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Motivation: Why NAS / AutoML for EDA

e Machine learning (ML) for EDA

e Enable early-stage predictions

e However, the development of ML models still:
e Require strong ML expertise and tremendous engineering effort
e Prolong the development cycle of the ML-based models in EDA

e Neural Architecture Search (NAS) / AutoML for EDA

e Enable design automation of ML models without human interventions
e Qutperform state-of-the-art manual CNN designs in computer vision
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Preliminary: NAS and AutoML

e Neural Architecture Search (NAS) aims to automatically explore efficient
vet high-performance CNN models without human interventions.

e |tincludes three major components:
e Search space: the candidate architectures that can be explored in NAS.

e Evaluation strategy: the way to evaluate the candidate architecture in the search
space.

e Search strategy: the method adopted to explore the search space.
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Search Space for Violated Net Count Prediction &
DRC Hotspots Detection

e \We search for the hyperparameters in all CONV blocks.

e We further insert 3 searchable TransCONV blocks and 3 optional shortcut
connections for DRC hotspots detection.
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Evolutionary-based Search Strategy

e The flow of evolutionary-based search strategy
e |Initial the first population by random sampling
e Mutate and crossover to generate offspring
e Update the next population from the population and offspring
e Terminate after T iterations
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Violated Net Count Prediction Results

e QOur NAS-crafted model outperforms both ResNet-18 (ML baseline) and
Random Search (NAS baseline)

e |t alsoimproves accuracy of the best layout, reducing designers’ effort to
reach the best solution.
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DRC Hotspots Detection Results

e QOur NAS-crafted model outperforms both ResNet-18-FCN (ML baseline)
and Random Search (NAS baseline)

e [tyields improvement for any design in our target dataset.
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Summary of Research Outcome

e What we present:
e An evolutionary-based NAS method that automates the design of ML models for
routability prediction
e Result: higher accuracy & efficiency
e For violated net count prediction, 5.6% higher Kendall’s T than the ResNet-18
e For DRC hotspots detection, 1.95% higher ROC-AUC than the ResNet-18-FCN
e Developing CNN models with 0.3 days for the whole search process
e Promising recent results on larger search space & automatic feature selection

e Our outcome:
e Paper [pdf] submitted to DAC 2021
e Project has been released [code*]

* Email us for full code access: zhiyao.xie@duke.edu
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https://arxiv.org/abs/2012.01737
https://github.com/lordzth666/GRAM/tree/NAS_for_EDA

