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Background: Difficulty in Runtime Power Modeling

Modelling power on one parch block
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* Peak-Power mitigation requires accurate power estimation to drive throttling
* Manually inferring proxies is very difficult in complex modern CPUs

* Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop
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Background: A Recent Prior Work Named APOLLO*

Neoverse N1 CPU floorplan

Runtime Challenges Summary = =—— APOLLO
* Peak power mitigation T ’ o
o Diffi - - L Swe
Difficult to manually infer proxies T = D | oo e
* Voltage droop (Ldi/dt) mitigation @ | L — = ot powenmits

* Require very low response latency * Automated development of on-chip power model
* On-chip power modeling (OPM) as part of hardware
* High overhead to implement on HW | ¢ Selects power-related signals (proxies) as OPM input

* Limited temporal-resolution * Single-cycle temporal resolution in the OPM

*Zhiyao Xie, et al., APOLLO [MICRO’21] (Best Paper)
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Background: Comparison with Prior Works

, Model Input Candidate Vj, Input Selection Power Estimation | Temporal | Claimed OPM

Baseline Methods : _
(Candidate Count M) Method Level Resolution | Area Overhead

B1. MICRO’21 [38] All RTL signals (178 K) MCP Design-level Per-cycle < 1%
B2. MICRO’19 [20] All RTL signals (178 K) K-means Design-level 100s cycles N/A
B3. DATE’ 18 [25] Registers (67 K) Lasso Design-level > 1K cycles 7%
B4. DATE’18 [41] Module I/O signals (< 178K) Increase by level | Component-level | 100s cycles 4-10%
B5. ASPDAC’15 [39] Registers (67 K) No Selection Design-level Per-cycle 16%
DEEP (this work) All bits of RTL signals (578 K) | Two-step Selection | Component-level | Per-cycle <0.1%

Overview of representative works in proxy-based on-chip power estimation

* Achieve much higher efficiency with similar accuracy:
e Support a larger number of candidates
* Adopt a new two-step signal selection method

e Support component-level on-chip power model

* Keeps per-cycle resolution + fully-automated model development
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Method: The DEEP OPM development framework
RTL of Arbitrary ‘ l Training / Design Layout /
/ Circuit Design Slmulatlon Testbench with OPM
|

Synthesis Traces of Synthesis
Y I All Signals & Layout

! ! DEEP T
Lavout Power Toggles of Integrate with
Y Simulation] | All M Bits X Design RTL
Power Select Q Power Implement OPM
Labels y Proxies Model OPM RTL

Part 1: Generate dataset with togging/waveform of all signals and simulated power labels
Part 2: Develop on-chip power model (OPM) by selecting minimum (Q) signals as input
Part 3: Implement the OPM as part of circuit design
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Method: The Basic Power Model

A BCDE Power
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In fsdb/.vcd file format Train the ML model: F(X) =y

Input number M is large. Only part of them will be & mEnmxs
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Method: Model Input/Proxy Candidates
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Signal-level selection
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and corresponding features

Method: Two-Step Signal Selection Method
« Top-down pruning to narrow down the scope of M variables (V) to an
Reach I non-zero weights
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Step 1:

intermediate input list with /I variables (V)
U0

\‘o
S
Stepl: Pruning

Training with
strong penalty

strength

M Features

P = Zlivi1 X; *W';
N

w M — O

Minimax concave penalty (MCP) for pruning



Method: Two-Step Signal Selection Method

Step 2:

* Bottom-up selection of a near-optimal subset of from V;, as the
finalized power model input (proxy) list V;,

O O ,,,,,, O O [ ... ] | feature candidates, an empty selected list
— 1. Adding:
O O ...... O O [ . ] * Sweep all candidates, find the
> one adds most accuracy
\/ J I i
ooy Loop Add it to selected list
2. ‘Refresh’:
O O O O [ ] « Remove each element from selected list
""" >  Repeat Step 1 to add one element
v u _* Stop the process until no changes in the list
+1 proxy -1 proxy O G KOG
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Method: Development of Component-Level Models

« Sub-OPMs for five selected major submodules in the microprocessor,
« L1 cache with table lookaside buffer (TLB)

L2 cache with the logic maintaining memory coherence,

Data processing unit (DPU) of core

Instruction fetch unit (IFU) of core

All other logic in the CPU core except DPU and IFU

* They also calculate the power of:
« CPU core
« CPU core + L1
« CPU core + L1 + L2 (total power)

 For sub-OPM for the L1 cache, candidates not limited to the L1 cache itself
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Statistics of the micro-processor

used in experiment.

Result: Experiment Setup and Basic Statistics
66

#RTL Signal | #Register | #RTL Bit | #Standard Cell | #Macro
155K 67 K 578 K 603 K
CPU.other
CPU.other = ILE
CPU.IFU Left: Distribution of all 578 K
RTL bits as candidates.
Right: Distribution of power.
CPU.DPU
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L1 TLB

L2.noRAM
CPU.IFU

L2.RAM

CPU.DP
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MAE (%)

Result: Power Model Development Method Comparison
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OPM hardware cost vs. per-cycle power prediction accuracy.
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MAE (%)

Result: Method Comparison (Zoom in X axis)
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MAE (%)

Result: Decomposition of DEEP method
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OPM hardware cost vs. per-cycle power prediction accuracy.
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Analysis of Selected Signals

B1. (MCP on Signals)

S | —* MCPon Bits | Variance inflation factor (VIF)
o —&— DEEP (Two-step on Bits)
L

5_
C . . .
= Fit each proxy with all other proxies:
© 1
"_E 4 VIF = _r?
8 /
-
2 37 o Average VIF measures the collinearity
© —0= .
> - among selected proxies.

2 . . . .

100 150 200 250

Num of selected OPM inputs
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Result: Component-level OPM Accuracy
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Pink regions are OPM on the layout

Area overhead 0.16% on this layout.
The MAE =9.5% and R =0.951
Baseline from B1 [MICRO’21]

ctaram:Tolow aram: A high Lararary S oW aram::5:high
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Area overhead 0.04% on this layout.
The MAE =9.5% and R = 0.954.

SRAMHDE PG SRAMHDE PG SRAMHDE PG

This DEEP method
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Discussion: Histogram of Proxy Bit Position
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In OPM with overhead 0.04% and R = 0.954. In OPM with overhead 0.08% and R = 0.968.
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Discussion: Analysis of Proxies and Weights

L1 _TLB

width>32 L2.noRAM

CcPUother— Analysis of 244 selected proxies

* L: Width of their original signals
* R:Where they are selected

width>4

width> width<=32  CPU.DPU

width<=4 CPU.IFU

Whits |1 | 2 | 3 | 4|5 |6
DEEP-OPM 1 Post-quantization weight bits distribution
Count | 1| 2 | 43 |35 |15 | 4 ,
.  DEEP-OPM 1 with overhead 0.04%
DEEP-OPM 2 | WPits |12 | 3 | 4|5 |6 » DEEP-OPM 2 with overhead 0.08%
Count [ 6 | 77 | 120 | 28 | 8 | 5
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Conclusion

* We present a new method for automated OPM development

* |t achieves 4 — 6X lower hardware cost over the best baseline, with
accuracy R > 0.97 with area overhead < 0.1%

* |t proposes bit-level and two-stage proxy selection method

* Besides monitoring total power, it reports power of major
components without extra cost
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Why MCP for Pruning?

* To make Q <K M, penalty is set to be very large.
* Lasso degrades model accuracy under large penalty

* MCP protects large weights thus maintains model accuracy

i

Lasso penalize all weights

w

_~ MCP protects large weights

Penalty P(w)
N

=

o

—4 ) 0 2 4
Weight Value (w)
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Overview of the OPM Hardware Design

D

1-bit toggle detector with one XOR and FF
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FF out
D QA

rst

T-cycle counter

Output:
out [log(T): MSB]

Flip-flop

Neoverse N1 CPU floorplan

* No multipliers or dividers, only Q binary inputs and W-bit quantized weights
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