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• Machine learning (ML) for EDA
• Enable early-stage predictions

• However, the development of ML models still:
• Require strong ML expertise and tremendous engineering effort 
• Prolong the development cycle of the ML-based models in EDA

• Neural Architecture Search (NAS) / AutoML for EDA
• Enable design automation of ML models without human interventions
• Outperform state-of-the-art manual CNN designs in computer vision
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Motivation: Why NAS / AutoML for EDA

Trend

Traditional EDA
(matured)

ML for EDA
(effective; well studied in recent years)

NAS / AutoML for EDA!
(promising and unexplored)

No Human in
the Loop (NHIL)
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• Neural Architecture Search (NAS) aims to automatically explore efficient 
yet high-performance CNN models without human interventions.

• It includes three major components:
• Search space: the candidate architectures that can be explored in NAS.
• Evaluation strategy: the way to evaluate the candidate architecture in the search 

space.
• Search strategy: the method adopted to explore the search space.
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Preliminary: NAS and AutoML
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• We search for the hyperparameters in all CONV blocks.
• We further insert 3 searchable TransCONV blocks and 3 optional shortcut 

connections for DRC hotspots detection.
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Search Space for Violated Net Count Prediction & 
DRC Hotspots Detection 
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• The flow of evolutionary-based search strategy
• Initial the first population by random sampling
• Mutate and crossover to generate offspring 
• Update the next population from the population and offspring 
• Terminate after 𝑇 iterations
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Evolutionary-based Search Strategy
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• Our NAS-crafted model outperforms both ResNet-18 (ML baseline) and 
Random Search (NAS baseline)

• It also improves accuracy of the best layout, reducing designers’ effort to 
reach the best solution.
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Violated Net Count Prediction Results

Kendall’s 𝜏 in cross-validation
Rank of the best layout in prediction

Outperform by 1.0 position!
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• Our NAS-crafted model outperforms both ResNet-18-FCN (ML baseline) 
and Random Search (NAS baseline)

• It yields improvement for any design in our target dataset.
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DRC Hotspots Detection Results

ROC-AUC in cross-validation
Hotspots detection accuracy (FPR=10%)

4.5% higher 2.8% higher
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• What we present:
• An evolutionary-based NAS method that automates the design of ML models for 

routability prediction

• Result: higher accuracy & efficiency
• For violated net count prediction, 5.6% higher Kendall’s 𝝉 than the ResNet-18
• For DRC hotspots detection, 1.95% higher ROC-AUC than the ResNet-18-FCN
• Developing CNN models with 0.3 days for the whole search process
• Promising recent results on larger search space & automatic feature selection

• Our outcome: 
• Paper [pdf] submitted to DAC 2021
• Project has been released [code*]
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Summary of Research Outcome

* Email us for full code access: zhiyao.xie@duke.edu

https://arxiv.org/abs/2012.01737
https://github.com/lordzth666/GRAM/tree/NAS_for_EDA

