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Chip Design Challenges
Diminishing performance gain and increasing design cost 
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Per-Core Performance Gain is Diminishing

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data Design Cost is Skyrocketing

International Business Strategies, 2020

(Not including manufacturing)



My Related Works
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PPA

Power

Performance

Area

Power & Power Delivery Challenges

[ICCAD’20], [ASPDAC’20],

[MICRO’21] (Best Paper Award)

Routability Challenges

[ICCAD’18], [DATE’18], [ICCAD’21]

Timing & Interconnect Challenges

[ICCAD’20], [ASPDAC’21],

[TCAD’21] (under review)

Overall Flow Tuning

[ASPDAC’20] Covered in this talk
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Case Study 1: 

Routability Challenges



My Roadmap Towards Intelligent Chip Design
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ML for Chip 
Design

Traditional 
Chip Design

Well-studied in
recent years

True intelligence
in chip design

Source: Image adapted from Cadence Cerebrus.



First Deep Learning Method for Routability Prediction
• Task 1: which one will result in less DRV count?

• Task 2: where are DRC violations?
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cat / dog

cat

Customized CNN methods

Customized FCN methods

Layout 1 Layout 2

Layout 1 Layout 1

RouteNet [Xie, et al., ICCAD’18] 



First Deep Learning Method for Routability Prediction
• Task 1: which one will result in less DRV count?

• Task 2: where are DRC violations?

8 RouteNet [Xie, et al., ICCAD’18] 

• Requires global routing:
Hours * Number of Layouts

• Requires detailed routing
More hours * Iterations

In seconds, with close accuracy

In seconds, outperform previous works



Many Excellent Deep Learning Methods
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RouteNet [Xie, et al., ICCAD’18] J-Net [Liang, et al., ISPD’20] PROS [Chen, et al., ICCAD’20] 
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[Yu, et al., DAC’19] Painting [Yu, et al., DAC’19] Tremendous Engineering Efforts Required!



My Roadmap Towards Intelligent Chip Design
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ML for Chip 
Design

Auto-ML for 
Chip Design

Traditional 
Chip Design

Well-studied in
recent years

Higher-level of 
automation

True intelligence
in chip design



Automatic Estimator Development – Search Space
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Standard convolution
Mixed (depth-wise)

convolution

Candidate node operations

Atrous/dilated 
convolution

Input 
features

Down-
sampling

Down-
sampling

Shortcut

Down-
sampling

Segmentation
/ Regression

DRC hotspot
/ Violated net

Shortcut Shortcut

Sampled-
DAG !!

Sampled-
DAG !"

Sampled-
DAG !#

Sampled-
DAG !$

Sampled-
DAG !%

Sampled-
DAG !&

[Chang, et al., ICCAD’21] 

Sampling



DRC Hotspot Detection Results
• This model outperforms RouteNet [ICCAD’18], PROS [ICCAD’20], and cGAN [DAC’19]

• Developed without human in one day
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ROC-AUC of DRC hotspot detection
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Case Study 2: 

Power & Power Delivery Challenges



My Roadmap Towards Intelligent Chip Design
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ML for Chip 
Design

Auto-ML for 
Chip Design

Unified ML for Both
Design & Runtime

Traditional 
Chip Design

Well-studied in
recent years

Higher-level of 
automation

Benefit the whole
chip life cycle

True intelligence
in chip design



Challenge 1 – Design-time Power Introspection 
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• Delivering generational performance gains adversely impacts CPU power

• Power-delivery resources not keeping pace with CPU power demands

• Increasing power-sensitivity drives the need for design-time introspection

Many-core CPU with
more transistors

Wider issue

8-wide

5-8-wide

15-wide

Fetch

Decode/Rename

Issue

Source: Arm Neoverse V1, 2021

More vectored execution

256b

256b
256b+ =

256b SVE

256b

256b
256b+ =

APOLLO [Xie, et al., MICRO’21] (Best Paper Award)



Challenge 2 – Run-time Power Introspection
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Measured di/dt event on Arm A72 SoC

• Peak-Power mitigation requires accurate power estimation to drive throttling
• Manually inferring proxies is very difficult in complex modern CPUs

• Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

Estimated Power with Manual Proxies
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Modelling power on one µarch block 
Different workloads

Limited accuracy



Power-Performance Trade-offs
Generational gains in both IPC and FMAX

• Wide issues queues, vector-execution

Power consumption is adversely impacted
• Diminishing returns with scaling
• Increased transistor integration

Power-delivery resources not keeping pace
• Resistive-interconnects in scaled nodes
• Package-technology unable to sustain di/dt demands

Increasing power-sensitivity drives the need for power-introspection at design and runtime
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Challenges from Both Design-time and Runtime
A unified solution for both scenarios
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• Fast, yet accurate design-time simulation

• Low-cost, yet accurate runtime monitoring

• Design-agnostic automated development

APOLLO: A Unified Power Modeling FrameworkDesign-time Power Simulation Trade-offs 
(Qualitative)
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High accuracy & fast 
speed

Arch Event-based



Prediction Accuracy as Design-Time Power Model
Per-cycle prediction from APOLLO with 𝑸=159 proxies
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• MAE = 7.19%
• R2 = 0.953
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Neoverse N1 (infra)
Deployed in AWS Graviton

Cortex A77 (mobile)
Deployed In Snapdragon 865



Summary and Takeaway
• Problem: Increasing Challenges in Chip Design

• Cost, time-to-market, reliance on designers, diminishing performance return, ……

• ML in chip design 
• Less simulation time, faster feedback, less designer effort

• AutoML in chip design
• Reduces months of model development to hours, no developers

• Unified ML in both design & runtime
• Benefit the entire chip life cycle
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Vision

Truly Intelligent SolutionsChip design & implementation



Thanks! Questions?

If you have further questions, please contact me:
zhiyao.xie@duke.edu
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