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ﬁ Task Overview

Center: Texas Analog Center of Excellence (TXACE)
Thrust: Computer-Aided Design and Test (CADT)
Subthrust: System, Logic and Physical Design (SLPD)

* Task leaders
e Jiang Hu, Texas A&M Univ, Task 2810.021
* Yiran Chen, Duke Univ, Task 2810.022

Start date: January 1, 2019

Industrial liaisons
* Gi-Joon Nam, IBM
* Xiaoqging Xu, ARM
* Divya Prasad, ARM
e Savithri Sundareswaran, NXP




ﬁ Anticipated Results

 Machine learning-based techniques for fast and high-fidelity
prediction of

e circuit routability

* timing
* net-length
* power

e crosstalk noise

* Routability/crosstalk predictions will be useful for analog and
mixed-signal designs

 Machine learning guided synthesis parameter tuning




ﬁ Planned Deliverables

 Machine learning-based early routability prediction for digital and
analog IC designs. (12/2019)

* Machine learning-based early timing prediction for digital IC designs.
(12/2019)

 Machine learning-based early crosstalk noise prediction for digital
and analog IC designs. (12/2020)

 Machine learning-based early power prediction for digital IC designs.
(12/2020)

* Machine learning-based pre-layout net-length prediction. (12/2021)
* Machine learning-based synthesis parameter tuning. (12/2021)




% Background and Motivation

 Decisions in early design steps have large impact
* Need fast and high-fidelity predictions
* Existing techniques

* Analytical: fast but inaccurate

* Trial design: accurate but very slow

* Machine learning
e Extracting design knowledge from data
 Emulating design experience




% Pre-layout Net-length Prediction

* Net-length: a deciding factor for
* Power
* Performance
* Digital timing
* Analog performance by parasitic
* Prediction before time-consuming layout
* Critical for estimating power-performance in synthesis
* Digital logic synthesis
* Analog schematic design




ﬁ Previous Approaches

* Mutual contraction (MC) [pAco3] ~ net-degree/neighboring-
net-degree

* |ntrinsic shortest path length (ISPL) [Iccabos] ~ shortest path
petween two nodes except the edge in between

* Polynomial model [TvLsI01, SLIPO9]
 ANN for total FPGA wirelength [FpT12]
* Machine learning for path-length with virtual P&R [DATE19]




Our Approach: Net?
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—

function Classification

Graph

uolIN|oAu0d ydeuo

J9Ae| pa1dauuod Ajn4

Graph convolution
= Feature aggregation




E Existing GNN Techniques

e Graph convolutional network (GCN) [Kipf and Welling, ICLR 2017]
* GraphSage [Hamilton, Ying and Leskovec, NIPS 2017]

* Graph attention network (GAT) [Velickovic, et al., ICLR 2018]
* Edge features for GNN [Gong and Cheng, CPVR 2019]




E Circuit Graph in Net?

 Each net == a node,
e Label == HPWL (Half Perimeter Wire-Length) of each net




ﬁ Node Features

e A node ==anet
e Driver area
e Fan-in size

* Fan-out size

 Sum of cell/device area

* Fan-in and fan-out of neighbor nodes

* Sum and standard deviation of neighboring fan-in/fan-out




ﬁ Local Information Insufficient

* Net n6 has one 2-pin fan-in, one 2-pin fan-out and one 3-pin fan-out
* |n one circuit, 725 nets have the same fan-in and fan-out as n6
 The 725 nets are bucketed into 4 groups according to actual net-length

* Previous methods fail to differentiate the 4 groups
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E Clustering and Edge Features

Multi-level clustering

Each net/cell has a cluster ID at each level

Two cells are closer if they have the same ID

High (coarse) level clusters => global information

Encode ID differences at multiple levels as edge features




Graph Attention Network (GAT)
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Customization to GAT

Node features
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Experiments

e 7 designs from ITC99
* For each design, synthesize 10 different netlists

e Testing on one design, model trained on the other 6 designs

B14 B15 B17 B18 B20 B21 B22

Smallest | 13K 53K 18K 54K 26K 26K 39K
Largest 34K 15K 49K 138K 67K 66K 99K




Net? Result for Net Size
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Net? Result for Path Length

Identifying 10% Longest Paths in ROC AUC (%)

Comparing Pair of Paths by Lengths (%)

Methods | B14 B15 B17 B18 B20 B21 B22 | Ave
ISPL 589 57.5 56,5 740 725 63.0 755 | 654
Poly 655 80.0 78.0 680 820 850 84.0 | 77.5
ANN 68.0 76.0 80.0 690 785 82.0 755 | 756
GCN 63.5 750 86.5 560 820 81.5 855 | 757
GSage 65.0 388.0 93.0 770 815 67.0 80.0 | 78.8
GAT 63.0 920 950 835 835 76.0 895 | 83.2
Net2f 79.0 88.5 97.5 84.0 755 83.0 92.0 |(35.6
Net?2 86.5 950 96.0 905 905 935 955 2.5

Methods | B14 B15 B17 B18 B20 B21 B22 | Ave
ISPL 67.1 55.0 582 774 689 597 695 | 65.1
Poly 839 86.6 3833 704 834 804 86.3 | 82.0
ANN 82.0 748 753 68.1 819 654 805|754
GCN 745 859 3830 624 834 3810 86.2 | 79.5
GSage 84.2 925 3839 753 891 628 88.1 | 82.3
GAT 824 935 851 80.6 897 875 88.2 | 86.7
Net?f 87.3 92.7 876 931 911 91.2 86.9 |/90.0
Net?2 96.8 97.0 914 959 922 942 944 \94.6
T
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ﬁ Net? Runtime

Net?f  Net?2 Net?f Net?2
Infer Infer | Speedup Speedup

Ave 916 7.0 0.05 0.07 1.7K X 14.3X

Design | Place | Partition




ﬁ Design-Time and Runtime Power Prediction

* Design-time power prediction: critical for design decisions

* Challenge: long simulation time, an hour simulation for dozens of clock
cycles

* FPGA-emulation: data for all signal toggles is too huge to be processed

* Runtime power prediction: power management

* Challenge: simultaneously achieve fine temporal resolution and low
area overhead

* Performance-counter-based: low overhead, but resolution of
thousands of cycles at the best, not sufficient for instruction throttling

e OPM (On-chip Power Meter) on RTL signals (proxies): better resolution,
but significant hardware overhead, at least 4%

* Many previous works, but the challenges have not been solved




Overview of Our Work

* Asingle framework named APOLLO

* Enables simulating millions of cycles in several minutes
* Runtime OPM with cycle-accuracy and <1% area overhead

Auto Data / Runtime OPM /
Testbench Generation on CPU Core
. Automatic f
Automatic APOLLO Training Rithve Integrate with]
Model Construction Testbench OPM RTL of CPU
- r Y ) Generation »—t—
RTL of Arbitrary RTL High Level
/ Novel CPU Core / Simulation Synthesis
v
[ Back-End ]_’r Power |_ | Traces of C++ Template _’[Configure OPM]
Annotation) |(Simulation All Signals of OPM Generate C++
v v | v
Power [ selectq | [Construct Final] | APOLLO [ Verify OPM ]
Labels | Proi(ies J "|APOLLO Model] | Model Correctness Th e autom ated
_[Emulate Workload Long Traces APOLLO I APOLLO framework
- "\ on Design RTL of Q Proxies Inference
Design-Time

Inference on

1 !}
Large-Scale Design-Time
Large Workload Workload Estimation




Centerpiece of Our Approach

Power prediction Q  Signaljtoggles or not

for cycle i p[i] — Wi * X; [l]

j=1 Trainable weight

* Select Q power proxies among all (M) RTL signals, % < 0.05%

* Linear model is common, but our proxy selection is novel
* Train weights as in machine learning

* Toggle x; is binary, implemented with "AND" gates instead of multipliers




ﬁ Machine Learning-Based Proxy Selection

M
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* Train a linear model with ALL RTL signals
e Loss function penalizes weights besides errors
* Weights approach O by iterations
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ﬁ Machine Learning-Based Proxy Selection

After iterations, many weights become 0

B

Remove all O-weight terms

w

Keep only Q non-zero-weight terms (proxies)

Retrain the model again from scratch

Penalty P(w)
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Efficient APOLLO-OPM Implementation
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ﬁ Experiment Setup

* High-volume commercial million-gate CPU designs
* ARM Neoverse N1 microprocessor
* ARM Cortex-A77 microprocessor
* #RTL signals > half million

e 7nm technology
e Automatically generated random benchmarks for training

e 12 designer-handcrafted micro-benchmarks for testing




Power Prediction Demonstration

Prediction from the APOLLO Model with Q=159

Power (scaled)
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Accuracy vs #Proxies
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E Achievements of APOLLO

* A highly automated framework for novel microprocessor designs

* Design-time power estimation
e Software simulation, 1 hour simulates 20 clock cycles
* APOLLO enables cycle-accurate million-cycle power estimation
in several minutes
* Run-time power monitoring

 APOLLO is the first to simultaneously achieve cycle-accuracy
with < 0.2% hardware overhead




Progress and Next Steps
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’ Students on Task 2810.021,
2810.022

Zhiyao Xie, Duke University, expected graduation: 2022
 Rongjian Liang, TAMU, expected graduation: 2021

Internship: Zhiyao Xie, ARM, summer 2020
Internship: Rongjian Liang, IBM, summer 2019, 2020
Planned internship: Rongjian Liang, NXP, summer 2021




ﬁ Interactions with SRC Companies

 Weekly meetings with IBM
* Meetings with ARM
* Biweekly meetings with NXP
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