22. DFF cell density
24 (all) 0.867 23. Clock tree cell density

55



Future Works: Fully-Automated & Reliable Framework

Reliable ML in Chip Design Example — Design Difference
* Designs very sparsely distributed ~
I S P D - 1 ﬁ.gc_m_watrix_mu|t_a_|arge
* Almost impossible to perform well on e o e ISCAS'89
every test case
. . X . ?'.'. @400 ®mall
* How can we trust each prediction? L gy T
g o, ¥
7™\ Training cases from ISPD-2 S o PP b 33 e
@ Training cases @ Testcases | ) <ame bgenchmark y "l 9
s /6~\\\ 513207_mid ....Sb_{‘xir:;;‘rzl-w
Feature 2 e O ¥ | Y IR
+ ' \ ‘38;21_76?:‘1 o $s83Bsmall K 34 1_5,,,3”. . ethernet_mid
. . ’__.\\\. \\\ . ..'I Y B mic ? s e.ﬁslllgzir o ©38584_mid t‘@dm 'Ly
..o O
Largely ! .’ \‘.3:\_! S/ .“. ® i 0 o \\
different \\ \ ': Y e sb_fuflet_mid
~ @) @ ° Feature 1 Faraday < >3
N ’ . oo .~ > OpenCore

ITC’99
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Future Research Plan

%/\\ Need knowledge on optimization,
O"

computer architecture, etc.

/%t\\ Need knowledge on ML, AL
%05} circuits, software, etc. ~ ~

Multi-domain/objective, Comprehensive framework Accommodates
e I efficient optimization  from system-level to testing  emerging tech

SIER I

Fully-automated &
Collaborative reliable framework r
framework -
@ True intelligence
N in chip design
H 2

>

Ph.D. Short-term milestone Longer-term milestone
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Future Funding and Collaboration Opportunities

* Agencies:
* General Research Fund (GRF), Early Career Scheme, NSFC, ITF

* US companies:
* Cadence, Synopsys, Nvidia, Arm, NXP

* Chinese companies:
* Huawei, Alibaba T-head, Chinese EDA start-ups like UniVista

Semiconductor manufacturing capacity (%)

—US — China (mainland) "
'.' (’,;ongres%i%nal 30
A4 esearc ervice
a

Informing the legislative debate since 1914

20

China’s New Semiconductor Policies: 1
Issues for Congress

0
1990 2000 2010 2020 2030

US restricts software exports to Semiconductor switching to Asia, A great chance to overtake
Chinese chip companies including ‘Greater Bay Area’ leading EDA companies
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Previous Collaborations and Grant Writing Experiences

* Many thanks for my advisors and collaborators:

Prof. Yiran Chen Prof. Hai “Helen” Li Prof. Jiang Hu Dr. Brucek Khailany Dr. Haoxing Ren

Duke University Duke TAMU Nvidia Nvidia
Dr. Shidhartha Das Dr. Xiaoqing Xu Dr. Brian Cline Dr. Chand Kashyap Dr. Aigun Cao
Arm Arm Arm Cadence Synopsys

* My previous grant writing experiences (funded):

* NSF: Revitalizing EDA from a Machine Learning Perspective

SRC: A Machine Learning Approach for Cross-Level Optimizations

SRC: A Collaborative Machine Learning Approach to Fast and High-Fidelity Design Prediction

Industry (Cadence): NAS-based Fully Automatic ML Estimator Development Flow in EDA

Industry (Cadence): A Machine-Learning based Pre-placement Wirelength Estimator
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Courses | am Qualified to Teach

e Circuit and Computer Engineering Courses
 Digital VLSI design, digital integrated circuits (CAD admin at Duke)
* Chip design methodologies
 Digital logic & systems (TA of undergraduate course at Duke)

 Computer organization and architecture

* Machine Learning Courses
 Linear algebra for engineering (TA of graduate course at Duke)
* Data mining, artificial intelligence, machine learning

* Computer vision, deep learning

. Duke

UNIVERSITY



Thanks! Questions?

If you have further questions, please contact me:
zhiyao.xie@duke.edu

Duke



