

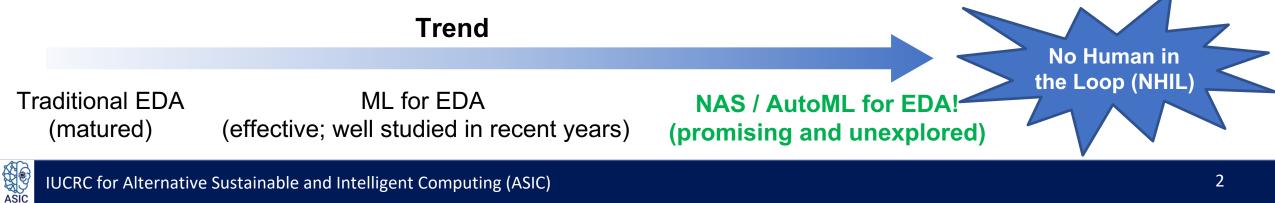
NSF IUCRC Alternative Sustainable & and Intelligent Computing

D4: Automatic Routability Predictor Development Using Neural Architecture Search

> Zhiyao Xie, Yiran Chen Duke University Feb 9th, 2021

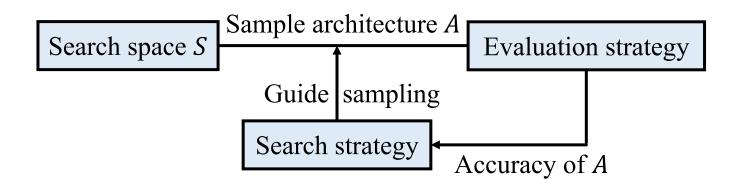
Motivation: Why NAS / AutoML for EDA

- Machine learning (ML) for EDA
 - Enable early-stage predictions
- However, the development of ML models still:
 - Require strong ML expertise and tremendous engineering effort
 - Prolong the development cycle of the ML-based models in EDA
- Neural Architecture Search (NAS) / AutoML for EDA
 - Enable design automation of ML models without human interventions
 - Outperform state-of-the-art manual CNN designs in computer vision



Preliminary: NAS and AutoML

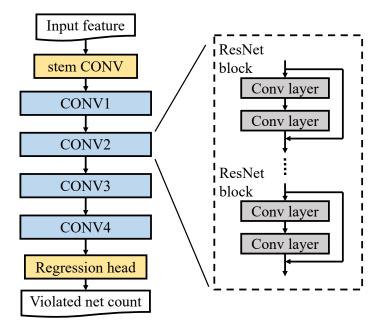
- Neural Architecture Search (NAS) aims to automatically explore efficient yet high-performance CNN models without human interventions.
- It includes three major components:
 - Search space: the candidate architectures that can be explored in NAS.
 - Evaluation strategy: the way to evaluate the candidate architecture in the search space.
 - Search strategy: the method adopted to explore the search space.



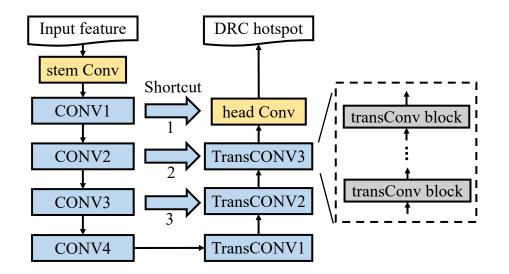
ASIC

Search Space for Violated Net Count Prediction & DRC Hotspots Detection

- We search for the hyperparameters in all CONV blocks.
- We further insert 3 searchable TransCONV blocks and 3 optional shortcut connections for DRC hotspots detection.



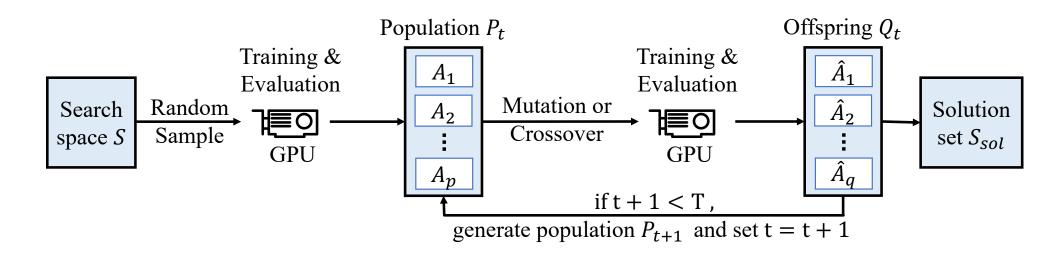
Space for violated net count prediction



Space for DRC hotspots detection

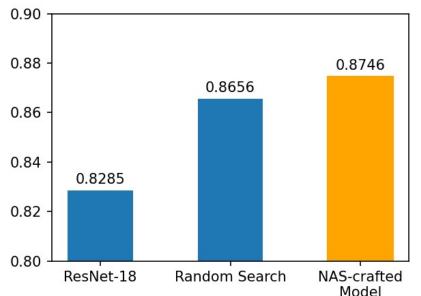
Evolutionary-based Search Strategy

- The flow of evolutionary-based search strategy
 - Initial the first population by random sampling
 - Mutate and crossover to generate offspring
 - Update the next population from the population and offspring
 - Terminate after *T* iterations



Violated Net Count Prediction Results

- Our NAS-crafted model outperforms both ResNet-18 (ML baseline) and Random Search (NAS baseline)
- It also improves accuracy of the best layout, reducing designers' effort to reach the best solution.



Kendall's τ in cross-validation

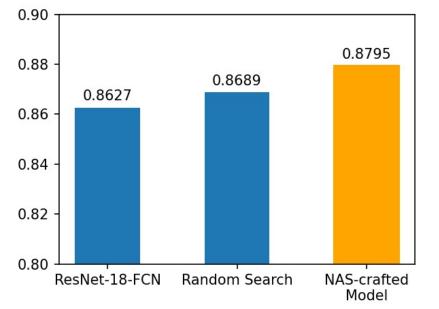
Rank of the best layout in prediction

Design	#Nets	ResNet-18	Searched
usb_phy	835	1	1
des	1 K	2	1
wb_dma	6 K	4	4
aes_core	34 K	19	9
b18	105 K	4	3
Avg all 61	20 K	4.1	3.1

Outperform by 1.0 position!

DRC Hotspots Detection Results

- Our NAS-crafted model outperforms both ResNet-18-FCN (ML baseline) and Random Search (NAS baseline)
- It yields improvement for any design in our target dataset.



ROC-AUC in cross-validation

Searched **ResNet-18-FCN** Searched **ResNet-18-FCN** #Nets Design TPR TPR AUC AUC usb_phy 835 23.9% 27.5% 0.719 0.775 des 1.5 K 46.1% 56.5% 0.851 0.887 6 K 51.5% 53.8% 0.801 0.818 wb dma 34 K 80.9% 86.2% 0.809 0.956 aes core b18 105 K 40.6% 43.0% 0.768 0.790 Avg all 61 20 K 46.0% 50.5% 0.809 0.832 4.5% higher 2.8% higher

Hotspots detection accuracy (FPR=10%)

Summary of Research Outcome

• What we present:

- An evolutionary-based NAS method that automates the design of ML models for routability prediction
- Result: higher accuracy & efficiency
 - For violated net count prediction, **5.6% higher Kendall's** au than the ResNet-18
 - For DRC hotspots detection, **1.95% higher ROC-AUC** than the ResNet-18-FCN
 - Developing CNN models with **0.3 days** for the whole search process
 - Promising recent results on larger search space & automatic feature selection

• Our outcome:

- Paper [pdf] submitted to DAC 2021
- Project has been released [code*]

