Intelligent Circuit Design and Implementation with Machine Learning

PhD Dissertation Defense

Zhiyao Xie

Advisor: Yiran Chen

Department of ECE, Duke University

Feb 14, 2022

Electronic Devices are Everywhere

*These images are found in public domain

2

Designers Try to Deliver Generational Gains

Chip Design Challenges

Per-Core Performance Gain is Diminishing

Diminishing performance gain and increasing design cost

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020

IBS Design Cost is Skyrocketing

International Business Strategies, 2020

Chip Design Challenges

Not only costly, also long turn-around time

It took **several thousand** engineers **several** years to create, at an approximate development cost of **\$3 billion**. – Jensen Huang, CEO of Nvidia

Nvidia GPU Technology Conference (GTC), 2017

This is Real Problem!

Challenges at advanced node

- **Pressure** from IPC and frequency
- Peak power keeps increasing
- Power delivery technique is
- Increasing design rules to media
- Increasing wire parasitics, ca wire delay and noise

Intelligent design methodologies & solutions!

Inefficient chip design methodologies

For one Arm CPU core with ~3 million gates

es e power simulation takes ~2 weeks ation in physical design take ~1 week repeatedly constructed from scratch rely on designer intuition

https://github.com/ageitgey/face recognition

Autopilot Drone

car: 66% ersm- 59% car: 94% car: 98% car: 97% car: 71% car: 69%

https://towardsdatascience.com/using-tensorflow-objectdetection-to-do-pixel-wise-classification-702bf2605182

Self-driving Cars

Manufacturing

Robots

Financial Service

Security

7

Why ML/Intelligence Helps Circuit Design? An Example

Producing solutions repeatdly from scratch

Why ML/Intelligence Helps Circuit Design? An Example

- Producing solutions repeatdly from scratch
- Why not learn from prior solutions?

Simple Plug-in and Use of ML Engines?

- 100s * 100s pixels
- No extra information
- Any human can tell the label
- Data is everywhere

Circuits (Arm Neoverse N1 CPU core)

- Millions of connected components
- 100s GB of raw information
- Need simulations to get the label
- Data is hard to get

Innovative Customized Solutions are Desired!

Many Excellent Exploration in Academia and Industry

My Related Works

PPA	Power	Power & Power Delivery Challenges [ICCAD'20], [ASPDAC'20], [MICRO'21] (Best Paper Award)
	Performance	Timing & Interconnect Challenges [ICCAD'20], [ASPDAC'21], [TCAD'21]
	Area	Routability Challenges [ICCAD'18], [DATE'18], [ICCAD'21]
		Overall Design Flow Tuning [ASPDAC'20]

Outline of The Dissertation

• Case Study 1: Routability Challenges (~10 min)

• Case Study 2: Timing & Interconnect Challenges (~10 min)

• Case Study 3: Power & Power Delivery Challenges (~30 min)

Case Study 1:

Routability Challenges

Routability Background

- Design Rule Checking (DRC)
 - Manufacturing requirements
 - Less DRC violations (DRV) -> better routability
- Need DRV mitigation at early stages
 - Requires routability prediction/estimation
- Existing solutions
 - > Fast Trial Global Routing (TR) for fast estimation
 - Global Routing (GR) for accurate estimation

DRC violations (white) on circuit layout

Previous ML-based Routability Estimators

- Previous routability (DRV) estimations
 - > ML model on small cropped regions
 - Limited receptive field and missing global information

Example: a layout only with cells

Previous ML-based Routability Estimators

- Previous routability (DRV) estimations
 - > ML model on small cropped regions
 - Limited receptive field and missing global information
 - > When macros present, less resemblance among different regions of layout

First Deep Learning Method for Routability Prediction

• Task 1: which one will result in less DRV count?

Customized CNN methods

• Task 2: where are DRC violations?

Customized FCN methods

Features for Rouability Prediction

- Macro:
 - Region occupied by macros
 - Density of macro pins in each layer
- Cell:
 - Density of cells
 - Density of cell pins
- RUDY features (wire density)
 - RUDY distributions
 - RUDY pins
- Congestion report:
 - Trial global routing (TR) congestion
 - Global routing (GR) congestion

First Deep Learning Method for Routability Prediction

• Task 1: which one will result in less DRV count?

 Requires global routing: Hours * Number of Layouts
In seconds, with similar accuracy

• Task 2: where are DRC violations?

Requires detailed routing
More hours * Iterations

In seconds, outperform previous works

Experimental Results on Routability

- Fast and accurate routability prediction at the same time
- **Superior** accuracy over previous work

Chan et al. Routability Optimization for Industrial Designs at Sub-14nm Process Nodes Using Machine Learning. In ISPD'17.

Baseline:

Many Excellent Deep Learning Methods

What I Believe We Should Target

Auto-ML for Chip Design

ML for Chip Design

Higher-level of automation

Traditional Chip Design

Automatic Estimator Development – Search Space

Automatic Estimator Development – Searching Algorithm

In each iteration:

- **1**. Sample from the completely-ordered graph (G_i) to get (S_i)
- 2. Evaluate the sampled model by training and testing
- 3. Update the sampling probability by evaluation result

Results from Automatically Developed Estimator

- Developed without human in one day
- Outperforming RouteNet [ICCAD'18], cGAN [DAC'19], PROS [ICCAD'20]

Baseline:

26

Xie et al. RouteNet: Routability prediction for mixed-size designs using convolutional neural network. In ICCAD'18.

Yu et al. Painting on placement: Forecasting routing congestion using conditional generative adversarial nets. In DAC'19.

Chen et al. PROS: A plug-in for routability optimization applied in the state-of-the-art commercial EDA tool using deep learning. In ICCAD'20.

Case Study 2:

Timing & Interconnect Challenges

Interconnect Estimation on Netlist is Inaccurate

- Net length prediction is desired at early stage
 - Interconnect is a dominating factor for power & performance
 - RC of metal wires proportional to net length
 - Net length not explicitly quantified or optimized until placement
- Trend in EDA industry: improve predictability at early stage
 - Physical-aware synthesis with consistent EDA engines in the flow
 - This is still time consuming

Timing Estimation on Netlist is Inaccurate

Circuit Layout

29

Previous Works: Early Net Length Prediction

- Previous works lack global information of the whole netlist
- Cell ___ Connection

Example: Global Information in Net Length Prediction

Circuit Layout

Our (Fast) Solution to Capture Global Information

Our (Standard) Solution to Capture Global Information

Graph Neural Network Background

Processing the graph with 2-layer GNN

Α

Our Fast & Standard GNN Method

Experimental Results on Net Length

- Measured on 6 benchmarks with 37 different designs
- High accuracy (correlation) for individual net length prediction

Baseline:

Hu et al. Wire length prediction based clustering and its application in placement, DAC'03. Kahng et al. Intrinsic shortest path length: a new, accurate a priori wirelength estimator. ICCAD'05.

Experimental Results on Timing

- Improve arc delays over commercial tools
- Improve slack estimations (WNS, TNS) over commercial tools

Case Study 3:

Power & Power Delivery Challenges

What I Believe We Should Target

Traditional Chip Design

Challenge 1 – Design-time Power Introspection

- Delivering generational performance gains adversely impacts CPU power
- Power-delivery resources **not keeping pace** with CPU power demands
- Increasing power-sensitivity drives the need for design-time introspection

Challenge 2 – Run-time Power Introspection

Measured di/dt event on Arm A72 SoC

- **Peak-Power mitigation** requires accurate power estimation to drive throttling ۲
 - Manually inferring proxies is very difficult in complex modern CPUs
- Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

Challenge 3 - Workload Power Characterization

- Need power-characterization of real-world workloads
 - Simple micro-benchmarks not longer sufficient
- Single SPEC simpoint can take weeks on the expensive emulator
 - Power measurement is expensive
- Only average power consumption available
 - Impossible to scale to di/dt event analysis

Industry-Standard Emulator-Driven Power Flow

Challenges from Both Design-time and Runtime

A unified solution for both scenarios

Runtime Challenges Summary

- Peak power mitigation
 - **Difficult to manually** infer proxies
- Voltage droop (Ldi/dt) mitigation
 - Require very **low** response latency

Design-time Challenges Summary

- Simulation on realistic workloads
 - Expensive and slow
 - Limited temporal-resolution

What is An "Ideal" Power Estimator?

- **1.** Accurate yet fast
- 2. Achieve high temporal resolution
- **3.** Low runtime on-chip overheads
- 4. Easily extensible to diverse designs

APOLLO: A Unified Power Modeling Framework

- Fast, yet accurate design-time simulation
- Single-cycle temporal resolution
- Low-cost, yet accurate <u>runtime</u> monitoring
- Design-agnostic **automated** development

A Workload Execution Preview of APOLLO

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles

- ~2 weeks execution time reduced to few minutes on the emulator
- Unprecedented power-introspection due to single-cycle temporal resolution

APOLLO Feature Generation & Model Training

Simple Key Ideas

- Linear model can estimate power accurately
- **Small** portion of signals (proxies) can provide enough information

Linear model with *M* RTL signals

$$P = \sum_{i=1}^{M} x_i * w'_i$$

Linear model with Q selected proxies $P = \sum_{i=1}^{Q} s_i * w_i$

ML-Based Power Proxies Selection

Model construction in two steps

M Features

Minimax concave penalty (MCP) for pruning

y^T is the label of each window; $p^{\tau}[1], ..., p^{\tau}[\frac{T}{\tau}]$ are power predic

Why MCP for Pruning?

- To make $Q \ll M$, penalty is set to be very large.
- Lasso **degrades** model accuracy under large penalty
- MCP protects large weights thus maintains model accuracy

Model Training and Testing

- Experiments on 3GHz 7nm Arm commercial microprocessors Neoverse N1 and Cortex A77
- Automatically generate a "diverse" set of random micro-benchmarks for training
- Testing on **various** Arm power-indicative workloads

Prediction Accuracy as Design-Time Power Model

Prediction Accuracy as Design-Time Power Model

Accuracy on Multi-Cycle Power Estimation

128-cycle prediction from APOLLO with **Q=70** proxies

Automated Low-Cost Runtime OPM Implementation

APOLLO is designed to be hardware-friendly

Prediction Accuracy from Design-time Model & OPM

Per-cycle prediction from APOLLO with Q=159 proxies

- MAE = 7.19%
- R² = 0.953

Prediction Accuracy from Design-time Model & OPM

Label **APOLLO's Prediction** (scaled) 40 MAE = 7.19%30 $R^2 = 0.953$ Power 10 0 Negligible 2000 4000 6000 8000 10000 12000 14000 **O** Negligible difference difference Prediction from runtime OPM with Q=159 proxies **APOLLO OPM Hardware** Label Power (scaled) MAE = 7.19%40 $R^2 = 0.953$ 30 20 10 W=11 bits after 0+ 0 quantization 2000 6000 8000 10000 12000 14000 4000 Timing window index (unit: 1 clock cycle)

Per-cycle prediction from APOLLO with Q=159 proxies

Overview of the OPM Hardware Design

• No multipliers or dividers, only Q binary inputs and W-bit quantized weights

Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

- Trade-off accuracy and hardware cost
- Sweep proxy num Q and quantization bits W

Accuracy vs. Hardware Cost (Area Overhead) of the OPM

Runtime OPM implementation on Neoverse N1

- Trade-off accuracy and hardware cost
- Sweep proxy num $oldsymbol{Q}$ and quantization bits $oldsymbol{W}$
- Strategy
 - Keep quantization W= 10 to 12 bits
 - Vary **Q** for different solutions
- For an OPM with *Q*=159, *W*=11
 - < 0.2% area overhead of Neoverse N1
 - < 10% in the error</p>

Potential Application: Design-time Power Introspection

Trained **only** with **more meaningful signals** as initial feature candidates

Distribution of power proxies on Neoverse N1

Better interpretability

Identify power contributors for designers!

Potential Application: Runtime dl/dt Mitigation

Enable CPU-driven Proactive dI/dt Mitigation!

What I Believe We Should Target

Traditional Chip Design

How does the voltage noise distribute on the circuit layout?

Fine-grained IR Drop Hotspots on Layout

Initial IR drop distribution

After adding wires to PDN

- IR drop unevenly distribute on a layout
- Need identification of IR drop hotspot before mitigation

Cost on IR Drop Identification

Time-consuming simulations performed repeatedly

[Z. Xie, et al. ASPDAC'20] [Z. Xie, et al. ICCAD'20] (Invited)

Dynamic IR Drop Estimation Methodology

• Neighbors all contribute to power demand at a local region

Incorporate Timing with Customization

67

- Power/current consumption depends on switching activities
- Gates switch at different time frame/instant!

Experimental Results on IR Drop

Design MD1	Violated	#
	Cell	Hotspots
Before Mitigate	22185	5092
After Mitigate	17052	3778
Improvement	23%	26%
_		
Design MD2	Violated	#
	Cell	Hotspots

31097

23941

23%

3627

2489

31%

Before Mitigate

After Mitigate

Improvement

- Superior accuracy over previous work
- Integrated to guide mitigation flow to reduce IR violations by **20-30%**

Duke

Fang et al. Machine-learning-based dynamic IR drop prediction for eco. ICCAD'18.

Baseline:

Look into the IR Drop Model

• Hotspots on **same** layout are triggered at **different** time frames

Summary and Takeaway

- Problem: Increasing Challenges in Chip Design
 - Cost, time-to-market, reliance on designers, diminishing performance return,
- ML in chip design
 - Targets routability, timing and interconnect, power and power delivery challenges
 - Less simulation time, faster feedback, less designer effort
- Automated and unified ML in both design & runtime
 - Reduces months of model development to hours, no developers
 - Benefit the entire chip life cycle

Publication List (1/2)

- **Zhiyao Xie**, et al. Pre-Placement Net Length and Timing Estimation by Customized Graph Neural Network. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD)*. Accepted.
- <u>Zhiyao Xie</u>, et al. APOLLO: An Automated Power Modeling Framework for Runtime Power Introspection in High-Volume Commercial Microprocessors. *In International Symposium on Microarchitecture (MICRO)*, 2021. (Best Paper Award).
- Chen-Chia Chang, Jingyu Pan, Tunhou Zhang, <u>Zhiyao Xie</u>, et al. Automatic Routability Predictor Development Using Neural Architecture Search. In *International Conference on Computer Aided Design (ICCAD)*, 2021.
- **<u>Zhiyao Xie</u>**, et al. Net²: A Graph Attention Network Method Customized for Pre-Placement Net Length Estimation. In *Asia and South Pacific Design Automation Conference (ASPDAC)*, 2021.
- **Zhiyao Xie**, et al. Fast IR Drop Estimation with Machine Learning (Invited). In *International Conference on Computer Aided Design (ICCAD)*, 2020.

Publication List (2/2)

- Rongjian Liang, <u>Zhiyao Xie</u>, et al. Routing-Free Crosstalk Prediction. In International Conference on Computer Aided Design (ICCAD), 2020.
- **Zhiyao Xie**, et al. FIST: A Feature-Importance Sampling and Tree- Based Method for Automatic Design Flow Parameter Tuning. In *Asia and South Pacific Design Automation Conference (ASPDAC)*, 2020.
- **Zhiyao Xie**, et al. PowerNet: Transferable Dynamic IR Drop Estimation via Maximum Convolutional Neural Network. In *Asia and South Pacific Design Automation Conference (ASPDAC)*, 2020.
- Yu-Hung Huang, <u>Zhiyao Xie</u>, et al. Routability-Driven Macro Placement with Embedded CNN-Based Prediction Model. In *Design, Automation and Test in Europe Conference (DATE)*, 2019.
- **Zhiyao Xie**, et al. RouteNet: Routability Prediction for Mixed-Size Designs Using Convolutional Neural Network. In *International Conference on Computer Aided Design (ICCAD)*, 2018.

Thank you! Questions?

Committee:

Prof. Yiran Chen (Chair)
Prof. Hai Li (Co-Chair)
Prof. Jiang Hu
Prof. James Morizio
Prof. Jeffrey Derby

Our Proposed Power Modeling Approach

A "diverse" set of random (micro-)benchmarks is critical

Training data automatically generated

- Micro-architecture agnostic **genetic algorithm** to automatically generate max-power virus
- A "diverse" set is generated: lower-power in early generations and higher-power in later generations

Model training & testing

- Experiments on 3GHz 7nm microprocessors
 Neoverse N1 and Cortex A77
- Testing on Arm power-indicative workloads
 - Steady-state, transient, and throttling regions
 - High- and low-power-consumption regions

FAQ: Prior Power Modeling Works

Methods (Hardware Overhead in Area %)	Demonstrated Application	Model Type	Temporal Resolution	PC / Proxy Selection	Cost or Overhead
[20, 35, 43, 48, 61]	Design-time software model	Analytical	>1K cycles	N/A	Low
[78]		Proxies	>1K cycles	Automatic or no selection	High
[17, 64]					Medium
[79]			Per-cycle		High
[19, 42, 44, 72, 76]					Medium
[22] (300% overhead)		Proxies	Per-cycle	Automatic Hybrid manual/auto	High
[75] (16% overhead)	Design-time				Medium
[40]	FPGA emulation		~100s cycles		
[66]			Per-cycle		
[10, 11, 16, 24, 26, 33, 34, 36, 52, 58, 62, 63, 65, 68]		Event Counters	>1K cycles	Manual	Low
[38]	- Runtime monitor		~100s cycles	Manual	
[23] (2-20%) , [51] (1.5-4%) , [53] (7%)		Proxies	>1K cycles	Automatic	Medium
[80] (4-10%) , [81] (7%)			~100s cycles	Automatic	
APOLLO (0.2% overhead)	Design-time model Runtime monitor	Proxies	Per-cycle	Automatic	Low

Comparison among various power modeling approaches. The percentage numbers are area overheads.

FAQ: Accuracy Comparison

FAQ: Accuracy with Multi-cycle Measurement Window

During inference:

$$p^{\tau}(1) = \sum_{j=1}^{Q} \omega_j \cdot x_j^{\tau}(1) = \sum_{j=1}^{Q} \omega_j \cdot \frac{1}{\tau} \sum_{i=1}^{\tau} x_j[i] = \frac{1}{\tau} \sum_{i=1}^{\tau} \sum_{j=1}^{Q} \omega_j \cdot x_j[i]$$

Thus, $p^T = \frac{1}{T/\tau} \sum_{k=1}^{T/\tau} p^{\tau}(k) = \frac{1}{T} \sum_{i=1}^{T} \sum_{j=1}^{Q} \omega_j \cdot x_j[i]$ (9)

FAQ: Model Discussion

Sum of all absolute weights

Dul

Neural Architecture Search

• Neural Architecture Search (NAS) enables design automation of ML models efficiently without human interventions

Wu, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

Search Strategy

- Define a weight on each edge to control its sampling probability
- Sample edges from the guide-DAG with probabilities
- Updating flow
 - Preprocessing
 - Loop: while the performance of model not converges
 - Subsample guide-DAGs according to the weights
 - Train the model on our dataset to get performance metrics
 - Update connection weights
 - Higher performance leads to higher weights on edges

Experimental Results – Accuracy

Comparison of the violated net count prediction

Models	Kendall's τ on designs (#nets)				Kendall's τ	Pearson's correlation	
	s349 (270)	mem_ctrl (9.3k)	b17 (33.8k)	DSP (73.1k)	on all 74 designs	on all 74 designs	
RouteNet [3]	0.3620	0.1547	0.1779	0.4414	0.5264	0.7224	
NAS-crafted model	0.6369	0.4657	0.2683	0.7302	0.5572	0.7930	

Comparison of the DRC hotspot detection

Models		ROC-AUC on d	POC AUC on all 74 designs		
	s349 (270)	mem_ctrl (9.3k)	b17 (33.8k)	DSP (73.1k)	KOC-AUC OII all 74 designs
RouteNet [3]	0.829	0.844	0.902	0.866	0.847
PROS [6]	0.487	0.483	0.478	0.489	0.676
cGAN [4]	0.516	0.515	0.521	0.517	0.510
NAS-crafted model	0.865	0.891	0.911	0.884	0.865

Method: Capture the Global Information

- To build the accurate version <u>Net^{2a}</u>:
 - Capture more global information (the topology of the whole netlist)
 - Capture the information by fast clustering (partitioning) on each netlist using h-metis
 - 1. clustering when nets viewed as node; 2. clustering when cells viewed as node
 - Different cluster IDs indicates larger distance after placement

Numbers on cell are cluster IDs:

The same cluster IDs (1 == 1). It indicates shorter distance.

The different cluster IDs (1 != 4). It indicates longer distance.

Example: study the size of **n3**. Numbers on cell & net are cluster IDs.

Graph Attention Network (GAT)

Experimental Results on Timing - Delay

TABLE V: Pre-placement Path Slack Prediction Accuracy.

	report_timing		Time	f	Time ^a	
	Error	R^2	Error	\mathbb{R}^2	Error	\mathbb{R}^2
Mean	0.38 ns	0.39	0.16 ns	0.86	0.11 ns	0.91
Median	0.18 ns	0.77	0.07 ns	0.95	0.05 ns	0.97

