
DEEP: Developing Extremely Efficient
Runtime On-Chip Power Meters
Zhiyao Xie1, Shiyu Li2, Mingyuan Ma2, Chen-Chia Chang2,

Jingyu Pan2, Yiran Chen2, Jiang Hu3

1Hong Kong University of Science and Technology,
2Duke University, 3Texas A&M University

IEEE/ACM ICCAD 2022

1

Background: Difficulty in Runtime Power Modeling

2

O
n-

Ch
ip

 S
up

pl
y

Vo
lta

ge
 (V

)

Time (ns)

Measured di/dt event on Arm A72 SoC

• Peak-Power mitigation requires accurate power estimation to drive throttling
• Manually inferring proxies is very difficult in complex modern CPUs

• Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

Estimated Power with Manual Proxies

G
ro

un
d

Tr
ut

h
Po

w
er

Modelling power on one µarch block
Different workloads

Limited accuracy

Background: A Recent Prior Work Named APOLLO*

3

Runtime Challenges Summary

• Peak power mitigation
• Difficult to manually infer proxies

• Voltage droop (Ldi/dt) mitigation
• Require very low response latency

• On-chip power modeling
• High overhead to implement on HW
• Limited temporal-resolution

• Automated development of on-chip power model
(OPM) as part of hardware

• Selects power-related signals (proxies) as OPM input

• Single-cycle temporal resolution in the OPM

*Zhiyao Xie, et al., APOLLO [MICRO’21] (Best Paper)

Background: Comparison with Prior Works

• Achieve much higher efficiency with similar accuracy:
• Support a larger number of candidates
• Adopt a new two-step signal selection method

• Support component-level on-chip power model
• Keeps per-cycle resolution + fully-automated model development

4

Overview of representative works in proxy-based on-chip power estimation

Method: The DEEP OPM development framework

5

RTL of Arbitrary
Circuit Design

RTL
Simulation

Synthesis

Power
Simulation

Select 𝑸
Proxies

Design Layout
with OPM

Toggles of
All 𝑴 Bits 𝑿

Power
Labels 𝒚

OPM
RTL

Integrate with
Design RTLLayout

Traces of
All Signals

Training
Testbench

Synthesis
& Layout

Implement
OPM

Power
Model

DEEP

Part 1: Generate dataset with togging/waveform of all signals and simulated power labels
Part 2: Develop on-chip power model (OPM) by selecting minimum (Q) signals as input
Part 3: Implement the OPM as part of circuit design

Method: The Basic Power Model

6

cycle1

cycle2

A design in RTL level.

𝐹 =

𝑀 RTL signals

…
…

……

𝑋

Train the ML model: 𝐹 𝑋 = 𝑦

𝑦

…
…

P0

P1

P2

P0

P1

P2

Power

A

B

C

D

E
cycle0 cycle1 cycle2

In .fsdb/.vcd file format
Input number 𝑴 is large. Only part of them will be
selected as input (proxy) for hardware implementation

cycle0
A B C D E

Method: Model Input/Proxy Candidates

7

Signal-level selection
Previous method (MICRO’21)

Bit-level selection
This work (DEEP)

Method: Two-Step Signal Selection Method
Step 1:

• Top-down pruning to narrow down the scope of M variables (𝑉!) to an
intermediate input list with I variables (𝑉")

8

Step1: Pruning
Training with

strong penalty
strength

……

𝑴 Features

𝑥!

𝑥"

𝑤′"

𝑤′!𝑥#

𝜮𝑃 = ∑#$%𝑴 𝑥# ∗ 𝑤′# ……
Reach I non-zero weights
and corresponding features

𝑤′! ≠ 0

𝑤′"$! ≠ 0

𝜮

𝑤′" = 0
Minimax concave penalty (MCP) for pruning

Method: Two-Step Signal Selection Method
Step 2:

• Bottom-up selection of a near-optimal subset of from 𝑉", as the
finalized power model input (proxy) list 𝑉'

9

…… I feature candidates, an empty selected list

• Sweep all candidates, find the
one adds most accuracy

• Add it to selected list

1. Adding:

• Remove each element from selected list
• Repeat Step 1 to add one element

• Stop the process until no changes in the list

2. ‘Refresh’:

[…]

…… […]

+1 proxy

…… […]

+1 proxy -1 proxy

Loop

Method: Development of Component-Level Models
• Sub-OPMs for five selected major submodules in the microprocessor,

• L1 cache with table lookaside buffer (TLB)
• L2 cache with the logic maintaining memory coherence,
• Data processing unit (DPU) of core
• Instruction fetch unit (IFU) of core
• All other logic in the CPU core except DPU and IFU

• They also calculate the power of:
• CPU core
• CPU core + L1
• CPU core + L1 + L2 (total power)

• For sub-OPM for the L1 cache, candidates not limited to the L1 cache itself

10

Result: Experiment Setup and Basic Statistics

11

Left: Distribution of all 578 K
RTL bits as candidates.

Right: Distribution of power.

Statistics of the micro-processor
used in experiment.

Result: Power Model Development Method Comparison

12

OPM hardware cost vs. per-cycle power prediction accuracy.

Result: Method Comparison (Zoom in X axis)

13

OPM hardware cost vs. per-cycle power prediction accuracy.

Result: Decomposition of DEEP method

14

OPM hardware cost vs. per-cycle power prediction accuracy.

Analysis of Selected Signals

15

Variance inflation factor (VIF)

Fit each proxy with all other proxies:
VIF = %

%&'!

Average VIF measures the collinearity
among selected proxies.

Result: Component-level OPM Accuracy

16

(a) Sub-OPMs with

total overhead 0.04%

(b) Sub-OPMs with

total overhead 0.08%

17

Area overhead 0.04% on this layout.

The MAE = 9.5% and 𝑅 = 0.954.

This DEEP method

Area overhead 0.16% on this layout.

The MAE = 9.5% and 𝑅 = 0.951

Baseline from B1 [MICRO’21]

Pink regions are OPM on the layout

Discussion: Histogram of Proxy Bit Position

18

MSBLSB MSBLSB

In OPM with overhead 0.04% and 𝑅 = 0.954. In OPM with overhead 0.08% and 𝑅 = 0.968.

Discussion: Analysis of Proxies and Weights

19

Post-quantization weight bits distribution
• DEEP-OPM 1 with overhead 0.04%
• DEEP-OPM 2 with overhead 0.08%

Analysis of 244 selected proxies
• L: Width of their original signals
• R: Where they are selected

Conclusion
• We present a new method for automated OPM development

• It achieves 4 – 6X lower hardware cost over the best baseline, with
accuracy R > 0.97 with area overhead < 0.1%

• It proposes bit-level and two-stage proxy selection method

• Besides monitoring total power, it reports power of major
components without extra cost

20

Acknowledgement
• Shidhartha Das (Arm Research)

• Xiaoqing Xu (now at Google X)

• NSF-2106828, NSF-2106725

• SRC GRC-CADT 3103.001/3104.001

• Contact us: eezhiyao@ust.hk, chenchia.chang@duke.edu

• Thanks! Questions?

21

mailto:eezhiyao@ust.hk
mailto:chenchia.chang@duke.edu

Backup Slides

22

Why MCP for Pruning?

• To make 𝑸 ≪ 𝑴, penalty is set to be very large.

• Lasso degrades model accuracy under large penalty

• MCP protects large weights thus maintains model accuracy

The hyper-parameter g in MCP sets a threshold (gl) be-
tween large and small weights. Figure 4(b) visualizes PLasso
and PMCP with l = 1 and g = 3. The absolute derivative of a
penalty term indicates the weight shrinking rate during train-
ing [44]. Since |∂PLasso/∂w0

j|= l , all weights shrink at the
same rate l in Lasso. In comparison, the absolute derivative
of MCP penalty is shown in Equation (7). Compared with the
uniform shrinking rate for PLasso, large weights with values
> gl in MCP do not shrink at all, since derivatives of their
penalty terms are zero. For weights with values < gl , smaller
weights shrink faster. As such, MCP leaves large weights
unpenalized and thereby benefits the prediction accuracy of
the generated power model. In our experiment, this MCP-
based model is efficiently optimized by adopting both the
coordinate descent method [59] and the proximity operator
of MCP [58]. The penalty strength l in PMCP can be adjusted
to control the number of power proxies Q.

|
∂PMCP(w0

j,g > 1)
∂w0

j
|=

(
l � |w0

j |
g if |w0

j| gl
0 if |w0

j|> gl
(7)

(a)

𝛾𝜆−𝛾𝜆

(b)

Figure 4: (a) APOLLO model construction process, (b)
Penalty terms of MCP and Lasso.

4.4 Final Model Construction
After power proxy selection by pruning with MCP, we

have trained a temporary model p0 = ÂM
j=1 w0

j · x j with Q
selected proxies SQ and corresponding non-zero weight terms
w0

j. This temporary model can already provide rather accurate
predictions. However, even though the MCP protects larger
weights, many remaining weights are still penalized by the
large penalty strength l to a certain extent. In order to further
boost the model accuracy, we train a new linear model p =

ÂQ
j=1 w j ·x j from scratch with only selected power proxies SQ.

In this new linear model, the ordinary L2 penalty, i.e., ridge
penalty [26], is applied, with a much weaker penalty strength
compared with the l used in the previous proxy selection
step. This weak ridge penalty is applied to reduce overfitting
on the training data.

As shown in Figure 4(a), this step is named relaxation and
generates the final APOLLO power model. During the power
proxy selection, to shrink most weights to zero, the penalty
term P dominates the loss, and the prediction error L is less
optimized. This relaxation can be viewed as a fine-tuning
stage to better optimize L. Since L2 is not a sparsity-inducing
penalty, the number of power proxies Q remains unchanged.

Section 8 further quantifies the benefits of both pruning with
MCP and relaxation in Figure 4(a).

4.5 Multi-Cycle Power Modeling

……
!!: Average Power over ! cycles

""[1] !
"……

!!: Average Power over ! cycles

""[1] ""[2] ……

Example: The power measurement window size is ! cycles.
Selected fixed window " cycles; Update interval # = 1 cycle.
$! is the label of each window; %"[1], …, %"[!"] are power predictions.

……

"
""[2] ""[]

!
"""[]

Figure 5: An example of multi-cycle power modeling.

In previous sections, we construct the APOLLO model
for per-cycle power tracing. In practice, designers may ex-
plore the trade-off between temporal granularity with model
efficiency or accuracy. Here we provide an accurate general-
ization of the per-cycle APOLLO model to any given timing
window size. This multi-cycle model estimates the average
power over a timing window with T cycles.

We firstly differentiate two concepts: the power measure-
ment window size T and the estimation update interval U .
The window size T controls how the ground-truth power
label is measured, and the update interval U decides how
frequently the model updates its power estimation. In the
example in Figure 5, the power label at each window is aver-
aged over T cycles, while the update interval U between the
two neighboring windows equals one cycle. For the per-cycle
power tracing in APOLLO, both window size T and interval
U equal one cycle. As for multi-cycle power modeling, it
can work for any window size T > 1 cycle with the update
interval U = 1 cycle.

The most straightforward multi-cycle solutionis to directly
use the average of T per-cycle power predictions pT over the
T -cycle window1. It keeps using a similar per-cycle model
for any given T . But considering multi-cycle scenarios allow
accessing the toggling activities over multiple cycles at each
estimation, several times more input information is available
compared with the per-cycle scenario. This solution does not
capture such additional available information.

Another solution in previous approaches [33] is to average
initial inputs before model construction starts. For example,
one may use the averaged toggling counts over T cycles
as raw inputs, which can be denoted as xT

1 , ...,xT
M . In this

solution, the model learns the pattern behind the correlation
between the T -cycle averaged toggling numbers xT and the
corresponding T -cycle averaged power label yT . However, it
means the pattern to learn is dependent on the given value of
T , which ranges from one to thousands or millions depending
on various application scenarios.

In our solution, for any given window size T , we propose
to select a fixed small timing window with t cycles. An ex-
ample is shown in Figure 5. For each t-cycle window i, we
1We use the superscript of a variable to denote the average of the
variable over a timing window with multiple cycles.

6

MCP protects large weights

Lasso penalize all weights

23

Overview of the OPM Hardware Design

• No multipliers or dividers, only Q binary inputs and W-bit quantized weights

24

