
A Collaborative Machine Learning Approach to
Fast and High-Fidelity Design Prediction

Task 2810.021
Jiang Hu

Dept of ECE
Texas A&M University

Task 2810.022
Yiran Chen
Dept of ECE

Duke University

1

Task Overview

• Center: Texas Analog Center of Excellence (TxACE)
• Thrust: Computer-Aided Design and Test (CADT)
• Subthrust: System, Logic and Physical Design (SLPD)
• Task leaders
• Jiang Hu, Texas A&M Univ, Task 2810.021
• Yiran Chen, Duke Univ, Task 2810.022

• Start date: January 1, 2019
• Industrial liaisons
• Gi-Joon Nam, IBM
• Xiaoqing Xu, ARM
• Divya Prasad, ARM
• Savithri Sundareswaran, NXP

2

Anticipated Results

• Machine learning-based techniques for fast and high-fidelity
prediction of
• circuit routability
• timing
• net-length
• power
• crosstalk noise

• Routability/crosstalk predictions will be useful for analog and
mixed-signal designs

• Machine learning guided synthesis parameter tuning

3

Planned Deliverables

• Machine learning-based early routability prediction for digital and
analog IC designs. (12/2019)

• Machine learning-based early timing prediction for digital IC designs.
(12/2019)

• Machine learning-based early crosstalk noise prediction for digital
and analog IC designs. (12/2020)

• Machine learning-based early power prediction for digital IC designs.
(12/2020)

• Machine learning-based pre-layout net-length prediction. (12/2021)
• Machine learning-based synthesis parameter tuning. (12/2021)

4

Background and Motivation

• Decisions in early design steps have large impact
• Need fast and high-fidelity predictions
• Existing techniques
• Analytical: fast but inaccurate
• Trial design: accurate but very slow

• Machine learning
• Extracting design knowledge from data
• Emulating design experience

5

Pre-layout Net-length Prediction

• Net-length: a deciding factor for
• Power
• Performance
• Digital timing
• Analog performance by parasitic

• Prediction before time-consuming layout
• Critical for estimating power-performance in synthesis
• Digital logic synthesis
• Analog schematic design

6

Previous Approaches

• Mutual contraction (MC) [DAC03] ~ net-degree/neighboring-
net-degree

• Intrinsic shortest path length (ISPL) [ICCAD05] ~ shortest path
between two nodes except the edge in between

• Polynomial model [TVLSI01, SLIP09]

• ANN for total FPGA wirelength [FPT12]

• Machine learning for path-length with virtual P&R [DATE19]

7

Our Approach: Net2

Circuit netlist

Graph Neural Network

Net-length

Graph

8

Graph Neural Network

Graph convolution

Activation
function

Fully connected layer

Classification

Graph

Graph convolution
≈ Feature aggregation

9

Existing GNN Techniques

• Graph convolutional network (GCN) [Kipf and Welling, ICLR 2017]

• GraphSage [Hamilton, Ying and Leskovec, NIPS 2017]

• Graph attention network (GAT) [Velickovic, et al., ICLR 2018]

• Edge features for GNN [Gong and Cheng, CPVR 2019]

10

Circuit Graph in Net2

• Each net == a node,
• Label == HPWL (Half Perimeter Wire-Length) of each net

11

Node Features

• A node == a net
• Driver area
• Fan-in size
• Fan-out size
• Sum of cell/device area
• Fan-in and fan-out of neighbor nodes
• Sum and standard deviation of neighboring fan-in/fan-out

12

Local Information Insufficient

• Net n6 has one 2-pin fan-in, one 2-pin fan-out and one 3-pin fan-out
• In one circuit, 725 nets have the same fan-in and fan-out as n6
• The 725 nets are bucketed into 4 groups according to actual net-length
• Previous methods fail to differentiate the 4 groups

Ours
13

Clustering and Edge Features

• Multi-level clustering
• Each net/cell has a cluster ID at each level
• Two cells are closer if they have the same ID
• High (coarse) level clusters => global information
• Encode ID differences at multiple levels as edge features

14

Graph Attention Network (GAT)

Layer 1

Layer 2

Layer 3

Fully Connected Layer

𝑍(") = 𝑋
Node feature

𝑍($) 𝑍(%) 𝑍(&)

Node
embedding

𝑍$
(&) = 𝜎(∑(𝛼$) 𝑍)

(&*+)𝑊 &)
Activation

function

Attention
coefficient

Trainable
weight

𝛼'(= softmax(𝜏'()
𝜏'(= LeakyReLu(𝑎) [𝑊) 𝑍'

)*$ ||𝑊) 𝑍(
)*$])

For node i and all its neighbors j :

Trainable vector 15

Customization to GAT

Layer 1

Layer 2

Layer 3

Fully Connected Layer

𝑍(")
Node features

𝑍($) 𝑍(%) 𝑍(&)

Node || edge features

𝑍(")|| 𝐸(")

Edge Layer 1

Layer 4
𝑍(+) 𝑍(,)

16

Experiments

• 7 designs from ITC99
• For each design, synthesize 10 different netlists
• Testing on one design, model trained on the other 6 designs

17

Net2 Result for Net Size

Correlation coefficient R between
prediction and label measured in 20 bins

ROC curves in identifying 10% longest nets

Net2f: fast
Net2a: accurate

18

Net2 Result for Path Length

Identifying 10% Longest Paths in ROC AUC (%) Comparing Pair of Paths by Lengths (%)

19

Net2 Runtime

20

Design-Time and Runtime Power Prediction

• Design-time power prediction: critical for design decisions
• Challenge: long simulation time, an hour simulation for dozens of clock

cycles
• FPGA-emulation: data for all signal toggles is too huge to be processed

• Runtime power prediction: power management
• Challenge: simultaneously achieve fine temporal resolution and low

area overhead
• Performance-counter-based: low overhead, but resolution of

thousands of cycles at the best, not sufficient for instruction throttling
• OPM (On-chip Power Meter) on RTL signals (proxies): better resolution,

but significant hardware overhead, at least 4%
• Many previous works, but the challenges have not been solved

21

Overview of Our Work

• A single framework named APOLLO
• Enables simulating millions of cycles in several minutes
• Runtime OPM with cycle-accuracy and <1% area overhead

22

The automated
APOLLO framework

Centerpiece of Our Approach

• Select Q power proxies among all (M) RTL signals, !" < 0.05%

• Linear model is common, but our proxy selection is novel
• Train weights as in machine learning
• Toggle 𝑥# is binary, implemented with “AND” gates instead of multipliers

𝑝 𝑖 =+
)A+

B

𝑤) - 𝑥)[𝑖]
Power prediction
for cycle i

Signal j toggles or not

Trainable weight

23

Machine Learning-Based Proxy Selection

• Train a linear model with ALL RTL signals
• Loss function penalizes weights besides errors
• Weights approach 0 by iterations

'𝑝 𝑖 =+
#$%

"

,𝑤# . 𝑥#[𝑖]

𝐿𝑜𝑠𝑠 = | 𝑦 − '𝑝 |& ++
#$%

"

𝑃 (,𝑤#)
Label Penalty

The hyper-parameter g in MCP sets a threshold (gl) be-
tween large and small weights. Figure 4(b) visualizes PLasso
and PMCP with l = 1 and g = 3. The absolute derivative of a
penalty term indicates the weight shrinking rate during train-
ing [44]. Since |∂PLasso/∂w0

j|= l , all weights shrink at the
same rate l in Lasso. In comparison, the absolute derivative
of MCP penalty is shown in Equation (7). Compared with the
uniform shrinking rate for PLasso, large weights with values
> gl in MCP do not shrink at all, since derivatives of their
penalty terms are zero. For weights with values < gl , smaller
weights shrink faster. As such, MCP leaves large weights
unpenalized and thereby benefits the prediction accuracy of
the generated power model. In our experiment, this MCP-
based model is efficiently optimized by adopting both the
coordinate descent method [59] and the proximity operator
of MCP [58]. The penalty strength l in PMCP can be adjusted
to control the number of power proxies Q.

|
∂PMCP(w0

j,g > 1)
∂w0

j
|=

(
l � |w0

j |
g if |w0

j| gl
0 if |w0

j|> gl
(7)

(a)

𝛾𝜆−𝛾𝜆

(b)

Figure 4: (a) APOLLO model construction process, (b)
Penalty terms of MCP and Lasso.

4.4 Final Model Construction
After power proxy selection by pruning with MCP, we

have trained a temporary model p0 = ÂM
j=1 w0

j · x j with Q
selected proxies SQ and corresponding non-zero weight terms
w0

j. This temporary model can already provide rather accurate
predictions. However, even though the MCP protects larger
weights, many remaining weights are still penalized by the
large penalty strength l to a certain extent. In order to further
boost the model accuracy, we train a new linear model p =

ÂQ
j=1 w j ·x j from scratch with only selected power proxies SQ.

In this new linear model, the ordinary L2 penalty, i.e., ridge
penalty [26], is applied, with a much weaker penalty strength
compared with the l used in the previous proxy selection
step. This weak ridge penalty is applied to reduce overfitting
on the training data.

As shown in Figure 4(a), this step is named relaxation and
generates the final APOLLO power model. During the power
proxy selection, to shrink most weights to zero, the penalty
term P dominates the loss, and the prediction error L is less
optimized. This relaxation can be viewed as a fine-tuning
stage to better optimize L. Since L2 is not a sparsity-inducing
penalty, the number of power proxies Q remains unchanged.

Section 8 further quantifies the benefits of both pruning with
MCP and relaxation in Figure 4(a).

4.5 Multi-Cycle Power Modeling

……
!!: Average Power over ! cycles

""[1] !
"……

!!: Average Power over ! cycles

""[1] ""[2] ……

Example: The power measurement window size is ! cycles.
Selected fixed window " cycles; Update interval # = 1 cycle.
$! is the label of each window; %"[1], …, %"[!"] are power predictions.

……

"
""[2] ""[]

!
"""[]

Figure 5: An example of multi-cycle power modeling.

In previous sections, we construct the APOLLO model
for per-cycle power tracing. In practice, designers may ex-
plore the trade-off between temporal granularity with model
efficiency or accuracy. Here we provide an accurate general-
ization of the per-cycle APOLLO model to any given timing
window size. This multi-cycle model estimates the average
power over a timing window with T cycles.

We firstly differentiate two concepts: the power measure-
ment window size T and the estimation update interval U .
The window size T controls how the ground-truth power
label is measured, and the update interval U decides how
frequently the model updates its power estimation. In the
example in Figure 5, the power label at each window is aver-
aged over T cycles, while the update interval U between the
two neighboring windows equals one cycle. For the per-cycle
power tracing in APOLLO, both window size T and interval
U equal one cycle. As for multi-cycle power modeling, it
can work for any window size T > 1 cycle with the update
interval U = 1 cycle.

The most straightforward multi-cycle solutionis to directly
use the average of T per-cycle power predictions pT over the
T -cycle window1. It keeps using a similar per-cycle model
for any given T . But considering multi-cycle scenarios allow
accessing the toggling activities over multiple cycles at each
estimation, several times more input information is available
compared with the per-cycle scenario. This solution does not
capture such additional available information.

Another solution in previous approaches [33] is to average
initial inputs before model construction starts. For example,
one may use the averaged toggling counts over T cycles
as raw inputs, which can be denoted as xT

1 , ...,xT
M . In this

solution, the model learns the pattern behind the correlation
between the T -cycle averaged toggling numbers xT and the
corresponding T -cycle averaged power label yT . However, it
means the pattern to learn is dependent on the given value of
T , which ranges from one to thousands or millions depending
on various application scenarios.

In our solution, for any given window size T , we propose
to select a fixed small timing window with t cycles. An ex-
ample is shown in Figure 5. For each t-cycle window i, we
1We use the superscript of a variable to denote the average of the
variable over a timing window with multiple cycles.

6

𝑃-./ D𝑤(, 𝛾 > 1 =
𝜆 D𝑤(−

D𝑤(%

2𝛾
if D𝑤(≤ 𝛾𝜆

1
2 𝛾𝜆

% otherwise

MCP(Minimax Concave Penalty)

24

2

Machine Learning-Based Proxy Selection

• After iterations, many weights become 0
• Remove all 0-weight terms
• Keep only 𝑄 non-zero-weight terms (proxies)
• Retrain the model again from scratch

𝑝 𝑖 =+
)A+

B

𝑤) - 𝑥)[𝑖]

The hyper-parameter g in MCP sets a threshold (gl) be-
tween large and small weights. Figure 4(b) visualizes PLasso
and PMCP with l = 1 and g = 3. The absolute derivative of a
penalty term indicates the weight shrinking rate during train-
ing [44]. Since |∂PLasso/∂w0

j|= l , all weights shrink at the
same rate l in Lasso. In comparison, the absolute derivative
of MCP penalty is shown in Equation (7). Compared with the
uniform shrinking rate for PLasso, large weights with values
> gl in MCP do not shrink at all, since derivatives of their
penalty terms are zero. For weights with values < gl , smaller
weights shrink faster. As such, MCP leaves large weights
unpenalized and thereby benefits the prediction accuracy of
the generated power model. In our experiment, this MCP-
based model is efficiently optimized by adopting both the
coordinate descent method [59] and the proximity operator
of MCP [58]. The penalty strength l in PMCP can be adjusted
to control the number of power proxies Q.

|
∂PMCP(w0

j,g > 1)
∂w0

j
|=

(
l � |w0

j |
g if |w0

j| gl
0 if |w0

j|> gl
(7)

(a)

𝛾𝜆−𝛾𝜆

(b)

Figure 4: (a) APOLLO model construction process, (b)
Penalty terms of MCP and Lasso.

4.4 Final Model Construction
After power proxy selection by pruning with MCP, we

have trained a temporary model p0 = ÂM
j=1 w0

j · x j with Q
selected proxies SQ and corresponding non-zero weight terms
w0

j. This temporary model can already provide rather accurate
predictions. However, even though the MCP protects larger
weights, many remaining weights are still penalized by the
large penalty strength l to a certain extent. In order to further
boost the model accuracy, we train a new linear model p =

ÂQ
j=1 w j ·x j from scratch with only selected power proxies SQ.

In this new linear model, the ordinary L2 penalty, i.e., ridge
penalty [26], is applied, with a much weaker penalty strength
compared with the l used in the previous proxy selection
step. This weak ridge penalty is applied to reduce overfitting
on the training data.

As shown in Figure 4(a), this step is named relaxation and
generates the final APOLLO power model. During the power
proxy selection, to shrink most weights to zero, the penalty
term P dominates the loss, and the prediction error L is less
optimized. This relaxation can be viewed as a fine-tuning
stage to better optimize L. Since L2 is not a sparsity-inducing
penalty, the number of power proxies Q remains unchanged.

Section 8 further quantifies the benefits of both pruning with
MCP and relaxation in Figure 4(a).

4.5 Multi-Cycle Power Modeling

……
!!: Average Power over ! cycles

""[1] !
"……

!!: Average Power over ! cycles

""[1] ""[2] ……

Example: The power measurement window size is ! cycles.
Selected fixed window " cycles; Update interval # = 1 cycle.
$! is the label of each window; %"[1], …, %"[!"] are power predictions.

……

"
""[2] ""[]

!
"""[]

Figure 5: An example of multi-cycle power modeling.

In previous sections, we construct the APOLLO model
for per-cycle power tracing. In practice, designers may ex-
plore the trade-off between temporal granularity with model
efficiency or accuracy. Here we provide an accurate general-
ization of the per-cycle APOLLO model to any given timing
window size. This multi-cycle model estimates the average
power over a timing window with T cycles.

We firstly differentiate two concepts: the power measure-
ment window size T and the estimation update interval U .
The window size T controls how the ground-truth power
label is measured, and the update interval U decides how
frequently the model updates its power estimation. In the
example in Figure 5, the power label at each window is aver-
aged over T cycles, while the update interval U between the
two neighboring windows equals one cycle. For the per-cycle
power tracing in APOLLO, both window size T and interval
U equal one cycle. As for multi-cycle power modeling, it
can work for any window size T > 1 cycle with the update
interval U = 1 cycle.

The most straightforward multi-cycle solutionis to directly
use the average of T per-cycle power predictions pT over the
T -cycle window1. It keeps using a similar per-cycle model
for any given T . But considering multi-cycle scenarios allow
accessing the toggling activities over multiple cycles at each
estimation, several times more input information is available
compared with the per-cycle scenario. This solution does not
capture such additional available information.

Another solution in previous approaches [33] is to average
initial inputs before model construction starts. For example,
one may use the averaged toggling counts over T cycles
as raw inputs, which can be denoted as xT

1 , ...,xT
M . In this

solution, the model learns the pattern behind the correlation
between the T -cycle averaged toggling numbers xT and the
corresponding T -cycle averaged power label yT . However, it
means the pattern to learn is dependent on the given value of
T , which ranges from one to thousands or millions depending
on various application scenarios.

In our solution, for any given window size T , we propose
to select a fixed small timing window with t cycles. An ex-
ample is shown in Figure 5. For each t-cycle window i, we
1We use the superscript of a variable to denote the average of the
variable over a timing window with multiple cycles.

6

25

Efficient APOLLO-OPM Implementation

26

• Automated runtime OPM generation
• OPM configured from generic C++

templates based on trained model
• Integrated with commercial CPU
• HLS -> synthesis -> layout

• Low-cost OPM
• No multipliers
• Only one counter
• Small proxy number Q
• Weights quantized to 10-bit

Experiment Setup

• High-volume commercial million-gate CPU designs
• ARM Neoverse N1 microprocessor
• ARM Cortex-A77 microprocessor
• #RTL signals > half million

• 7nm technology
• Automatically generated random benchmarks for training
• 12 designer-handcrafted micro-benchmarks for testing

27

Power Prediction Demonstration

Neoverse N1

28

Per-cycle accuracy on each testing benchmark

Accuracy vs #Proxies

Neoverse N1

Cortex A-77

29

Achievements of APOLLO

• A highly automated framework for novel microprocessor designs
• Design-time power estimation
• Software simulation, 1 hour simulates 20 clock cycles
• APOLLO enables cycle-accurate million-cycle power estimation

in several minutes
• Run-time power monitoring
• APOLLO is the first to simultaneously achieve cycle-accuracy

with < 0.2% hardware overhead

30

Progress and Next Steps

Routability
Prediction

Pre-routing
Timing

Prediction

Xtalk
Prediction

Pre-placement
Net Length
Prediction

Power
Prediction

ML Based Synthesis
Parameter Tuning

Year 1 Year 2 Year 3

Now
31

Publications

• Z. Xie, Y.-H. Huang, G.-Q. Fang, H. Ren, S.-Y. Fang, Y. Chen and J. Hu, “RouteNet:
Routability Prediction for Mixed-Size Designs Using Convolutional Neural
Network,” IEEE/ACM International Conference on Computer-Aided Design, 2018.

• E. C. Barboza, N. Shukla, Y. Chen and J. Hu, “Machine Learning-Based Pre-routing
Timing Prediction with Reduced Pessimism,” ACM/IEEE Design Automation
Conference, 2019.

• R. Liang, H. Xiang, D. Pandey, L. Reddy, S. Ramji, G.-J. Nam and J. Hu, “DRC
Hotspot Prediction at Sub-10nm Process Nodes Using Customized Convolutional
Network,” ACM International Symposium on Physical Design, 2020.

• Z. Xie, R. Liang, X. Xu, J. Hu, Y. Duan and Y. Chen, “Net2: A Graph Neural Network
Method Customized for Pre-Layout Wirelength Estimation,” ACM/IEEE Asia and
South-Pacific Design Automation Conference, 2021.

32

Students on Task 2810.021,
2810.022

• Zhiyao Xie, Duke University, expected graduation: 2022
• Rongjian Liang, TAMU, expected graduation: 2021

• Internship: Zhiyao Xie, ARM, summer 2020
• Internship: Rongjian Liang, IBM, summer 2019, 2020
• Planned internship: Rongjian Liang, NXP, summer 2021

33

Interactions with SRC Companies

• Weekly meetings with IBM
• Meetings with ARM
• Biweekly meetings with NXP

34

35

