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Electronic Devices are Everywhere

2 *These images are found in public domain



Increased integration and architecture improvements

Designers Try to Deliver Generational Gains
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Apple A14Apple A12 Apple A13 Apple A15

iPhone 13iPhone 8, X iPhone XS, XR iPhone 11 iPhone 12

Apple A11

5nm
15 B trasistors

5nm
11.8 B trasistors

7nm
8.5 B trasistors

7nm
6.9 B trasistors

10nm
4.3 B trasistors

*Source: TechInsights Inc.

Looks good! 

Any challenges?



Chip Design Challenges
Diminishing performance gain and increasing design cost 
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Per-Core Performance Gain is Diminishing

Partially collected by M. Horowitz et al. Plotted by Karl Rupp, 2020
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 1970  1980  1990  2000  2010  2020

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2019 by K. Rupp

Year

48 Years of Microprocessor Trend Data Design Cost is Skyrocketing

International Business Strategies, 2020

(Not including manufacturing)



Chip Design Challenges
Not only costly, also long turn-around time
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It took several thousand engineers several years 
to create, at an approximate development cost of 
$3 billion. – Jensen Huang, CEO of Nvidia

Nvidia Tesla V100 
Graphics Card Nvidia GPU Technology Conference (GTC), 2017



Inefficient chip design methodologies

This is Real Problem!
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For one Arm CPU core
with ~3 million gates

• Accurate power simulation takes ~2 weeks

• One iteration in physical design take ~1 week

• Solutions repeatedly constructed from scratch

• Solutions rely on designer intuition

• ……

Challenges at advanced node

• Pressure from IPC and frequency

• Peak power keeps increasing

• Power delivery technique is limited

• Increasing design rules to meet

• Increasing wire parasitics, causing 
wire delay and noise

• ……

Intelligent design 

methodologies 

& solutions!

Source: The Kirin 990 SoC. TechInsights Inc.



Personal AssistantHealth MonitorSmart HomeRobotsSelf-driving Cars Autopilot Drone

Manufacturing Smart Grid Financial Service HPC Security Gaming

https://github.com/ageitgey/face_recognition http://matclinic.com/2017/05/18/the-team-
behind-the-future-of-ai-in-healthcare/

https://towardsdatascience.com/using-tensorflow-object-
detection-to-do-pixel-wise-classification-702bf2605182
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https://github.com/ageitgey/face_recognition
http://matclinic.com/2017/05/18/the-team-behind-the-future-of-ai-in-healthcare/
https://towardsdatascience.com/using-tensorflow-object-detection-to-do-pixel-wise-classification-702bf2605182


Why ML/Intelligence Helps Circuit Design? An Example
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……

Various metrics (bad)

Various metrics (good)

Verilog

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

……

• Producing solutions repeatdly from scratch

N iterations

*Source: Kahng et al., VLSI physical design



Why ML/Intelligence Helps Circuit Design? An Example
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……

Various metrics (bad)

Various metrics (good)

Verilog

Solvers (trial 1)
Simulators

Simulators

Solvers (trial N)

……

• Producing solutions repeatdly from scratch
• Why not learn from prior solutions?

N iterationsFast & high-fidelity ML prediction

(trial 1)

(trial N)



Simple Plug-in and Use of ML Engines? 
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• 100s * 100s pixels

• No extra information

• Any human can tell the label

• Data is everywhere

• ……

Images Circuits (Arm Neoverse N1 CPU core)

• Millions of connected components

• 100s GB of raw information

• Need simulations to get the label

• Data is hard to get

• ……

Innovative Customized Solutions are Desired!



Many Excellent Exploration in Academia and Industry
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Increasing research efforts on ML 
for chip design automation

UT Austin            UCSD                CUHK    

TAMU                 Duke               Cornell    

module a
input in [2];

……
endmodule

Fabrication

Verification

Layout

Synthesis

ML for EDA in 
commercial tools

Cadence InnovusTM

Synopsys ICCTM II

……

Google               Nvidia              GaTech

ML for Chip Design

Traditional 
Chip Design

Electronics Research Initiative (ERI) – Design
Goal: 24 hours turnaround time & no human 



My Related Works
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PPA

Power

Performance

Area

Power & Power Delivery Challenges
[ICCAD’20], [ASPDAC’20],

[MICRO’21] (Best Paper Award)

Routability Challenges
[ICCAD’18], [DATE’18], [ICCAD’21]

Timing & Interconnect Challenges
[ICCAD’20], [ASPDAC’21], [TCAD’21]

Overall Design Flow Tuning
[ASPDAC’20]

Covered in this talk



Outline of The Dissertation

• Case Study 1: Routability Challenges (~10 min)

• Case Study 2: Timing & Interconnect Challenges (~10 min)

• Case Study 3: Power & Power Delivery Challenges (~30 min)
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Case Study 1: 

Routability Challenges



Routability Background

• Design Rule Checking (DRC)

Ø Manufacturing requirements

Ø Less DRC violations (DRV) -> better routability 

• Need DRV mitigation at early stages

Ø Requires routability prediction/estimation

• Existing solutions

Ø Fast Trial Global Routing (TR) for fast estimation

Ø Global Routing (GR) for accurate estimation

15

DRC violations (white) on circuit layout



Previous ML-based Routability Estimators
• Previous routability (DRV) estimations 

Ø ML model on small cropped regions

Ø Limited receptive field and missing global information
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Predict DRV at cropped region -> Y/N? 

Example: a layout only with cells



Previous ML-based Routability Estimators
• Previous routability (DRV) estimations 

Ø ML model on small cropped regions

Ø Limited receptive field and missing global information

Ø When macros present, less resemblance among different regions of layout
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𝑅! = 0.55 𝑅! = 0.04



First Deep Learning Method for Routability Prediction
• Task 1: which one will result in less DRV count?

• Task 2: where are DRC violations?
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cat / dog

cat

Customized CNN methods

Customized FCN methods

Layout 1 Layout 2

Layout 1 Layout 1

RouteNet [Z. Xie, et al., ICCAD’18] 



Features for Rouability Prediction
• Macro: 

• Region occupied by macros 
• Density of macro pins in each layer 

• Cell: 
• Density of cells 
• Density of cell pins

• RUDY features (wire density)
• RUDY distributions
• RUDY pins

• Congestion report:
• Trial global routing (TR) congestion 
• Global routing (GR) congestion 
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A net

w

h

RUDY = !"#
!$#

w

h

w’

h’

RUDY = !"#
!$#

+ !%"#%
!%$#%



First Deep Learning Method for Routability Prediction
• Task 1: which one will result in less DRV count?

• Task 2: where are DRC violations?
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• Requires global routing:
Hours * Number of Layouts

• Requires detailed routing
More hours * Iterations

In seconds, with similar accuracy

In seconds, outperform previous works



Experimental Results on Routability
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• Fast and accurate routability prediction at the same time
• Superior accuracy over previous work

Baseline:
Chan et al. Routability Optimization for Industrial Designs at Sub-14nm Process Nodes Using Machine Learning. In ISPD’17.

Task 1: Task 2:

Design name



Many Excellent Deep Learning Methods
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RouteNet [Xie, et al., ICCAD’18] J-Net [Liang, et al., ISPD’20] PROS [Chen, et al., ICCAD’20] 

F 32 64 32 16

Conv(9) Pool

Conv(7)
Trans(9)

32

Conv(5)

16

Conv(3)

4

Trans(5)

1

Conv(9)
Conv(7) Pool

Shortcut

[Yu, et al., DAC’19] Painting [Yu, et al., DAC’19] Tremendous Engineering Efforts Required!



What I Believe We Should Target
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ML for Chip 
Design

Auto-ML for 
Chip Design

Traditional 
Chip Design

Higher-level of 
automation



Automatic Estimator Development – Search Space
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Standard convolution
Mixed (depth-wise)

convolution

Candidate node operations

Atrous/dilated 
convolution

Input 
features

Down-
sampling

Down-
sampling

Shortcut

Down-
sampling

Segmentation
/ Regression

DRC hotspot
/ Violated net

Shortcut Shortcut

Sampled-
DAG !!

Sampled-
DAG !"

Sampled-
DAG !#

Sampled-
DAG !$

Sampled-
DAG !%

Sampled-
DAG !&

C32 C64 Atr Mix

[C. Chang, et al. ICCAD’21] 

Sampling 
sub-graph



Automatic Estimator Development – Searching Algorithm

In each iteration:

1. Sample from the completely-ordered graph (𝐺') to get (𝑆')
2. Evaluate the sampled model by training and testing

3. Update the sampling probability by evaluation result

25



Results from Automatically Developed Estimator
• Developed without human in one day

• Outperforming RouteNet [ICCAD’18], cGAN [DAC’19], PROS [ICCAD’20]

ROC-AUC of DRC hotspot detection
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Baseline:
Xie et al. RouteNet: Routability prediction for mixed-size designs using convolutional neural network. In ICCAD’18.
Yu et al. Painting on placement: Forecasting routing congestion using conditional generative adversarial nets. In DAC’19.
Chen et al. PROS: A plug-in for routability optimization applied in the state-of-the-art commercial EDA tool using deep learning. In ICCAD’20.
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Case Study 2: 

Timing & Interconnect Challenges



Interconnect Estimation on Netlist is Inaccurate
• Net length prediction is desired at early stage
• Interconnect is a dominating factor for power & performance
• RC of metal wires proportional to net length
• Net length not explicitly quantified or optimized until placement

• Trend in EDA industry: improve predictability at early stage
• Physical-aware synthesis with consistent EDA engines in the flow
• This is still time consuming

28

A net

w

h Net length (wire length of a net) = 𝑤 + ℎ



Timing Estimation on Netlist is Inaccurate
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Placement
Hours-days

Gate-level Netlist

Circuit Layout

Absent net length information
Inaccurate timing estimation

Edit netlist if 
necessary 

Better net length information
Better timing estimation

[Z. Xie, et al. ASPDAC’21]  
[Z. Xie, et al. TCAD’22] 



Previous Works: Early Net Length Prediction
• Previous works lack global information of the whole netlist

u

v

x

y

Prior work 1 [DAC’03]

Cell Connection

2-cell net pull
(strong)

5-cell net pull
(weak)

30

a b

Predict: Net-length a Net-length b<
u

v

x

y

Prior work 2 [ICCAD’05]

a b

Predict: Net-length a Net-length b<

3 hops 5 hops
(strong)

(strong)

Compares ‘pulling strength’ Compares ‘#hops’



Example: Global Information in Net Length Prediction

31

Net-length a Net-length b>>
Delay a Delay b>>

Net-length? Net-length?

Traditional tools: Same!
Previous works: Similar!

Circuit Netlist

Placement
Hours-days

Circuit Layout

a b



Our (Fast) Solution to Capture Global Information
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net-length a net-length b
Customized GNN

Process as 
Graph

Reduces error in commercial timing engine 

Timing model



Our (Standard) Solution to Capture Global Information
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Recognize net-length a net-length b>>

Partitioning

Reduces error in commercial timing engine 

Timing model

Customized GNN

Process as 
Graph

p1

p2

p3

Info on Edge



Graph Neural Network Background
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D

A

B

C

E

F

An input Graph

A

D

B

C

A

C

A

B

E

F

A

Target node

Layer 2

Processing the graph

Layer 1

𝑾
𝟏

𝑾𝟏

𝑾𝟏

𝑾𝟐

with 2-layer GNN

2-layer GNN



Our Fast & Standard GNN Method
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FC
Layer

Node features

FC
Layer

Node features

Node features || Edge Features

𝑾𝟏 𝑾𝟐

𝑾𝟑

𝑬𝑾 𝑾𝟒

𝑾𝟐𝑾𝟏

Structures in the standard version

Previous GNN example:

Our GNN-based method:



Experimental Results on Net Length
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• Measured on 6 benchmarks with 37 different designs
• High accuracy (correlation) for individual net length prediction

Baseline:
Hu et al. Wire length prediction based clustering and its application in placement, DAC’03.
Kahng et al. Intrinsic shortest path length: a new, accurate a priori wirelength estimator. ICCAD’05.



Experimental Results on Timing
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• Improve arc delays over commercial tools 
• Improve slack estimations (WNS, TNS) over commercial tools 

𝑹 𝑹𝟐

Timing Report 0.86 0.70

Model w/o
Net Length

0.89 0.78

Ours (Fast) 0.91 0.82

Ours 0.94 0.87

Delay of Timing Arcs
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Case Study 3: 

Power & Power Delivery Challenges



What I Believe We Should Target

39

ML for Chip 
Design

Auto-ML for 
Chip Design

Unified ML for Both
Design & Runtime

Traditional 
Chip Design

Higher-level of 
automation

Benefit the whole
chip life cycle



Challenge 1 – Design-time Power Introspection 
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• Delivering generational performance gains adversely impacts CPU power

• Power-delivery resources not keeping pace with CPU power demands

• Increasing power-sensitivity drives the need for design-time introspection

Many-core CPU with
more transistors

Wider issue

8-wide

5-8-wide

15-wide

Fetch

Decode/Rename

Issue

Source: Arm Neoverse V1, 2021

More vectored execution

256b

256b
256b+ =

256b SVE

256b

256b
256b+ =

APOLLO [Z. Xie, et al., MICRO’21] (Best Paper Award)



Challenge 2 – Run-time Power Introspection
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O
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)

Time (ns)

Measured di/dt event on Arm A72 SoC

• Peak-Power mitigation requires accurate power estimation to drive throttling
• Manually inferring proxies is very difficult in complex modern CPUs

• Abrupt changes in CPU current-demand (di/dt event) leading to deep voltage-droop

Estimated Power with Manual Proxies

G
ro

un
d 

Tr
ut

h 
Po

w
er

Modelling power on one µarch block 
Different workloads

Limited accuracy



Challenge 3 - Workload Power Characterization

• Need power-characterization of real-world
workloads
• Simple micro-benchmarks not longer sufficient

• Single SPEC simpoint can take weeks on the 
expensive emulator
• Power measurement is expensive

• Only average power consumption available
• Impossible to scale to di/dt event analysis

Industry-Standard Emulator-Driven Power Flow 

Offline windowed 
simulation trace

Power analysis

Windowed 
average power

Simulate on netlist 
on emulator

Compile 
workload

Gate-level 
netlist

Simpoint 
binary

42



Runtime Challenges Summary
• Peak power mitigation

• Difficult to manually infer proxies

• Voltage droop (Ldi/dt) mitigation
• Require very low response latency

Design-time Challenges Summary
• Simulation on realistic workloads

• Expensive and slow
• Limited temporal-resolution

Challenges from Both Design-time and Runtime
A unified solution for both scenarios

43

1. Accurate yet fast

2. Achieve high temporal resolution

3. Low runtime on-chip overheads

4. Easily extensible to diverse designs

What is An “Ideal” Power Estimator?



APOLLO: A Unified Power Modeling Framework

• Fast, yet accurate design-time simulation

• Single-cycle temporal resolution

• Low-cost, yet accurate runtime monitoring

• Design-agnostic automated development

44



A Workload Execution Preview of APOLLO

• ~2 weeks execution time reduced to few minutes on the emulator

• Unprecedented power-introspection due to single-cycle temporal resolution 

40K cycles of APOLLO Power Estimation out of a trace of 17M cycles
hmmer (SPEC 2006) simpoint
on the Neoverse N1 CPU core

45



APOLLO Feature Generation & Model Training
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cycle1

cycle2

A design in RTL level.

𝐹 =

𝑀 RTL signals

…
…

……

𝑋

Train the ML model: 𝐹 𝑋 = 𝑦

𝑦

…
…

P0

P1

P2

P0

P1

P2

Power

A

B

C

D

E
cycle0 cycle1 cycle2

In .fsdb/.vcd file format 𝑴 > 500,000 in Neoverse N1
𝑴 > 1,000,000 in Cortex-A77

cycle0
A B C D E



Simple Key Ideas

• Linear model can estimate power accurately

• Small portion of signals (proxies) can provide enough information

Linear model with 𝑴 RTL signals
𝑃 = ∑'+,𝑴 𝑥' ∗ 𝑤′'

Each cycle:
A B C D E

𝑀 signals

……
𝑥! 𝑥" 𝑥# 𝑥$ 𝑥%

Linear model with 𝑸 selected proxies 
𝑃 = ∑'+,

𝑸 𝑠' ∗ 𝑤'

Auto-
Selection

Each cycle:
A B C D E

𝑄 selected proxies

……
𝒔𝟏=𝑥! 𝒔𝟐=𝑥$

Linear model with 𝑴 RTL signals
𝑃 = ∑'+,𝑴 𝑥' ∗ 𝑤′'

47



ML-Based Power Proxies Selection
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Step1: Pruning
Training with 

strong penalty
strength

Step2: ‘Relax’
Retraining

……

𝑴 Features 

𝑥!

𝑥(

𝑤′(

𝑤′!𝑥"

𝜮

𝑃 = ∑'+,𝑴 𝑥' ∗ 𝑤′'

𝑸 retrained weights 

𝜮

𝑤!

𝑤)

𝑃 = ∑'+,
𝑸 𝑠' ∗ 𝑤'

……

Reach 𝑸 non-zero weights 

𝑤′! ≠ 0

𝑤′(*! ≠ 0

𝜮

𝑤′( = 0

Minimax concave penalty (MCP) for pruning

Model construction in two steps



Why MCP for Pruning?

• To make 𝑸 ≪ 𝑴, penalty is set to be very large. 

• Lasso degrades model accuracy under large penalty

• MCP protects large weights thus maintains model accuracy

The hyper-parameter g in MCP sets a threshold (gl ) be-
tween large and small weights. Figure 4(b) visualizes PLasso
and PMCP with l = 1 and g = 3. The absolute derivative of a
penalty term indicates the weight shrinking rate during train-
ing [44]. Since |∂PLasso/∂w0

j|= l , all weights shrink at the
same rate l in Lasso. In comparison, the absolute derivative
of MCP penalty is shown in Equation (7). Compared with the
uniform shrinking rate for PLasso, large weights with values
> gl in MCP do not shrink at all, since derivatives of their
penalty terms are zero. For weights with values < gl , smaller
weights shrink faster. As such, MCP leaves large weights
unpenalized and thereby benefits the prediction accuracy of
the generated power model. In our experiment, this MCP-
based model is efficiently optimized by adopting both the
coordinate descent method [59] and the proximity operator
of MCP [58]. The penalty strength l in PMCP can be adjusted
to control the number of power proxies Q.

|
∂PMCP(w0

j,g > 1)
∂w0

j
|=

(
l � |w0

j |
g if |w0

j| gl
0 if |w0

j|> gl
(7)

(a)

𝛾𝜆−𝛾𝜆

(b)

Figure 4: (a) APOLLO model construction process, (b)
Penalty terms of MCP and Lasso.

4.4 Final Model Construction
After power proxy selection by pruning with MCP, we

have trained a temporary model p0 = ÂM
j=1 w0

j · x j with Q
selected proxies SQ and corresponding non-zero weight terms
w0

j. This temporary model can already provide rather accurate
predictions. However, even though the MCP protects larger
weights, many remaining weights are still penalized by the
large penalty strength l to a certain extent. In order to further
boost the model accuracy, we train a new linear model p =

ÂQ
j=1 w j ·x j from scratch with only selected power proxies SQ.

In this new linear model, the ordinary L2 penalty, i.e., ridge
penalty [26], is applied, with a much weaker penalty strength
compared with the l used in the previous proxy selection
step. This weak ridge penalty is applied to reduce overfitting
on the training data.

As shown in Figure 4(a), this step is named relaxation and
generates the final APOLLO power model. During the power
proxy selection, to shrink most weights to zero, the penalty
term P dominates the loss, and the prediction error L is less
optimized. This relaxation can be viewed as a fine-tuning
stage to better optimize L. Since L2 is not a sparsity-inducing
penalty, the number of power proxies Q remains unchanged.

Section 8 further quantifies the benefits of both pruning with
MCP and relaxation in Figure 4(a).

4.5 Multi-Cycle Power Modeling

……
!!: Average Power over ! cycles

""[1] !
"……

!!: Average Power over ! cycles

""[1] ""[2] ……

Example: The power measurement window size is ! cycles.
Selected fixed window " cycles; Update interval # = 1 cycle.
$! is the label of each window; %"[1], …, %"[ !" ] are power predictions.

……

"
""[2] ""[   ]

!
"""[   ]

Figure 5: An example of multi-cycle power modeling.

In previous sections, we construct the APOLLO model
for per-cycle power tracing. In practice, designers may ex-
plore the trade-off between temporal granularity with model
efficiency or accuracy. Here we provide an accurate general-
ization of the per-cycle APOLLO model to any given timing
window size. This multi-cycle model estimates the average
power over a timing window with T cycles.

We firstly differentiate two concepts: the power measure-
ment window size T and the estimation update interval U .
The window size T controls how the ground-truth power
label is measured, and the update interval U decides how
frequently the model updates its power estimation. In the
example in Figure 5, the power label at each window is aver-
aged over T cycles, while the update interval U between the
two neighboring windows equals one cycle. For the per-cycle
power tracing in APOLLO, both window size T and interval
U equal one cycle. As for multi-cycle power modeling, it
can work for any window size T > 1 cycle with the update
interval U = 1 cycle.

The most straightforward multi-cycle solutionis to directly
use the average of T per-cycle power predictions pT over the
T -cycle window1. It keeps using a similar per-cycle model
for any given T . But considering multi-cycle scenarios allow
accessing the toggling activities over multiple cycles at each
estimation, several times more input information is available
compared with the per-cycle scenario. This solution does not
capture such additional available information.

Another solution in previous approaches [33] is to average
initial inputs before model construction starts. For example,
one may use the averaged toggling counts over T cycles
as raw inputs, which can be denoted as xT

1 , ...,xT
M . In this

solution, the model learns the pattern behind the correlation
between the T -cycle averaged toggling numbers xT and the
corresponding T -cycle averaged power label yT . However, it
means the pattern to learn is dependent on the given value of
T , which ranges from one to thousands or millions depending
on various application scenarios.

In our solution, for any given window size T , we propose
to select a fixed small timing window with t cycles. An ex-
ample is shown in Figure 5. For each t-cycle window i, we
1We use the superscript of a variable to denote the average of the
variable over a timing window with multiple cycles.

6

MCP protects large weights

Lasso penalize all weights

49



Model Training and Testing

• Experiments on 3GHz 7nm Arm commercial microprocessors Neoverse N1 and Cortex A77 

• Automatically generate a “diverse” set of random micro-benchmarks for training

• Testing on various Arm power-indicative workloads
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Prediction Accuracy as Design-Time Power Model
Per-cycle prediction from APOLLO with 𝑸=159 proxies
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ttlin

g_2

thro
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• MAE = 7.19%
• R2 = 0.953

Prediction trace shows great
agreement with ground-truth
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Prediction Accuracy as Design-Time Power Model
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Per-cycle error
can be averaged

Per-cycle prediction from APOLLO with 𝑸=159 proxies

• MAE = 7.19%
• R2 = 0.953
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Accuracy on Multi-Cycle Power Estimation

53

128-cycle prediction from APOLLO with 𝑸=70 proxies

• MAE = 2.82%
• R2 = 0.993
• Higher accuracy

……
Average Power over ! = #$% cycles

……



Automated Low-Cost Runtime OPM Implementation
APOLLO is designed to be hardware-friendly

54

No multipliers required

Only 𝑸 binary inputs

{0, 1}

{0, 1}

{0, 1}

{0, 1}

𝜮

𝑤!

𝑤)

𝑾-bit quantized
fixed-point weights

𝚺

Weight
Quantization

{0, 1}

Implement

Configurable
OPM template

in C++

High-Level
Synthesis

OPM in RTL

Verify OPM accuracy

Verifying



Prediction Accuracy from Design-time Model & OPM

• MAE = 7.19%
• R2 = 0.953

Per-cycle prediction from APOLLO with 𝑸=159 proxies
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Prediction Accuracy from Design-time Model & OPM

• MAE = 7.19%
• R2 = 0.953

• MAE = 7.19%
• R2 = 0.953

• 𝑾=11 bits after 
quantization

Per-cycle prediction from APOLLO with 𝑸=159 proxies

Prediction from runtime OPM with 𝑸=159 proxies
Negligible 
difference

Negligible 
difference
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Overview of the OPM Hardware Design

• No multipliers or dividers, only Q binary inputs and W-bit quantized weights
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Accuracy vs. Hardware Cost (Area Overhead) of the OPM
Runtime OPM implementation on Neoverse N1
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ErrorM
easured on HW
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• Trade-off accuracy and hardware cost
• Sweep proxy num 𝑸 and quantization bits 𝑾



Accuracy vs. Hardware Cost (Area Overhead) of the OPM
Runtime OPM implementation on Neoverse N1

59

• Trade-off accuracy and hardware cost
• Sweep proxy num 𝑸 and quantization bits 𝑾
• Strategy
• Keep quantization 𝑾= 10 to 12 bits
• Vary 𝑸 for different solutions

• For an OPM with 𝑸=159, 𝑾=11
• < 0.2% area overhead of Neoverse N1 
• < 10% in the error 

Num of B
its

 (𝑊
)

Num of Power Proxies (Q)

One OPM 
solution

0.1%          0.2%           0.3%           0.4%

OPM Gate Area 
Overhead:

ErrorM
easured on HW

 (%
)



Identify power contributors for designers!

Potential Application: Design-time Power Introspection 
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Trained only with more meaningful
signals as initial feature candidates

Distribution of power 
proxies on Neoverse N1 Better interpretability



Enable CPU-driven Proactive 𝒅𝑰/𝒅𝒕Mitigation! 

Potential Application: Runtime dI/dt Mitigation 
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Log-scale 𝑑𝐼/𝑑𝑡 Observed (scaled)

𝑑𝐼
/𝑑
𝑡P

re
di

ct
ed

 (s
ca

le
d)



What I Believe We Should Target
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ML for Chip 
Design

Auto-ML for 
Chip Design

Unified ML for Both
Design & Runtime

Traditional 
Chip Design

Higher-level of 
automation

Benefit the whole
chip life cycle



How does the voltage noise
distribute on the circuit layout?
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Fine-grained IR Drop Hotspots on Layout

• IR drop unevenly distribute on a layout

• Need identification of IR drop hotspot before mitigation

64

Initial IR drop distribution After adding wires to PDN

Source: Cadence



Cost on IR Drop Identification
Time-consuming simulations performed repeatedly
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Simulation to get IR drop hotspots

~4 hours on 1M cells

Provide feedback
Edit the design

4-hour simulation again

Not only once!
ML-based algorithm: 
5 mins, >90% accuracy

[Z. Xie, et al. ASPDAC’20]
[Z. Xie, et al. ICCAD’20] (Invited)



Dynamic IR Drop Estimation Methodology
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The location to check IR drop

Look at power at larger region

• Neighbors all contribute to power demand at a local region

IR drop 
value

CNN model

Input region with
power distribution

One important

factor is missing!



Incorporate Timing with Customization 

• Power/current consumption depends on switching activities

• Gates switch at different time frame/instant!
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Maximum current demand
Worst IR drop

Part of Input Region

Cells

Signal propagation

Switch
early

Switch late (in same cycle)

clock



Our Customized Method
Maximum structure with CNN
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P

P

Power map at
time frame 1

Power map at
time frame N

P

CNN
IR1

IRN

…… …… Max

Switch
early

Switch late

IR

Same
CNN

Input Region

Performs end-to-end training

N time frames in one cycle



Experimental Results on IR Drop
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• Superior accuracy over previous work

• Integrated to guide mitigation flow to reduce IR violations by 20-30% 
Baseline:
Fang et al. Machine-learning-based dynamic IR drop prediction for eco. ICCAD’18.



Look into the IR Drop Model

• Hotspots on same layout are triggered at different time frames
70

Ground-truth IR drop on the same layout

Where takes late time-frame

Where takes early time-frame

Max

Max

Similar
Pattern

Similar
Pattern



Summary and Takeaway
• Problem: Increasing Challenges in Chip Design

• Cost, time-to-market, reliance on designers, diminishing performance return, ……

• ML in chip design 
• Targets routability, timing and interconnect, power and power delivery challenges
• Less simulation time, faster feedback, less designer effort

• Automated and unified ML in both design & runtime
• Reduces months of model development to hours, no developers
• Benefit the entire chip life cycle
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Vision

Intelligent SolutionsChip design & implementation
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Thank you! Questions?

Committee:
Prof. Yiran Chen (Chair)
Prof. Hai Li (Co-Chair)
Prof. Jiang Hu
Prof. James Morizio
Prof. Jeffrey Derby



Training data automatically generated
• Micro-architecture agnostic genetic algorithm 

to automatically generate max-power virus 

• A “diverse” set is generated: lower-power in 
early generations and higher-power in later 
generations

Model training & testing

Our Proposed Power Modeling Approach

76

A “diverse” set of random (micro-)benchmarks is critical 

• Experiments on 3GHz 7nm microprocessors
Neoverse N1 and Cortex A77

• Testing on Arm power-indicative workloads
• Steady-state, transient, and throttling regions
• High- and low-power-consumption regions

Power virus 
generated

Start with 
low-power
benchmark
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FAQ: Prior Power Modeling Works

Comparison among various power modeling approaches. The percentage numbers are area overheads. 



FAQ: Accuracy Comparison

Neoverse N1 CPU core Cortex-A77 CPU core



FAQ: Accuracy with Multi-cycle Measurement Window

Q = 200 for Simmani
Q = 70 for APOLLO

During inference:



FAQ: Model Discussion

Sum of all absolute weights Variance inflation factors (VIF) 



Neural Architecture Search
• Neural Architecture Search (NAS) enables design automation of ML models 

efficiently without human interventions

Traditional DNN Design Neural Architecture Search

Wu, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition. 2019.

Human 
knowledge



Search Strategy
• Define a weight on each edge to control its sampling probability

• Sample edges from the guide-DAG with probabilities  

• Updating flow
• Preprocessing
• Loop: while the performance of model not converges

• Subsample guide-DAGs according to the weights
• Train the model on our dataset to get performance metrics
• Update connection weights 

• Higher performance leads to higher weights on edges
3

5

2

1

6

7 4

DS
Sampled-
DAG !!

Guide-DAG 
""

DS DS
Sampled-
DAG !!

Sampled-DAG
!"

DS
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Experimental Results – Accuracy
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Comparison of the violated net count prediction

Comparison of the DRC hotspot detection



Method: Capture the Global Information
• To build the accurate version Net2a:

• Capture more global information (the topology of the whole netlist)
• Capture the information by fast clustering (partitioning) on each netlist using h-metis
• 1. clustering when nets viewed as node; 2. clustering when cells viewed as node
• Different cluster IDs indicates larger distance after placement
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Example: study the size of n3.
Numbers on cell & net are cluster IDs.

D

H

G

Pulled by n5

Pulled by n4

Pulled by n2

Pulled by n1

n3

1 1

41

The same cluster IDs (1 == 1).
It indicates shorter distance.

The different cluster IDs (1 != 4).
It indicates longer distance.

Numbers on cell are cluster IDs:



Graph Attention Network (GAT)

Layer 1

Layer 2

Layer 3

Fully Connected Layer

𝑍(,) = 𝑋
Node feature

𝑍(!) 𝑍(") 𝑍(#)

Node 
embedding

𝑍)
(+) = 𝜎( ∑- 𝛼). 𝑍.

(+/0)𝑊 + )
Activation 

function

Attention
coefficient

Trainable 
weight

𝛼./ = softmax(𝜏./)
𝜏./ = LeakyReLu(𝑎 0 [𝑊 0 𝑍.

0*! ||𝑊 0 𝑍/
0*! ])

For node i and all its neighbors j :

Trainable vector 85



Experimental Results on Timing - Delay
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