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Electronic Devices are Everywhere

2 Duke
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Designers Try to Deliver Generational Gains

iPhone 13

iPhone 8, X iPhone XS, XR iPhone 11

Looks good!

?
Apple A1l Apple A12 Any challenges: Apple Al4 Apple A15
10nm 7nm 5nm 5nm
4.3 B trasistors 6.9 B trasistors 11.8 B trasistors 15 B trasistors

Increased integration and architecture improvements

Duke

*Source: Techlnsights Inc. UNIVERSITY



Chip Design Challenges

Diminishing performance gain and increasing design cost

Per-Core Performance Gain is Diminishing
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48 Years of Microprocessor Trend Data

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

Advanced Design Cost (M)

IBS Design Cost is Skyrocketing
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Chip Design Challenges

Not only costly, also long turn-around time

Nvidia Tesla V100

Graphics Card

It took several thousand engineers several years
to create, at an approximate development cost of
S3 billion. —Jensen Huang, CEO of Nvidia

Nvidia GPU Technology Conference (GTC), 2017

Duke
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This is Real Problem!

Challenges at advanced node Inefficient chip desigh methodologies

* Pressure from IPC and frequency

For one Arm CPU core
with ~3 million gates

* Peak power keeps increasine

 Power delivery technique is

Intelligent design &

* Increasing design rules to mi thodo‘ogies 2 power simulation takes ~2 weeks

o o . o .. me
:/:/‘icrreegzllgs ;Nr:(rzlenF:)aingItICS’ - & SO\Ut’lOﬂS‘. ation in physical design take ~1 week

 repeatedly constructed from scratch

é __.wwuns rely on designer intuition
»® .

6 Duke
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https://qithub.com/ageitgey/face recognition https://towardsdatascience.com/using-tensorflow-object- http://matclinic.com/2017/05/18/the-team-
detection-to-do-pixel-wise-classification-702bf2605182 behind-the-future-of-ai-in-healthcare
Self-driving Cars Autopilot Drone Robots Smart Home Health Monitor Personal Assistant
P
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Manufacturing Smart Grid Financial Service
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Security
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https://github.com/ageitgey/face_recognition
http://matclinic.com/2017/05/18/the-team-behind-the-future-of-ai-in-healthcare/
https://towardsdatascience.com/using-tensorflow-object-detection-to-do-pixel-wise-classification-702bf2605182

Why ML/Intelligence Helps Circuit Design? An Example

Solvers (trial 1)

Verilog

Solvers (trial N)

‘ Various metrics (bad) '\

Simulators

g

>‘ N iterations

‘ Various metrics (good) _/

Simulators

* Producing solutions repeatdly from scratch

*Source: Kahng et al., VLSI physical design
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Why ML/Intelligence Helps Circuit Design? An Example

Various metrics (bad
/ 2

| Verilog  Fast & high-fidelity ML prediction > N iterations

(trial N)

Various metrics (good) _/

* Producing solutions repeatdly from scratch
* Why not learn from prior solutions?
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Simple Plug-in and Use of ML Engines?

Images Circuits (Arm Neoverse N1 CPU core)
e 100s * 100s pixels * Millions of connected components
 No extra information  100s GB of raw information

* Any human can tell the label Need simulations to get the label

* Datais everywhere * Datais hard to get

Innovative Customized Solutions are Desired!



Many Excellent Exploration in Academia and Industry

Increasing research efforts on ML mi?,(;ﬂlteiz 2]; ML for EDA in
for chip design automation | | ... commercial tools
endmodule
— Synthesis
~~~ =
< : cadence
TEXAS ucsD
Cadence Innovus™
UT Austin UCSD — Layout
=2 | ®
- - SYNOPSYS
oy U. S e — Verification Synopsys ICCT™M || ML for Chip Design
TAMU Duke Cornell L
Google SAnvIDIA.  ceorgie Fabrication
Tech
Google Nvidia GaTech

Electronics Research Initiative (ERI) — Design
Goal: 24 hours turnaround time & no human Traditional

" Chip Design Duke

UNIVERSITY




My Related Works

Power & Power Delivery Challenges

Power [ICCAD’20], [ASPDAC’20],
[MICRO’21] (Best Paper Award)

Timing & Interconnect Challenges

PPA  Performance [ICCAD’20], [ASPDAC’21], [TCAD’21]

Routability Challenges

Area [ICCAD’18], [DATE’18], [ICCAD’21)

Overall Design Flow Tuning
[ASPDAC’20]

5 Covered in this talk



Outline of The Dissertation

e Case Study 1: Routability Challenges (~*10 min)

e Case Study 2: Timing & Interconnect Challenges (~10 min)

e Case Study 3: Power & Power Delivery Challenges (~¥30 min)

13
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Case Study 1:

Routability Challenges
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Routability Background

e Design Rule Checking (DRC)
» Manufacturing requirements

» Less DRC violations (DRV) -> better routability

* Need DRV mitigation at early stages

» Requires routability prediction/estimation

e Existing solutions DRC violations (white) on circuit layout
» Fast Trial Global Routing (TR) for fast estimation

» Global Routing (GR) for accurate estimation

. Duke

UNIVERSITY



Previous ML-based Routability Estimators

* Previous routability (DRV) estimations
» ML model on small cropped regions

» Limited receptive field and missing global information

Predict DRV at cropped region -> Y/N?

. Example: a layout only with cells Duke

UNIVERSITY



Previous ML-based Routability Estimators

* Previous routability (DRV) estimations
» ML model on small cropped regions
» Limited receptive field and missing global information

» When macros present, less resemblance among different regions of layout

0.32 #¥DRV Correlation, no Macro z.fDRV Correlation, with Macro
2 2

_ R2=055 | _,, R% = 0.04

20.31 2
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First Deep Learning Method for Routability Prediction

e Task 1: which one will result in less DRV count?

—a)

Layout 1

Layout 2

e Task 2: where are DRC violations?

18

—

Layout 1

RouteNet [Z. Xie, et al., ICCAD’18]

Layout 1

Customized FCN methods

Duke

UNIVERSITY



Features for Rouability Prediction

* Macro:

’ .

e Region occupied by macros A net"/

e Density of macro pins in each layer

Cell:

* Density of cells

e Density of cell pins h’

RUDY features (wire density)
* RUDY distributions
h wi+ht

° i w+h
RUDYplns RUDY = . RUDY=W+ +

w-h w-h wr-hr

>

* Congestion report:
 Trial global routing (TR) congestion
* Global routing (GR) congestion

. Duke

UNIVERSITY



First Deep Learning Method for Routability Prediction

e Task 1: which one will result in less DRV count?

* Requires global routing:
M* Number of Layouts

In seconds, with similar accuracy

* Requires detajled routing
My/{ours * [terations

In seconds, outperform previous works

Duke

UNIVERSITY
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Experimental Results on Routability

Task 1: Task 2:
g e SVM !
< 20! o 08 B ISPD'17 Wm Ours
g v
:ﬂ: < TR 8
o 15 = GR &U 0.6
e ® + RouteNet e
g7 * RouteNet_w_train E
= 1078 i
S S 0.4
5 g
S ) =
LILJ L3 8] 0.2
<4 < julls|
0 10° 101 102 103
Inference time (sec / placement) D1 D2 D3 D4 D5 Ave

21

Design name

* Fast and accurate routability prediction at the same time

e Superior accuracy over previous work

Baseline:
Chan et al. Routability Optimization for Industrial Designs at Sub-14nm Process Nodes Using Machine Learning. In ISPD’17.

Duke

UNIVERSITY



Many Excellent Deep Learning Methods

Conv(9) Pool

f

Shortcut

Trans(5)

Conv‘s)
16 4

Trans(9)

16

Conv(7) Pool
Conv(9) Conv(7)

64 32 32

Z

UN

Feature extraction

Convl Max pooling Conv2 Max pooling

Design features

Conv(3) |
1

RouteNet [Xie, et al., ICCAD’18] DUke

IVERSITY

\
\
\
\
\

X DowN (ki*k1)

J-Net model

DOWN (k7*k7) )L X UP (k7*k7)

J-Net [Liang, et al., ISPD’20]

Classification

\
\
\

Fully connected

neural network Stgmoid.

% M2short (094)
Not M2 short (0.06)",

\
\
\
et e B W RO A

e @D s— QT C ‘
CETEEED s— QETTTCHD

Decoder

Encoder

1
] ' ! )
W,H,12 W/2,H/2,64 W/4,H/4,256 W/8,H/8,2048 W/4,H/4,128 W/2,H/2,32
AlM ,
PROS [Chen, et al., ICCAD’20]
""""""""""""""""""""""""" skip connections T
i._:,4,512 22512 7 2,2512 12
l‘:s,w,smu's‘z e
32,32,256

64,64,128




What | Believe We Should Target

Auto-ML for
Chip Design
\/
ML for Chip
Design Higher—lev.el of
9 automation
Traditional
Chip Design

23
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Automatic Estimator Development — Search Space

Guide-DAG

Candidate node operations

® @

Standard convolution

Atrous/dilated

LL

3x3

channels

\J A

Mixed (depth-wise)

()

Input Tensor

Output Tensor

kxk

Samphng convolution convolution

sub-graph !
1
v

Sampled- Sampled- Sampled-

LIHPLF Down- DAG S; Down- DAG S; N\.,| Down- DAG S Segmentation DRC hotspot
features samplin ling |] sampling || | /R i / Violated net )
e Sampled- e Sampled- e Sampled- e Fixed part
DAG S, DAG S, DAG S
Changeable part
Shortcut Shortcut Shortcut

24 [C. Chang, et al. ICCAD’21]

Duke
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Automatic Estimator Development — Searching Algorithm

Fixed part

Changeable part

In each iteration:
1. Sample from the completely-ordered graph (G;) to get (5;)
2. Evaluate the sampled model by training and testing

3. Update the sampling probability by evaluation result

. Duke
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Results from Automatically Developed Estimator

* Developed without human in one day
* Outperforming RouteNet [ICCAD’18], cGAN [DAC’19], PROS [ICCAD’20]

ROC-AUC of DRC hotspot detection

1.0

0.8 A
O
=
A 0.6 A 90_5
8 0.4

0.4 1

ICCAD'18 s DAC'9
m ICCAD'20 B Our method

0.2 -

s349 (270) mem_ctrl (9.3k) b17 (33.8k) DSP (73.1k) All 74 designs
designs(#nets)

Baseline:
Xie et al. RouteNet: Routability prediction for mixed-size designs using convolutional neural network. In ICCAD’18.
Yu et al. Painting on placement: Forecasting routing congestion using conditional generative adversarial nets. In DAC'19. | I e

26
Chen et al. PROS: A plug-in for routability optimization applied in the state-of-the-art commercial EDA tool using deep learning. In ICCAD’20. UNIVERSITY



Case Study 2:

Timing & Interconnect Challenges
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Interconnect Estimation on Netlist is Inaccurate

* Net length prediction is desired at early stage
* Interconnect is a dominating factor for power & performance

* RC of metal wires proportional to net length

* Net length not explicitly quantified or optimized until placement

* Trend in EDA industry: improve predictability at early stage
e Physical-aware synthesis with consistent EDA engines in the flow

* This is still time consuming

A n/et”””’
D Net length (wire length of a net) =w + h

. Duke

UNIVERSITY




Timing Estimation on Netlist is Inaccurate

Gate-level Netlist

x

g

Absent net length information

—

Placement
Hours-days

Circuit Layout

0 DD

Inaccurate timing estimation . _
Better net length information

[Z. Xie, et al. ASPDAC’21]
29 [Z. Xie, et al. TCAD’22]

Edit netlist if
necessary

Better timing estimation

IIIIIIIIII



Previous Works: Early Net Length Prediction

* Previous works lack global information of the whole netlist

@ Cell ZT—Z Connection

Prior work 1 [DAC’03]

2-cell net pull
(strong)

5-cell net pull @
k
(weak) / A

Q. .,
PRORN l ’I (strong)
¢ o ° &

(strong)

Predict: Net-lengtha < Net-length b

Compares ‘pulling strength’
30

Prior work 2 [ICCAD’05]

Predict: Net-lengtha < Net-length b

Compares ‘#hops’ Duke

UNIVERSITY



Example: Global Information in Net Length Prediction

Circuit Netlist

E it

Net-length? Net-length?

Traditional tools: Same!
Previous works: Similar!

—

Placement
Hours-days

Circuit Layout

Ca0 100
OCIC I E] CICI0
O HEE 1 [ DI:IDI:I

Hinjpjujnin
L] I]I:IIEEIEII:I
OLIL
|

—HEHEEE

Net-lengtha >> Net-length b
Delaya >> Delayb

IIIIIIIIII




Our (Fast) Solution to Capture Global Information

Process as -
_..  Graph

=

‘ Customized GNN

net-length @ net-length @

‘ Timing model

Reduces error in commercial timing engine

32



Our (Standard) Solution to Capture Global Information

* Process as e
Graph

Info on Edg ‘ICustomized GNN|

Recognize net-length @ >> net-length @

‘ Timing model

Reduces error in commercial timing engine

33



Graph Neural Network Background

Target node

!

A laverl <— 2-layer GNN

Layer 2

w,

— A

An input Graph

Processing the graph
with 2-layer GNN

34
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Our Fast & Standard GNN Method

Previous GNN example:

Node features

Our GNN-based method:

Node features

- Structures in the standard version




Experimental Results on Net Length

HEE DAC'O3 mm ICCAD'O5 777z SLIP'09 W Ours(fast) Bl Ours

idadidid

ISCAS'89 ITC'99 Faraday OpenCores ANUBIS Gaisler Average All

Correlation
o =
(0] (@)

o
o))

* Measured on 6 benchmarks with 37 different designs
* High accuracy (correlation) for individual net length prediction

Baseline:
36 Hu et al. Wire length prediction based clustering and its application in placement, DAC'03. D l I k e

Kahng et al. Intrinsic shortest path length: a new, accurate a priori wirelength estimator. ICCAD’05. UNIVERSITY



Experimental Results on Timing

Delay of Timing Arcs WNS on All Designs TNS on All Designs
0
R R? — -
£ £
Timing Report | 0.86 | 0.70 . 4 -100 3
B o -10?
Model w/o o o
0.89 0.78 . G =
Net Length £ £ 10t
g 10 g
Ours (Fast) 0.91 | 0.82 g g 6
Ours 0.94 0.87 g 102 R? = 0.99, Our Work g s R? = 0.97, Our Work
] ] R? = 0.55, Commercial Tools ® R? = (.38, Commercial Tools
-10?% -10° 0 —-10° -10% -10? -10t 0
Post-placement slack (ns) Post-placement slack (ns)

* Improve arc delays over commercial tools
* Improve slack estimations (WNS, TNS) over commercial tools

. Duke

UNIVERSITY



Case Study 3:

Power & Power Delivery Challenges
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What | Believe We Should Target

Unified ML for Both
Design & Runtime

Auto-ML for
Chip Design = \_/
\__/ Benefit the whole
ML for Chip chip life cycle
Design Higher—lev-el of
automation

Traditional
Chip Design

39
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Challenge 1 — Design-time Power Introspection
256b SVE

8-wide
FETCH DATA
CORE 1 CORE 2

5-8-wide Decode/Rename

Issue

RERRARARRRNARY

Many-core CPU with Wider issue More vectored execution
more transistors

CORE 3 CORE 4

e Delivering generational performance gains adversely impacts CPU power
* Power-delivery resources not keeping pace with CPU power demands

* Increasing power-sensitivity drives the need for design-time introspection

40 APOLLO [Z. Xie, et al., MICRO’21] (Best Paper Award) Source: Arm Neoverse V1, 2021 Duke

UNIVERSITY



Challenge 2 — Run-time Power Introspection

Modelling power on one parch block __ Measured di/dt event on Arm A72 SoC
[. Diff kload ] Z 106 y Waitfor !

ah) ITferent workloads Q Fuents i Maximum Power Workload

> . o0 1.04 'I

o ® 2 1.02 - i

ER o & o

- ® . > 1

'5 .......... (5} >

2 o ® o S 098]

s L S 0.96

c ° e Limited accuracy ' o.94 4

= ©) ° o

o c 0927 <«— Sharp voltage-droop due

O Q 0.9 - to workload-driven di/dt
C
O o.s88

470 490 510 530 550 570 590

Estimated Power with Manual Proxies Time (ns)

* Peak-Power mitigation requires accurate power estimation to drive throttling
* Manually inferring proxies is very difficult in complex modern CPUs

* Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

41

Duke
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Challenge 3 - Workload Power Characterization

* Need power-characterization of real-world [ Sig‘f;?t H VS;’;E."QLZ /
workloads |
* Simple micro-benchmarks not longer sufficient [Simulate on netlistH Gate-level /
on emulator netlist

e Single SPEC simpoint can take weeks on the
expensive emulator

* Power measurement is expensive

Offline windowed
simulation trace

[ Power analysis ]4—
* Only average power consumption available

* Impossible to scale to di/dt event analysis Windowed
average power

Industry-Standard Emulator-Driven Power Flow

. Duke

UNIVERSITY



Challenges from Both Design-time and Runtime

A unified solution for both scenarios

Runtime Challenges Summary

e Peak power mitigation
 Difficult to manually infer proxies

* Voltage droop (Ldi/dt) mitigation
e Require very low response latency

Design-time Challenges Summary

e Simulation on realistic workloads
* Expensive and slow
* Limited temporal-resolution

43

What is An “Ideal” Power Estimator?

1.

2
3.
4

Accurate yet fast
Achieve high temporal resolution
Low runtime on-chip overheads

Easily extensible to diverse designs

Duke
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APOLLO: A Unified Power Modeling Framework

vy

44

APOLLO

/_/R

®

Design-time
power
model

OPM

Swies

Runtime
on-chip
power meter

Single-cycle temporal resolution

Neoverse N1 CPU floorplan

Fast, yet accurate design-time simulation

Low-cost, yet accurate runtime monitoring

Design-agnostic automated development

Duke

UNIVERSITY



A Workload Execution Preview of APOLLO

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles

w
o

| — APOLLO's Prediction — 50-Cycle Averaged hmmer (SPEC 2006) simpoint
on the Neoverse N1 CPU core

NN
o !

Power (scaled)
(-
=

[
o

5_
2760K 2770K 2780K 2790K 2800K
Timing window index (unit: 1 clock cycle)

o« ~2 weeks execution time reduced to few minutes on the emulator

* Unprecedented power-introspection due to single-cycle temporal resolution

- Duke
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APOLLO Feature Generation & Model Trai

A BCDE Power
cycle0 | 1|0[(0|0]|0 PO

cyclel| 01111010 P1

cycle2| 0 (0111 P2
|
A AN BCDE )
B_E_‘—;— . cycle010000 PO
! — cydel| 0 [1|1(0]0]| .. .. 51
C | ' I NEL _
| -~ w F |ovez[oo]1]1]1 all
D | e _
. I|: R ; 5
E : | » Adesignin RTL level. : :
: / \ M RTL signals '/ .4
cycIeO cyclel cycIeZ '/

Train the ML model: F(X) =
In .fsdb/.vcd file format M > 500,000 in Neoverse N1 ( ) y

" M > 1,000,000 in Cortex-A77 Duke

UNIVERSITY



Simple Key Ideas

* Linear model can estimate power accurately

* Small portion of signals (proxies) can provide enough information

M signals () selected proxies
A Auto- A
fA BCDE Y Selection fAﬁ\\@\ D\E\ A
Eachcycle: |1 (0|00 |O| =" - Each cycle: Izl ------
x1 xz x3 X4_ x5 Slle SZ=X4
Linear model with M RTL signals Linear model with @ selected proxies
P =Z’i‘i1xi*w’i P =ZiQ:15i*Wi

., Duke

UNIVERSITY



ML-Based Power Proxies Selection

Model construction in two steps

M Features Reach Q non-zero weights

Q retrained weights

O Wy

Step2: ‘Relax’
Retraining Wa

Stepl: Pruning

!/
Training with Wy-1#0

strong penalty

strength ®
' 0

_ vy
v P=3L 5w
P=2i=1X*wW;

Minimax concave penalty (MCP) for pruning
; Duke

UNIVERSITY



Why MCP for Pruning?

* To make Q <K M, penalty is set to be very large.
* Lasso degrades model accuracy under large penalty

* MCP protects large weights thus maintains model accuracy

i

Lasso penalize all weights

w

_~ MCP protects large weights

Penalty P(w)
N

=

o

—4 ) 0 2 4
Weight Value (w)

Duke

49
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Model Training and Testing

teree
[m)]
&

m@

ettt sl i =]

[J]
adWS
T 30

) 2
v 3 2o
. 10
Neoverse N1 (infra) Cortex A77 (mobile) .

Deployed in AWS Graviton Deployed In Snapdragon 865 0 2000 4009 0000 8000 10000 32000 11000

Timing window index (unit: 1 clock cycle)

Experiments on 3GHz 7nm Arm commercial microprocessors Neoverse N1 and Cortex A77
* Automatically generate a “diverse” set of random micro-benchmarks for training

e Testing on various Arm power-indicative workloads

. Duke

UNIVERSITY




Prediction Accuracy as Design-Time Power Model

Power (scaled)
= N w =
o o o o

(=)

51

Per-cycle prediction from APOLLO with Q=159 proxies

MAE = 7.19%
R?=0.953

Label APOLLO's Prediction
O .S A €S S 2 \ g >
e R @7 N\ ) \ XIS SN
O el S R\ e S et N Al ,&\(‘ '6-\\(\ ,&\(‘
6‘(\“‘5 |«@TQ 6°?(x\ “"s’&* | @Q*Q [ .\@C“I cacIX‘ 6’&1& | 6\6«\ [ ,&(0 | '&‘0 [ ‘X\‘o
|
| | | 1 | | | | I
| | | | | | | |
| | | | | | |
| | |
| | |
|
I "
0 2000 4000 6000 8000 10000 12000 14000

Timing window index (unit: 1 clock cycle)

N\

Prediction trace shows great
agreement with ground-truth

Duke
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Power (scaled)

Prediction Accuracy as Design-Time Power Model

Per-cycle prediction from APOLLO with Q=159 proxies

B
o

W
o

Label

APOLLO's Prediction

* MAE=7.19%
* R2=0.953

W

/ |
N
\1
o : \ % . . / . \ . : / v A\
o 7 2000 4000 6000/ 8000 0000 12060 14000 M
/ N /7 \ 7
V4 > > L A
Label Label Label
40 —— Prediction 0 —— Prediction 0 —— Prediction
30 30 30
20 20 _‘_\J_-L‘JJ_I_F'-L,J—-PJ_ 20 _,-L,--|_|'|—r'|_,-\_,-'-|_|""-"|_
10| - | 10 10 \Per—cycle error
0 : 0 can be averaged
2000 2008 2016 8000 8008 8016 14000 14008 14016 uKe

52
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Power (scaled)

S
o

N W
o o

[
o

Accuracy on Multi-Cycle Power Estimation

<—— Average Power over T = 128 cycles ——

128-cycle prediction from APOLLO with Q=70 proxies

Label —— APOLLO's Prediction

(=)

53

2000 4000 6000 8000 10000
Timing window index (unit: 1 clock cycle)

12000

MAE = 2.82%
R2=0.993
Higher accuracy

Duke

UNIVERSITY



Automated Low-Cost Runtime OPM Implementation
APOLLO is designed to be hardware-friendly

’ Weight High-Level
Wq Quantization ——:f)—\ .~ Implement Synthesis
00— Ty <y - (O] -
0, 1) P x ) CPP
’ O—’/ 7 Configurable
{0, 1} Wo o~ OPM template OPM in RTL
’ in C++
- - W -bit quantized
Only @ binary inputs fixed-point weights ‘ Verifying

No multipliers required m

—

. Verify OPM accuracy DUke

UNIVERSITY




Power (scaled)

= N W B

o

o

o

(=)

(=]
o

Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies

Label —— APOLLO's Prediction

* MAE=7.19%
e R2=0.953

2000 4000 6000 8000 10000 12000 14000

55



Power (scaled)
= N W =
o o o o

(=)

Power (scaled)
= N W B
o o o o

o
(=]

Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies

Label APOLLO's Prediction
e MAE=7.19%
e R2=0.953
\
0 2000 4000 6000 8000 10000 12000 14000 \ o Neg“gible
Negligible difference
Prediction from runtime OPM with Q=159 proxies lefference
Label | —— APOLLO OPM Hardware j e MAE = 7.19%
e R2=0.953

W=11 bits after

2000 4000 6000 8000 10000 12000 14000 qua ntization
Timing window index (unit: 1 clock cycle)

Ul
(e))]



Overview of the OPM Hardware Design

W1l0: W] )
- Sl — TD 7-.
X[1]
S2[0:1] walo:w]
- o[ 7TD 7_
VT = (+)
3 ||
=
. ;':,;, wslo:w]
-—=3 18Hm™ .
X[3]
Wy 0: W] )
- S4 — TD 7.
X[4]
TD | 1-bit toggle detector with one XOR and FF FF

FF out
D 0] o aa

rst

T-cycle counter

Output:
out [log(T): MSB]

Flip-flop

Neoverse N1 CPU floorplan

* No multipliers or dividers, only Q binary inputs and W-bit quantized weights
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Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

* Trade-off accuracy and hardware cost

* Sweep proxy num Q and quantization bits W

(%) MH UO painsea| 40443

OPM Gate Area _ _
Overhead: 0.1% 0_.2% 0:3% 0.4% D k
) UKEC

UNIVERSITY




Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

* Trade-off accuracy and hardware cost

25 g e Sweep proxy num Q and quantization bits W
coltian, (205 - strategy
== i * Keep quantization W= 10 to 12 bits
:10 5  Vary Q for different solutions
6 ” iés * For an OPM with Q=159, W=11
100 5 Q«\ = * <0.2% area overhead of Neoverse N1
Nup, ., e <10% in the error
"er pro. 300 3007 13 &
s () N
OPM Gate Area S .

Overhead: 0 o "0 0
. 0.1% 0.2% 0.3% 0.4% Duke
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Potential Application: Design-time Power Introspection

Integer

Rename .
Execution

Commit
Fetch
L2

Gated Gated Clock

Clock
Signals ‘ Signals

Trained only with more meaningful

SLOad signals as initial feature candidates
tore

Vector Execution

Distribution of power

proxies on Neoverse N1 Better interpretability

Identify power contributors for designers!




Potential Application: Runtime di/dt Mitigation

iy
o
~

=
o

=
o
°

Observed: overvoltage
Predicted: undervoltage

False Positive

© o

|
-
o

|
[
o

dI /dt Predicted (scaled)

—102

Hi

rved: overvoltage
Predicted: overvoltage

gh-overshoot events

‘events

Deep droop

Observed: undervoltage
Predicted: unde%
L S v, Yy
Yy

False Negative

Observed: undervoltage
Predicted: overvoltage

Log-scale L’

Enable CPU-driven Proactive dI/dt Mitigation!

-102

-10° 0

dl /dt Observe

—10!

d (scaled)

102




What | Believe We Should Target

Unified ML for Both
Design & Runtime

Auto-ML for
Chip Design = \_/
\__/ Benefit the whole
ML for Chip chip life cycle
Design Higher—lev-el of
automation

Traditional
Chip Design
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How does the voltage noise
distribute on the circuit layout?

IIIIIIIIII



Fine-grained IR Drop Hotspots on Layout

Initial IR drop distribution After adding wires to PDN

* IR drop unevenly distribute on a layout

* Need identification of IR drop hotspot before mitigation

54 Source: Cadence




Cost on IR Drop ldentification
Time-consuming simulations performed repeatedly

Provide feedback
Edit the design

Simulation to get IR drop hotspots

e

\nslz\x ~4 hours on 1M cells
L- ase a gorlt m:

—d=lrour-simuietiomrageinr—

[Z. Xie, et al. ASPDAC’20] D k
65 [Z. Xie, et al. ICCAD’20] (Invited) uKe
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Dynamic IR Drop Estimation Methodology

The location to check IR drop

4

rger region
One important IR drop
. ‘ccing!
factor is missing: * value

Ir
po

* Neighbors all contribute to power demand at a local region
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Incorporate Timing with Customization

Maximum current demand
Worst IR drop

/

clock I J

Average current 1

Dynamic current 1

e Power/current consumption depends on switching activities

Switch
early

e Gates switch at different time frame/instant!

67

Part of Input Region

I Cells

— Signal propagation

Switch late (in same cycle)
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UNIVERSITY



Our Customized Method

Maximum structure with CNN

Input Region

Switch I
early

Power map at

) N time frames in one cycle
time frame 1

............ —m»

Power map at
time frame N




Experimental Results on IR Drop

Violated #
Cell Hotspots
Before Mitigate 22185 5092

After Mitigate 17052 3778
Improvement 23% 26%
: Violated #

Design MD2 Cell Hotspots
0.8 Before Mitigate 31097 3627

After Mitigate 23941 2489

Improvement 23% 31%

D1 D2 D3 D4  Ave

* Superior accuracy over previous work

w ICCAD'18 mmm Ours Design MD1

1.0

ROC AUC
o
©

* Integrated to guide mitigation flow to reduce IR violations by 20-30%

Baseline:
69 Fang et al. Machine-learning-based dynamic IR drop prediction for eco. ICCAD’18. l I e
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Look into the IR Drop Model

Where m takes early time-frame

Similar
Pattern

Ground-truth IR drop on the same layout

Similar
Pattern

Where [J31 takes late time-frame

* Hotspots on same layout are triggered at different time frames

, Duke
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Summary and Takeaway

* Problem: Increasing Challenges in Chip Design

* Cost, time-to-market, reliance on designers, diminishing performance return, ......
* MLin chip design

* Targets routability, timing and interconnect, power and power delivery challenges

* Less simulation time, faster feedback, less designer effort

* Automated and unified ML in both design & runtime
e Reduces months of model development to hours, no developers
* Benefit the entire chip life cycle

SEENO00. = O,
oo™z T o W,

= Chip design & implementation Intelligent Solutions Duke

UNIVERSITY




Publication List (1/2)

e Zhiyao Xie, et al. Pre-Placement Net Length and Timing Estimation by Customized Graph
Neural Network. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD). Accepted.

e Zhiyao Xie, et al. APOLLO: An Automated Power Modeling Framework for Runtime Power
Introspection in High-Volume Commercial Microprocessors. In International Symposium on
Microarchitecture (MICRO), 2021. (Best Paper Award).

* Chen-Chia Chang, Jingyu Pan, Tunhou Zhang, Zhiyao Xie, et al. Automatic Routability Predictor
Development Using Neural Architecture Search. In International Conference on Computer
Aided Design (ICCAD), 2021.

« Zhiyao Xie, et al. Net?: A Graph Attention Network Method Customized for Pre-Placement Net
Length Estimation. In Asia and South Pacific Design Automation Conference (ASPDAC), 2021.

e Zhiyao Xie, et al. Fast IR Drop Estimation with Machine Learning (Invited). In International
Conference on Computer Aided Design (ICCAD), 2020.
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Publication List (2/2)
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Rongjian Liang, Zhiyao Xie, et al. Routing-Free Crosstalk Prediction. In International Conference
on Computer Aided Design (ICCAD), 2020.

Zhiyao Xie, et al. FIST: A Feature-Importance Sampling and Tree- Based Method for Automatic
Design Flow Parameter Tuning. In Asia and South Pacific Design Automation Conference
(ASPDAC), 2020.

Zhiyao Xie, et al. PowerNet: Transferable Dynamic IR Drop Estimation via Maximum
Convolutional Neural Network. In Asia and South Pacific Design Automation Conference
(ASPDAC), 2020.

Yu-Hung Huang, Zhiyao Xie, et al. Routability-Driven Macro Placement with Embedded CNN-
Based Prediction Model. In Design, Automation and Test in Europe Conference (DATE), 2019.

Zhiyao Xie, et al. RouteNet: Routability Prediction for Mixed-Size Designs Using Convolutional
Neural Network. In International Conference on Computer Aided Design (ICCAD), 2018.
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Thank you! Questions?

Committee:
Prof. Yiran Chen (Chair)
Prof. Hai Li (Co-Chair)
Prof. Jiang Hu
Prof. James Morizio
Prof. Jeffrey Derby

Duke



Our Proposed Power Modeling Approach

A “diverse” set of random (micro-)benchmarks is critical

Training data automatically generated

* Micro-architecture agnostic genetic algorithm
to automatically generate max-power virus

A “diverse” set is generated: lower-power in
early generations and higher-power in later
generations

Model training & testing

* Experiments on 3GHz 7nm microprocessors
Neoverse N1 and Cortex A77

* Testing on Arm power-indicative workloads
» Steady-state, transient, and throttling regions
* High- and low-power-consumption regions

T !| ™ 1 :!||' : ‘ist' !
g Il'l I=N Power virus Label
1 [ it LA N = O ¢ 8 2 b3 2 >
i ] : !|!; g T RN S :,\6‘ e 5 }(\\ " o8- WO T o
: i il i :55 : : generated % 20 o | 6\'8’;@ &?é“ r,@*‘ﬂ | e | ""ad: @?\e o*° | 6@«\0 | x‘S\‘o,G | “\‘0’5 3 o
illls RO 3 [ I I o I I I I I
i " L SR 30 e I oo I I I I i
B2 B R R s 0 UL e o AN ™™
. 1 jié- ; ‘ : L . . 320 Y I I I 1o I I I I I
Start with A . g B | i (¢ | T
101 ! 10 oL | 1 Ny | [ [ i I
Iow-power : ' T | | (AN I i i i I
benchmark %7 50 m 60 20 % 2000 4000 6000 8000 10000 12000 14000

Generation Timing window index (unit: 1 clock cycle)
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FAQ: Prior Power Modeling Works

D trated
Methods (Hardware Overhead in Area %) emox.ls r.a ¢ Model Type | Temporal Resolution | PC / Proxy Selection | Cost or Overhead
Application
[20, 35, 43, 48, 61] Analytical >1K cycles N/A Low
78 Design-ti High
[78] SR >1K cycles _ £
[17, 64] software model . Automatic Medium
Proxies .
[79] or no selection High
Per-cycle :
[19, 42, 44, 72, 76] Medium
[22] (300% overhead) High
. . Per-cycle .
[75] (16% overhead) Design-time e Automatic
roxies
[40] FPGA emulation ~100s cycles Medium
[66] Per-cycle Hybrid manual/auto
[10, 11, 16, 24, 26, 33, 34, 36, 52, 58, 62, 63, 65, 68] >1K cycles
Event Counters Manual Low
[38] : ; ~100s cycles
[23] (2-20%), [51] (1.5-4%), [53] (7%) Runtime monitor 1K cycles
> il - Proxies Y Automatic Medium
[80] (4-10%), [81] (7%) ~100s cycles
Design-ti del
APOLLO (0.2% overhead) ESIGRE MAEE Proxies Per-cycle Automatic Low

Runtime monitor

Comparison among various power modeling approaches. The percentage numbers are area overheads.
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FAQ: Accuracy Comparison

- Lasso -~ Simmani PCA - Lasso -~ Simmani PCA
PRIMAL —e— APOLLO PRIMAL -e— APOLLO

N
o T

NRMSE (%)
[ T R
& o

[

o

&
NRMSE (%)
[
N

=
o

8 ———
100 200 500 1K ST 200 500 1K
The Number of Power Proxies (Q) The Number of Power Proxies (Q)

Neoverse N1 CPU core Cortex-A77 CPU core
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FAQ: Accuracy with Multi-cycle Measurement Window

NRMSE (%)

N

--@- APOLLO —§¢— APOLLO™(T=T)
—f— Simmani -3 - APOLLO™(T =8)

[
L]
" ugg,
-----
------
--------------

1 8 16 32 64
Size of Measurement Window (T)

Q = 200 for Simmani
Q =70 for APOLLO

N: Total number of cycles

«—— yT: Average Power over T cycles

— y'()

y'(2) —

During inference:

Q Q T 1 & Q
pT(l):ZwJ xf(l)zZa)j-—ij[z]: . Za)j-x][l]
j=1 j=1 i=1 i=1 j=1
1 T/t 1 T O
Thus, p7 =20 D pT®R) =30, Y o mlil - O
k=1 i=1 j=1
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FAQ: Model Discussion

% —#— Lasso —e— APOLLO L —4— Simmani —#— Lasso

< 8 S —e— APOLLO

- o

Q ©

= = 20

26 S o™ ———f——

= ©

§ c

<4 3

s x o

L B —

E —

A2 >
100 200 500 100 200 500
The Number of Power Proxies (Q) The Number of Power Proxies (Q)
Sum of all absolute weights Variance inflation factors (VIF)
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Neural Architecture Search

* Neural Architecture Search (NAS) enables design automation of ML models

efficiently without human interventions

{ Human
knowledge

~\

Manual Design

Neural Architectures

Performance

Latency
e [ J

) o
Accuracy

Training &
Evaluation

dataset

Traditional DNN Design

Y

Search space

Controller sampling

Neural Architectures

T

(o/@ 10 ® O0- @
0100 0100

&
o

Training
controller

Performance

Latency

e ©
Accu racy

Training &
Evaluation

dataset

Neural Architecture Search

Wou, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019.
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Search Strategy

* Define a weight on each edge to control its sampling probability
 Sample edges from the guide-DAG with probabilities
e Updating flow

* Preprocessing
* Loop: while the performance of model not converges
e Subsample guide-DAGs according to the weights
* Train the model on our dataset to get performance metrics

e Update connection weights
* Higher performance leads to higher weights on edges

Guide-DAG

Sampling

=)

) - Duke

UNIVERSITY

Sampled-
DAG S,




Experimental Results — Accuracy

Comparison of the violated net count prediction

Models Kendall’s 7 on designs (#nets) Kendall’s 7 Pearson’s correlation
s349 (270) | mem_ctrl (9.3k) | bl7 (33.8k) | DSP (73.1k) on all 74 designs on all 74 designs
RouteNet [3] 0.3620 0.1547 0.1779 0.4414 0.5264 0.7224
NAS-crafted model 0.6369 0.4657 0.2683 0.7302 0.5572 0.7930
Comparison of the DRC hotspot detection
ROC-AUC on designs (#nets) ;
MigCR 5349 (270) | mem_otrl (03K) | b7 (33.8K) | DSP (73.1k) || ROC-AUC on all 74 designs

RouteNet [3] 0.829 0.844 0.902 0.866 0.847
PROS [6] 0.487 0.483 0.478 0.489 0.676
cGAN [4] 0.516 0.515 0.521 0.517 0.510
NAS-crafted model 0.865 0.891 0.911 0.884 0.865
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Method: Capture the Global Information

* To build the accurate version Net?22:

e Capture more global information (the topology of the whole netlist)
e Capture the information by fast clustering (partitioning) on each netlist using h-metis
* 1. clustering when nets viewed as node; 2. clustering when cells viewed as node

 Different cluster IDs indicates larger distance after placement
¥ Pulled by n5

Numbers on cell are cluster IDs:
Pulled by n2 DJ

Pulled by n1 Do

The same cluster IDs (1 == 1).
Pulled by n4

It indicates shorter distance.

[D—1>

The different cluster IDs (1 != 4).
It indicates longer distance.

%
</

Example: study the size of n3.
Numbers on cell & net are cluster IDs. D
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Graph Attention Network (GAT)

Node feature = _ _
Z©) = x == | F S p— 2
| z@ NEAY, NEEAC)
Node Attention
embedding coefficient
0 _ Vo A=1) (D)
Activation Trainable
function weight

For node i and all its neighbors :
a;j = softmax(z;;)
T = LeakyReLu(ch(l) wOzED | jw®z D))

Trainable vector

J9Ae pa1oauuo) Ajn4
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Experimental Results on Timing - Delay

| >

C1

A
net N1 (o ' > Z

2
B net Nz c4 ......
.B net N3

TABLE V: Pre-placement Path Slack Prediction Accuracy.

report_timing Time* Time®
Error R? Error R?2 Error R?2

Mean 038ns 039 | 0.16 ns 0.8 | 0.11 ns 0091
Median | 0.18 ns 0.77 | 007ns 095 | 0.05ns 0.97
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