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Chip Design Challenges

Diminishing performance gain and increasing design cost

Per-Core Performance Gain is Diminishing

107
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10°
10*
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1970

Transistors
(thousands)

Single-Thread
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(SpecINT x 10 )

Frequency (MHz)

1980 1990
Year

48 Years of Microprocessor Trend Data

2000 2010

2020

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

Advanced Design Cost (M)

IBS Design Cost is Skyrocketing
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My Related Works

PPA

Power

Performance

Area

Power & Power Delivery Challenges

[ICCAD’20], [ASPDAC’20],
[MICRO’21] (Best Paper Award)

Timing & Interconnect Challenges

[ICCAD’20], [ASPDAC’21],
[TCAD’21] (under review)

Routability Challenges
[ICCAD’18], [DATE’18], [ICCAD’21]

Overall Flow Tuning
[ASPDAC’20]

Covered in this talk



Case Study 1:

Routability Challenges
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My Roadmap Towards Intelligent Chip Design

Traditional
Chip Design

6

ML for Chip

Design

7

Nt

Well-studied in
recent years

Source: Image adapted from Cadence Cerebrus.

= — =
\"V

True intelligence
in chip design
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First Deep Learning Method for Routability Prediction

e Task 1: which one will result in less DRV count?

%

Layout 1

Layout 2

e Task 2: where are DRC violations?

—

Layout 1

Customized FCN methods

RouteNet [Xie, et al., ICCAD’18]

Duke
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First Deep Learning Method for Routability Prediction

Task 1: which one will result in less DRV count?

Task 2: where are DRC violations?

Input Tensor

* Requires global routing:
yg* Number of Layouts

In seconds, with close accuracy

* Requires detajled routing
My/{ours * [terations

In seconds, outperform previous works

RouteNet [Xie, et al., ICCAD’18] DUke

UNIVERSITY



Many Excellent Deep Learning Methods

Conv(9) Pool

f

Shortcut

Trans(5)

Conv‘s)
16 4

Trans(9)

16

Conv(7) Pool
Conv(9) Conv(7)

64 32 32

Z

UN

Feature extraction

Convl Max pooling Conv2 Max pooling

Design features

Conv(3) |
1

RouteNet [Xie, et al., ICCAD’18] DUke

IVERSITY

\
\
\
\
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X DowN (ki*k1)

J-Net model

DOWN (k7*k7) )L X UP (k7*k7)

J-Net [Liang, et al., ISPD’20]

Classification

\
\
\

Fully connected

neural network Stgmoid.

% M2short (094)
Not M2 short (0.06)",

\
\
\
et e B W RO A

e @D s— QT C ‘
CETEEED s— QETTTCHD

Decoder

Encoder

1
] ' ! )
W,H,12 W/2,H/2,64 W/4,H/4,256 W/8,H/8,2048 W/4,H/4,128 W/2,H/2,32
AlM ,
PROS [Chen, et al., ICCAD’20]
""""""""""""""""""""""""" skip connections T
i._:,4,512 22512 7 2,2512 12
l‘:s,w,smu's‘z e
32,32,256

64,64,128




My Roadmap Towards Intelligent Chip Design

Auto-ML for
Chip Design
\/
ML for Chip /
Design Higher-lev-el of
automation
A\t
Well-studied in

recent years

Traditional
Chip Design

10

= — >
\.g V

True intelligence
in chip design
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Automatic Estimator Development — Search Space

Guide-DAG

Candidate node operations

-

Standard convolution

Atrous/dilated

channels

Input Tensor
J\ /L Lt
3x3 (5x6 ) --- kxk
[
\/ y \l—/ \ \ \
Output Tensor

Mixed (depth-wise)

T
I
: convolution convolution
I
Sampling !
1
v
Sampled- Sampled- Sampled-
le.;t" Down- DAG S; Down- DAG S; N\.,| Down- DAG S Segmentation DRC hotspot
features samplin ling |] ? sampling || | /R i / Violated net )
e Sampled- e Sampled- e Sampled- e Fixed part
DAG S, DAG S, DAG S
Changeable part
Shortcut Shortcut Shortcut

11

[Chang, et al., ICCAD’21]
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DRC Hotspot Detection Results

12

* This model outperforms RouteNet [ICCAD’18], PROS [ICCAD’20], and cGAN [DAC’19]

* Developed without human in one day

ROC-AUC of DRC hotspot detection

1.0
0.891 0.902  0.911 0.884
0.820 080 0.844 0.866 0.847
0.8 -
O
2
5 0.6 1
@)
o
0.4 -
B RouteNet-18 BN cGAN
s PROS e NAS-crafted
0.2 -
s349 (270) mem_ctrl (9.3k) b17 (33.8k) DSP (73.1k) all 74 designs
designs(#nets)
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Case Study 2:

Power & Power Delivery Challenges
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My Roadmap Towards Intelligent Chip Design

Unified ML for Both
Design & Runtime

Auto-ML for
Chip Design = \_ /
\__/ Benefit the whole
ML for Chip chip life cycle
Design ngher—lev-el of
() automation
Well-studied in

recent years

Traditional
Chip Design

14

True intelligence
in chip design
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Challenge 1 — Design-time Power Introspection
256b SVE

8-wide
FETCH DATA
CORE 1 CORE 2

5-8-wide Decode/Rename

Issue

RERRARARRRNARY

Many-core CPU with Wider issue More vectored execution
more transistors

CORE 3 CORE 4

e Delivering generational performance gains adversely impacts CPU power
* Power-delivery resources not keeping pace with CPU power demands

* Increasing power-sensitivity drives the need for design-time introspection

15 APOLLO [Xie, et al., MICRO’21] (Best Paper Award)  Source: Arm Neoverse V1, 2021 :U[?VIEIRIS.Q



Challenge 2 — Run-time Power Introspection

Modelling power on one parch block __ Measured di/dt event on Arm A72 SoC
[. Diff kload ] Z 106 y Waitfor !

ah) ITferent workloads Q Fuents i Maximum Power Workload

> . o0 1.04 'I

o ® 2 1.02 - i

ER o & o

- ® . > 1

'5 .......... (5} >

2 o ® o S 098]

s L S 0.96

c ° e Limited accuracy ' o.94 4

= ©) ° o

o c 0927 <«— Sharp voltage-droop due

O Q 0.9 - to workload-driven di/dt
C
O o.s88

470 490 510 530 550 570 590

Estimated Power with Manual Proxies Time (ns)

* Peak-Power mitigation requires accurate power estimation to drive throttling
* Manually inferring proxies is very difficult in complex modern CPUs

* Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

16
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Power-Performance Trade-offs
Measured di/dt event on Arm A72 SoC

Generational gains in both IPC and FMAX 1.06

* Wide issues queues, vector-execution

Power consumption is adversely impacted

* Diminishing returns with scaling

* Increased transistor integration .3-0‘92 . Deep voltage-droop due to
= workload-driven di/dt event
o 0.9 7
Power-delivery resources not keeping pace S o8 . . . . . .
470 490 510 530 550 570 590

* Resistive-interconnects in scaled nodes Time (ns)

* Package-technology unable to sustain di/dt demands

Increasing power-sensitivity drives the need for power-introspection at design and runtime

Duke

UNIVERSITY



Challenges from Both Design-time and Runtime

A unified solution for both scenarios

Design-time Power Simulation Trade-offs
High accuracy & fast (Qualitative)

- 4

&0 speed

i o/ O

> Netlist Simulation

@) APOLLO O

g RTL-Simulation

(S )

I

| O
Arch Event-based

§ >
minutes hours days weeks

Speed

18

APOLLO: A Unified Power Modeling Framework

* Fast, yet accurate design-time simulation

* Low-cost, yet accurate runtime monitoring

* Design-agnostic automated development

Neoverse N1 CPU floorplan
APOLLO =

- }G) -
um e

Design-time Runtime
power on-chip
model power meter

Duke
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Prediction Accuracy as Design-Time Power Model

Power (scaled)
= N w =
o o o o

(=)

19

Per-cycle prediction from APOLLO with Q=159 proxies

Label

(\e \V%

6‘\‘* ((\'6

APOLLO's Prediction
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Timing window index (unit: 1 clock cycle)

PPPY Y
N
o)
Q

Best price performance for compute-
intensive workloads

dWSs

\-/‘7

Neoverse N1 (infra)
Deployed in AWS Graviton

14000

* MAE=7.19%
 R2=0.953

Cortex A77 (mobile)
Deployed In Snapdragon 865
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Summary and Takeaway

* Problem: Increasing Challenges in Chip Design

* Cost, time-to-market, reliance on designers, diminishing performance return, ......
* MLin chip design

* Less simulation time, faster feedback, less designer effort

* AutoML in chip design

e Reduces months of model development to hours, no developers

* Unified ML in both design & runtime

* Benefit the entire chip life cycle

=22 L OO E @
{=) — =

@@@ ‘&& Vision @ &

. Chip design & implementation Truly Intelligent Solutions Duke

UNIVERSITY




Thanks! Questions?

If you have further questions, please contact me:
zhiyao.xie@duke.edu

Duke



