
PowerNet: Transferable Dynamic IR Drop Estimation via
Maximum Convolutional Neural Network

Zhiyao Xie1, Haoxing Ren2, Brucek Khailany2, Ye Sheng2, Santosh Santosh2, Jiang Hu3, Yiran Chen1

1Duke University, 2Nvidia Corporation, 3Texas A&M University

{zhiyao.xie, yiran.chen}@duke.edu, {haoxingr, bkhailany, sye, santosha}@nvidia.com, jianghu@tamu.edu

Abstract—IR drop is a fundamental constraint required by almost
all chip designs. However, its evaluation usually takes a long time that
hinders mitigation techniques for fixing its violations. In this work, we
develop a fast dynamic IR drop estimation technique, named PowerNet,
based on a convolutional neural network (CNN). It can handle both
vector-based and vectorless IR analyses. Moreover, the proposed CNN
model is general and transferable to different designs. This is in contrast
to most existing machine learning (ML) approaches, where a model
is applicable only to a specific design. Experimental results show that
PowerNet outperforms the latest ML method by 9% in accuracy for
the challenging case of vectorless IR drop and achieves a 30× speedup
compared to an accurate IR drop commercial tool. Further, a mitigation
tool guided by PowerNet reduces IR drop hotspots by 26% and 31%
on two industrial designs, respectively, with very limited modification on
their power grids.

I. INTRODUCTION

Dynamic IR drop is the deviation of the power supply level from
its specification caused by localized power demand and switching
patterns. It must be restricted in order for a circuit to meet its timing
target and function properly. As such, it is vitally important to verify
if IR drop satisfies design constraints and identify constraint violation
regions, a.k.a. hotspots. As chip complexity continues to grow, IR
drop evaluation becomes increasingly challenging.

In industrial designs, dynamic IR drop estimation is often obtained
by running simulation-based commercial tools, which are known
to be accurate but very time-consuming. Machine learning (ML)-
based approaches have been explored in an effort to achieve faster
estimation. Many of these previous works are summarized in Table
I. These works learn to predict dynamic IR drop of each cell through
features such as cell positions, timing windows, path resistance, etc.
with supervised machine learning techniques.

A major weakness shared by most of the previous works is that
they are not “design independent”, i.e., transferable to new designs
that are not seen in its training dataset. In other words, most of
these previous works need to train a new model for each distinct
design. Some work [1] even dedicates one model for every single cell.
Training a new model with new labels entails a long simulation and
training time, which defeats the original purpose of fast estimation.
The only exception is [2], which is based on unsupervised learning
and does not learn any previous knowledge.

In addition, most previous ML approaches to IR drop estimation
only focus on vector-based analysis, ignoring vectorless IR drop. For
dynamic IR drop, the peak IR drop in the design can be analyzed
either using vectorless analysis or vector-based analysis using simula-
tion patterns from value change dump (VCD) files. Vectorless IR drop
analysis is highly desirable for IR mitigation during physical design
for two main reasons. Firstly, for a large chiplet, vector-based IR
drop analysis requires a huge number of simulation patterns to cover
most regions and thus can be unbearably slow. Secondly, designers
are unable to obtain accurate power simulation patterns early in the
design process. For large industrial designs, multiple teams work on
different RTL units in parallel and the overall simulation patterns
change throughout the design process. Vectorless IR drop provides a
faster and earlier estimation in this case, however, accurate estimation
is more difficult than vector-based due to the increased diversity
in switching activity distribution. We will demonstrate the accuracy
difference between vector-based and vectorless IR drop analysis in
Section V-E.

TABLE I: Comparison Among Different Works

ML Methods Model Design Independent
[1] (ITC 12) Linear Regression No
[3] (VTS 14) SVM No
[2] (ATS 17) Clustering Unsupervised
[4] (VTS 18) ANN No
[5] (ICCAD 18) XGBoost No
PowerNet Max-CNN Yes

Our CNN-based method PowerNet provides a transferable ML
model for both vectorless and vector-based IR drop estimations.
We put more emphasis on vectorless estimation in our experiments,
considering its higher difficulty and usability. PowerNet addresses
these challenges by its innovative preprocessed features and CNN
architecture. In previous works [5], the design dependent features
such as coordinates and timing information of each cell are directly
fed into the ML model. Since locations and timing do not directly
cause IR drop, directly fitting a model based on these features would
likely introduce the overfitting problem, making the model inaccurate
on unseen designs. Instead, design-dependent information should be
preprocessed to correlate with IR drop before feeding to ML models.
It is known that IR drop directly correlates with cell power con-
sumption. Therefore, PowerNet carefully incorporates these design-
dependent features into power maps during preprocessing. It also
utilizes an innovative CNN architecture to capture maximum transient
IR drop. The main contributions of our work include:

• We propose PowerNet, an innovative CNN method targeting
both vectorless and vector-based IR drop estimation. It is the
first method that claims to perform design-independent fast IR
drop estimations.

• For experiments on both vectorless and vector-based IR drop
estimations, PowerNet outperforms all other ML methods on
every tested industrial design. Especially for vectorless predic-
tion, PowerNet gives a 9% higher accuracy.

• PowerNet is 30× faster than an accurate simulation-based
commercial IR drop analysis tool.

• An IR drop mitigation tool guided by PowerNet reduces IR drop
hotspots by 26% and 31% on two new industrial designs with
very limited modifications to the power grid.

• We provide a detailed analysis on PowerNet’s mechanism by
showing two representative examples.

II. PROBLEM FORMULATION

This work aims at detecting locations of IR drop hotspots. Hotspots
are regions where IR drop is greater than a specified threshold. To
estimate IR drop, every design is tessellated into an array of tiles,
each of which is an l×l square. The tile size l controls the granularity
of our solution. In this way, a design with the size of W × H is
represented as a w × h matrix, where w = W/l and h = H/l. The
IR drop at each tile is the mean value of IR drop of all cells within it.
Then IR drop for the whole design is IR ∈ Rw×h. The ground-truth
IR is also referred to as label in this paper. As for input features,
different types of power dissipation values are calculated for each tile.
We refer to each w × h power matrix as a power map. Essentially,
power maps are the distribution of power density. PowerNet F tries
to give the closest estimation F ∗ on IR based on all G different
power maps {Pmap1 ... PmapG}.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE

F : {Pmap1 ∈ Rw×h... PmapG ∈ Rw×h} → Rw×h

F ∗ = argmin
F

Loss(F ({Pmap1... PmapG}), IR).

III. ALGORITHM

A. Feature Extraction

According to Ohm’s Law, excessive IR drop can be caused by
either high current or high resistance. As is typical in state-of-the-art
VLSI design, we assume a uniform power grid in the power delivery
network (PDN), which means the resistance distribution across a
whole design is also rather uniform. Thus in PowerNet, we choose not
to spend extra time calculating resistance for each cell. For designs
with a non-uniform PDN, each cell’s power value can be scaled by its
resistance. The influence of resistance is further elaborated in Section
V-D. When resistance is considered consistent, current becomes the
only key issue in IR drop estimation. Since local power consumption
is proportional to local current, PowerNet utilizes cell power as its
input features.

For each cell c, we do not exhaust all possible features that seem to
be relevant, which make the model too complex and overfit. Instead,
we select features that prove to provide essential information for IR
drop estimation. Hard macros are not included. Below are the details
of all features and the labels extracted from them:

• Power: Three types of power values are extracted.
– Internal power (pi)
– Switching power (ps)
– Leakage power (pl)

• Signal arrival time: The minimum and maximum signal arrival
times to the cell within a clock cycle.
– Min arrival time (tmin)
– Max arrival time (tmax)

• Coordinates: The cell location after placement.
– Min and max x axis (xmin, xmax)
– Min and max y axis (ymin, ymax)

• Toggle rate: Describes how often output changes with regard
to a given clock input.
– Rate (rtog)

• IR drop: The difference between the nominal supply voltage
and the actual voltage arrived at each cell. (ir)

All of the above features are scalar values. For these power types,
internal power pi means power dissipated by capacitance internal
to each cell; switching power ps is power dissipated by the load
capacitance at the output of the cell; leakage power pl, which is
relatively small in the experiment, is consumed by unintended leakage
that does not contribute to function. Based on these basic power types,
we can generate more power information for each cell:

psca = (pi + ps) ∗ rtog + pl

pall = pi + ps + pl

Both psca and pall reflect the overall power dissipated by cells, but
psca scales the overall power by toggle rate of each cell. PowerNet
learns to combine the total power from these different sources of
power dissipation.

l	𝜇𝑚l	𝜇𝑚

P1 P2

P3 P4

P5

Fig. 1: Space decomposition.

Algorithm 1 Preprocessing by Decomposition

Input: Features {pi, ps, pl, tmin, tmax, xmin, xmax, ymin, ymax,
rtog} for every cell c. Design weight W , height H , cell number C
and clock cycle T . Tile size l and time window t.
Preprocess:

1: w =W/l, h = H/l, N = T/t
2: Set Pi, Ps, Psca, Pall ∈ {0}w×h

3: Set {Pt[j] ∈ {0}w×h | j ∈ [1, N]}
4: for each cell c ∈ [1, C] do
5: psca = (pi + ps) ∗ rtog + pl
6: pall = pi + ps + pl
7: xn = b(xmin/l)c, xx = d(xmax/l)e
8: yn = b(ymin/l)c, yx = d(ymax/l)e
9: s = (xx − xn) ∗ (yx − yn)

10: Set mask M ∈ {0}w×h, M [xn : xx][yn : yx] = 1
11: Pi += M ∗ pi/s
12: Ps += M ∗ ps/s
13: Psca += M ∗ psca/s
14: Pall += M ∗ pall/s
15: for each int j ∈ [1, N] do
16: if tmin < j ∗ t and tmax > j ∗ t then
17: Pt[j] += M ∗ psca/s

Output: Time-decomposed {Pt[j] ∈ Rw×h | j ∈ [1, N]},
Power map Pi, Ps, Psca, Pall ∈ Rw×h

B. Preprocessing by Decomposition
After power is extracted, the IR drop seen at each cell is not just

simply proportional to its own cell power but also depends on its
neighborhood due to both spatial and temporal current distributions.
Spatially, local current is proportional to the sum of power demand
of all cells in a local region. Hence, the power of neighboring
cells also contributes to IR drop of the analyzed cell. We amortize
cell power into grid tiles by a space decomposition. This also
motivates us to adopt a CNN model in PowerNet, which is inherently
designed for learning scalable two-dimensional patterns. Even when
considering spatial information, a region with high overall power
demand may still not be IR drop hotspot. This case arises when cells
in the region do not switch at the same time. Such asynchronous
switching disperses voltage drop into a larger timing window. As a
result, maximum dynamic IR drop, i.e. the highest-transient voltage
drop, can still be low. PowerNet measures such influence by time
decomposition during preprocessing.

Algorithm 1 shows our preprocessing method. It generates power
maps based on cell information. For each design, two types of power
maps are generated. The first type includes {Pi, Ps, Psca, Pall}.
They only go through spatial decomposition and do not carry timing
information. The second type {Pt[j] ∈ Rw×h | j ∈ [1, N]} goes
through both a space decomposition and a time decomposition.

As illustrated in Figure 1, space decomposition (Lines 7 to 14)
amortizes cell power into any grid tiles occupied by the cell. Assume
the regular squares are grid tiles and grey rectangles are cells. P1

to P5 are cell power. For the leftmost highlighted tile, its power
equals P1 + P2 + P3 + P4/3 + P5/2. The long cell with power P4

Fig. 2: Time decomposition.

.	.	.	
.	.	.	

.	.	.	
.	.	.	

Decomposed	Power

o1

oj

oN

append

MaxCNN
omax

𝑃",	𝑃#,	𝑃#$%,	𝑃%&&

{𝑃(𝑗 	|	𝑗 ∈ [1, 𝑁]}

𝑃(𝑗

𝑃(𝑁

𝑃(1

Fig. 3: PowerNet structure.

only contributes one-third of its power to that of the highlighted tile,
because altogether it overlaps with three tiles. Similarly, in line 7 to
14, each cell contributes p/s, where s is the number of overlapping
tiles.

Lines 15 to 17 perform time decomposition. Every power map
Pt[j] corresponds to one time instant j ∗ t. For each cell at j ∗
t, it contributes power to a corresponding power map Pt[j] only
when j ∗ t falls between its signal arriving time [tmin, tmax]. In
other words, only cells that can possibly switch at that instant are
considered. Figure 2 demonstrates the mechanism. Vertical dashed
lines are measured instants 1 ∗ t to j ∗ t, and horizontal bars are the
signal arrival time intervals of cells. In this example, only cells 1 and
3 will be counted for Pt[j] and no cells are counted for Pt[1].

C. PowerNet Model

Algorithm 2 shows how PowerNet F handles power maps with
its CNN model f . For each training epoch, it iterates through every
tile (x, y) in training designs. For every tile, it crops k × k input
windows surrounding it from all relevant w × h power maps by the
function GETINPUT.

As shown in Lines 11 to 12 and Figure 3, for all N time-
decomposed power maps {Pt[j] ∈ Rw×h | j ∈ [1, N]}, they are
processed separately by the same CNN model, together with all other
common power maps Pi, Ps, Psca, Pall. Hence, the input to the
CNN is {Pi, Ps, Psca, Pall, Pt[j]} in Line 2. It results in a total
of N CNN outputs {oj | j ∈ [1, N]}. Then, the maximum output

Algorithm 2 PowerNet: Algorithm of Maximum CNN

Input: IR drop label IR ∈ Rw×h, Power Pi, Ps, Psca, Pall

∈ Rw×h, Time-decomposed {Pt[j] ∈ Rw×h | j ∈ [1, N]}, Input
window size k = 2 ∗ kh + 1, kh means half size

Training:

1: function GETINPUT(j, x, y)
2: Stack features I = {Pi, Ps, Psca, Pall, Pt[j]} ∈ Rw×h×5

3: Ix,y = I[x−kh : x+kh+1][y−kh : y+kh+1] ∈ Rk×k×5

4: return Ix,y
5: end function
6:
7: Initiate CNN model f : Rk×k×5 → R, Loss function J
8: for epoch ∈ [1, Nepoch] do
9: for x ∈ shuffle ([1, w]), y ∈ shuffle ([1, h]) do

10: omax = 0
11: for each j ∈ [1, N] do
12: Ix,y = GETINPUT (j, x, y)
13: oj = f(Ix,y)
14: if omax < oj then
15: omax = oj

16: *Gradient Descent f -= ∇J(omax, IR[x, y])

Output: Trained CNN model f : Rk×k×5 → R

#	Features

Conv(3)	+	Pool	+	BN

K

C	=	16

Conv(3)	+	BN

C	=	16

Linear

1

Conv(3)	+	Pool	+	BN

Conv(3)	+	BN

C	=	8 C	=	8

Linear

Fig. 4: CNN structure.

omax = Max({oj | j ∈ [1, N]}) is the prediction result for the
analyzed tile. This maximum structure highlights the only instant
that leads to the peak IR drop. It guides CNN f to learn such a
pattern.

Details of the CNN model f in PowerNet is shown in Figure 4.
There are four convolutional layers, two pooling layers and two fully
connected layers. Size of convolution kernels is given in parentheses.
The C under each tensor gives the number of kernels defined in each
convolutional layer. This CNN structure and hyperparameters like
N , k are tuned based on the performance during cross-validation.
Choosing larger input k, more layers or kernels turns out to reduce
model generalization and slow down the prediction, while a simpler
structure underfits the data. Batch normalization (BN) [6] is applied
to accelerate model convergence. Adam method [7] is used for
optimization. We adopt the mean absolute error between prediction
and label (L1 loss) as loss function.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup

TABLE II: Designs Used in Experiment
Design D1 D2 D3 D4 MD1 MD2
cells (million) 1.7 0.81 2.0 1.9 1.7 2.4
Hotspot Portion 5.6% 7.7% 3.1% 3.1% 0.65% 0.50%

In our experiment, we use six industrial designs in a sub-10nm
technology node (Table II) with an IR drop hotspot threshold of
56mV , 6% of the supply voltage (0.94V). Features and IR drop
labels are extracted after clock tree synthesis (CTS). Though tested
at the CTS stage, PowerNet can also be applied to other stages.
We perform vectorless analysis and use results from a commercial
IR drop analysis tool as labels. We train the models and measure
their accuracy on D1 to D4, then mitigate the IR drop of MD1 and
MD2 with the estimation from PowerNet. When testing estimation
accuracy on D1 to D4, the ML model is trained only on data from
the other three designs. It ensures that the tested design is totally
unseen to the corresponding model, which eliminates the possibility
of information leakage between the testing and training datasets.

We implemented CNN and tree-based XGBoost models similar
to [5] as a comparison with PowerNet. Similar to [5], two types of
features are extracted, named cell features and map features. Cell fea-
tures are one-dimensional and map features are two-dimensional. For
each cell c, cell features include its signal arrival time, coordinates,
capacitance, unscaled overall cell power pall, toggle rate rtog and
cell type. The current of each cell is not included because it is not
available in our design flow. Since voltages at different regions are all
close to the supply voltage, current can be viewed as proportional to
power. Then, local maps of both unscaled overall power pall and rtog
around it are constructed as its map feature. Notice that compared
with PowerNet, only one type of power pall is used. For the tree-
based XGBoost model, all map features and cell features are directly
used as model input. To fit into XGBoost, the two-dimensional map
features are flattened into one dimension. For the CNN model, map
features firstly go through three convolutional layers, each with 25,
25 and 50 filters. Then, the output of convolutional layers together
with all cell features are fed into three fully connected layers, each
with 512 neurons. A 0.4 dropout rate [8] is applied. Other hyper-
parameters like optimizer or learning rate of baselines are carefully

Fig. 5: Comparison of methods by ROC curve. Measured in 1 × 1
tiles granularity.

Fig. 6: Comparison of methods by ROC curve. Measured in 5 × 5
tiles granularity.

tuned for their best performance. They are trained and tested on the
same designs as PowerNet for model comparison.

All algorithms are implemented in Python. CNN-related models
are built on PyTorch 1.0 [9]. For PowerNet, we set tile size l = 1 µm,
number of measured instants N = 50, and an input window size
k = 31 in the experiment. Both training and testing are implemented
on an 8-core CPU machine with 100 GB memory and one NVIDIA
Tesla V100 GPU.

B. Result Measured in ROC Curve

Figures 5 and 6 show the performance on different designs when
measured in 1 × 1 tiles and 5 × 5 tiles, respectively. Measurement
in 5 × 5 tiles means tessellating both predictions and labels with
a larger tile, whose size is 5l × 5l. In this case IR ∈ R

w
5
×h

5 .
Sometimes when designers fix IR drop by performing power grid
(PG) enhancements, hotspots shown in 5l × 5l tile already provide
sufficient information. Accuracy is measured by the area under the
ROC curve (AUC ∈ [0, 1]). A larger area means a better accuracy
in hotspot identification. PowerNet achieves AUC higher than 0.9
and 0.95 for all designs for the aforementioned two granularity’s,
respectively. On average, for 1×1 tiles, the AUC for CNN, XGBoost
and PowerNet are around 0.83, 0.84 and 0.93. For 5× 5 tiles, their
AUC are around 0.86, 0.86 and 0.96. PowerNet’s improvement in
accuracy is 9%.

Figure 7 shows visualizations of both ground truth and the predic-
tion results from PowerNet. Only subsets of each design containing
IR drop hotspot regions are displayed. Red color indicates higher
values while blue corresponds to lower values and white means zero
values. The white blocks in ground truth are usually the regions

D4_Est D4_IRD3_Est D3_IR

D2_Est D2_IR

D1_Est

D1_IR

Fig. 7: Visualization of estimation and ground truth.

without any cells placed. The comparison shows that PowerNet can
capture most IR drop hotspots.

C. Results Measured in Error and Ranking

Besides ROC curves, which reflect how well models recognize
hotspots, we also measured how models fit and rank tiles according
to their IR drop values in Figure 8. The metrics are mean squared
error (MSE) and Kendall rank coefficient [10] τ ∈ [−1, 1] between
the estimation and ground-truth IR values for all tiles. A higher value
of τ implies a more accurate ranking of tiles based on IR drop. The
MSE and rank coefficients of PowerNet are consistently better than
those of other ML methods. Note that a high MSE may be largely
contributed by a consistent bias for all inferenced tiles, which means
the model always gives a higher or lower prediction for all tiles in
one design. In this case, it can still identify those higher-IR tiles or
most serious hotspots if it ranks the IR value of tiles accurately.

D. Inference Time Comparison

TABLE III: Inference Time Comparison.

Method Commercial Tool PowerNet CNN XGBoost

Time 2.5 hour 5 min 1.5 min 1.5 min

The runtimes of the commercial IR drop analysis tool and ML
inferences are measured on a design with around two million cells.
Results are shown in Table III. PowerNet achieves a 30× speedup
over the commercial tool. For a fair comparison, the 2.5 hour for the
commercial tool only includes analysis time. Its overall runtime is
more than 4 hours. Other ML methods are even faster than PowerNet,
but are less accurate. PowerNet is slower than the baseline ML
methods because its CNN f generates N outputs oj for each tile.

Fig. 8: MSE and Kendall ranking coefficient on tiles by IR drop.

E. IR Drop Mitigation in Design Flow

We also integrated PowerNet into a design flow to mitigate the
IR drop of MD1 and MD2. Based on PowerNet’s estimation, we
enhanced the local power grid (PG) in hotspot regions. Notice that
the hotspot portions of MD1 and MD2 are much lower than D1 to
D4 in the training set. This is because MD1 and MD2 were already
close to tapeout and most serious IR drop problems were already
fixed, making further IR drop mitigation even more challenging.

Table IV shows the IR drop mitigation result. We only add very
thin PG straps (0.04 µm) at the PowerNet-estimated hotspots. This
is the simplest and most basic fixing method. We choose such
conservative fixing method to prevent occupying too many routing
resources. “All IR” and “Hotspot IR” mean the averaged IR drop
values among all tiles and all hotspots. After PG enhancement, the
averaged IR drop for all tiles improves only 0.4 mV, which indicates
that the modification on PG is very small. In comparison, when
measured only on hotspots, IR drop improves 4.3 mV and 2.6 mV. It
shows that PG enhancement is effective at the right places. With such
a limited amount of modification in PG, 23% of IR drop violation
cells or around 30% of hotspots are mitigated.

TABLE IV: Performance on IR Drop Mitigation

Design MD1
Violated # All Hotspot

Cell Hotspots IR (mV) IR (mV)
Before Mitigate 22185 5092 26.4 66.6
After Mitigate 17052 3778 26.0 62.3
Improvement 23% 26% 0.4 4.3

Design MD2
Violated # All Hotspot

Cell Hotspots IR (mV) IR (mV)
Before Mitigate 31097 3627 31.4 62.2
After Mitigate 23941 2489 31.0 59.6
Improvement 23% 31% 0.4 2.6

V. DISCUSSION

A. PowerNet vs. Previous ML Models

We highlight four weaknesses of previous CNN and XGBoost
baseline models that prevent them from outperforming PowerNet.
First, unnecessary features can confuse ML models. If cell co-
ordinates and time information are used as features but do not
directly correlate with IR drop, a model can overfit to designs in the
training set. Other features such as cell capacitance can be redundant
when power is already provided. To verify this, we implemented an
XGBoost model without cell coordinates or time information, and
its averaged 1 × 1 tiles AUC improved from 0.84 to 0.865. When
we further removed cell capacitance from features, the averaged
AUC remained at 0.865. Second, different feature formats make the
model inefficient. Notice that cell features are one dimensional but
map features are two dimensional. For XGBoost, map features must
be converted into one dimension, which loses spatial information.
For CNN, cell features must be provided through a fully connected
layer. In such an unusual CNN structure, cell features tend to be
overwhelmed by more than 10,000 outputs from the 50 channels

53 50250 80

Fig. 9: Effect of number of instants N on performance.

!"[27]

'(

!"[20]

!*+, !,--

'(

./,0 ∈ {.34 … .53} '(./,0 ∈ {.57 … .58}

Fig. 10: IR drop, power maps and maximum instant distribution of
two regions from D1. Instants number N = 50.

!"#$[40] #$[20]

#*+, #,--!"

./,0 ∈ {.34 … .56} ./,0 ∈ {.84 … .96}!"

Fig. 11: IR drop, power maps and maximum instant distribution of
three regions from D2. Instants number N = 50.

in the last convolutional layer. In comparison, PowerNet only uses
two-dimensional features. Third, power information may not be fully
utilized. When only overall power Pall is chosen as a feature,
the rich information from other power types Pi, Ps, Psca is lost.
Advanced ML models like CNN are complex enough to learn patterns
from different power types. Fourth, time information is not well
incorporated or captured. Baselines do not have features like the time-
decomposed power maps in PowerNet to measure the worst transient
local IR drop.

Figure 9 isolates the contribution of including both time de-
composition and multiple power types in variations of PowerNet.
Average inference AUC accuracy over D1 to D4 is plotted on the
Y-axis and the X-axis shows the number of sampled time instants. A
higher N means sampling more time instants and generating more
corresponding power maps Pt[j] within a given clock period T . For
any region, more power maps better approximate its actual transient
power. The “N=0” indicates no time-decomposed power is adopted at
all. As expected, the time-decomposed power maps improve accuracy
by capturing transient IR drop. When N > 50, the improvement in
accuracy by increasing N diminishes. Baseline models also differ
from PowerNet by only using maps of features (Pall and rtog) instead
of {Pi, Ps, Psca, Pall}. This variation is indicated as red and green
marks in Figure 9, where time-decomposed power maps Pt[j] are
kept the same for both variations. In addition to the 2.5% accuracy
improvement from time decomposition, adopting multiple types of
power improves accuracy by more than 2%.

B. Time Decomposition Mechanism

Figures 10 and 11 show how the combination of space decomposi-
tion and time decomposition helps to explore the potential correlation
between power maps and IR drop. It presents the visualization of
IR, different power maps and maximum instant distribution for the
local regions from both D1 and D2. Maximum instant refers to the
time instant j selected by maximum structure (oj = omax). The
areas of interest are highlighted by black squares. They all contain
strong IR drop hotspots. For both D1 and D2, it’s difficult to observe
much correlation in hotspots between their {Pall, Psca} and IR.

TABLE V: Training Accuracy in ROC AUC (0.01*)

ML Methods
1× 1 tiles 5× 5 tiles

D1 D2 D3 D4 D1 D2 D3 D4
XGBoost 93 94 94 94 97 98 98 97
CNN 87 79 80 85 92 85 83 90
PowerNet 94 98 95 94 98 99 98 98

That indicates training models without any time-decomposed power
maps Pt[j] can be difficult.

However, the correlation becomes much more clear when power
maps Pt[j] are provided. In D2, Pt[40] and IR share many common
hotspots patterns in highlighted areas. In this case, o40 = f({Pi, Ps

Psca, Pall, Pt[40]}) is likely to accurately predict these common
hotspot regions. However, another power map, Pt[20], does not
share as much hotspot patterns with IR. Its output o20 may be less
accurate. Considering that Pt[20] is much weaker than Pt[40] for
most tiles in hotspot regions, we can reasonably assume o40 > o20,
or even omax = o40. This is verified by the maximum instant
distribution. For every tile, we checked which instant is selected
by the maximum structure. For almost all tiles at hotspot regions
in D2, their omax ∈ {o35...o40}. Pt[40] indeed contributes more
information than Pt[20]. It is the contribution of the more accurate
Pt[40] instead of Pt[20] at these hotspot regions that finally gets
captured by the maximum structure.

Similarly, for D1, the highlighted region on the right correlates well
with Pt[20], and region on the left correlates with Pt[27]. Maximum
instant distribution shows that omax ∈ {o18...o21} for most grids in
the right region and omax ∈ {o24...o27} for most tiles in the left
region. Then the maximum structure will take ot[20] for grids on the
right and ot[27] for tiles on the left. In this way, the hotspots caused
by transient power at different instants can all be captured.

C. Training Accuracy

Table V shows the training accuracy for three ML methods.
XGBoost shows a higher training accuracy than the CNN baseline,
consistent with its better design-dependent performance in previous
work [5]. PowerNet provides the highest training and inference
accuracy among all ML models.

D. Influence of Resistance

We measured the distribution of resistance in our benchmark de-
sign. Take D1 for example, the standard deviation in resistance across
the whole design is only 2.8Ω, 0.6% of its average resistance. For
such a uniform distribution, we chose not to spend extra time calculat-
ing per-cell resistance. However, we did implement another variation
of PowerNet where each cell’s power is scaled with resistance,
denoted as “PRNet” in Table VI. “Ave” means accuracy averaged
over all four designs. On average, the resistance-scaled PowerNet
shows similar accuracy to the original one. This demonstrates that
using per-cell resistance as a feature is not necessary for designs with
uniform PDNs. By scaling power with resistance, “PRNet” can be
further applied to designs with non-uniform PDNs.

E. Vector-Based IR Drop Estimation

We also measured PowerNet’s performance on vector-based IR
drop. The PowerNet architecture remains exactly the same, but cell
power and IR drop are now collected when the commercial tool
simulates IR drop with given simulation patterns. Figure 12 shows
the vector-based power map Pall and label IR. Unlike the vectorless
case in Figure 10 or 11, the power of a portion of activated cells is
significantly higher than the others. As we mentioned, the correlation

TABLE VI: Inference Accuracy in ROC AUC (0.01*)

ML Methods D1 D2 D3 D4 Ave
PowerNet (1× 1 tiles) 92.1 95.4 91.4 92.6 92.9
PRNet (1× 1 tiles) 92.4 95.5 90.5 93.6 93.0
PowerNet (5× 5 tiles) 95.4 96.7 94.8 97.0 96.0
PRNet (5× 5 tiles) 95.7 96.8 93.2 97.5 95.8

𝑃"##𝐼𝑅
Fig. 12: Power and IR drop of vector-based estimation.

between power and IR drop value turns out to be very strong, which
largely reduced the estimation difficulty.

We perform vector-based estimation on four other industrial de-
signs VD1 to VD4. All models and procedures are the same as the
vectorless case, except using cell power and IR drop from vector-
based simulation. Table VII shows vector-based estimation accuracy.
As expected, all methods provide better estimation than vectorless
scenario. But PowerNet still gives the best accuracy for every single
design. The 1% to 2% improvement should not be underestimated
when accuracy is already very high. To a certain extent, boosting
accuracy from 98% to 99% means reducing half of the errors.

TABLE VII: Vector-Based Inference in ROC AUC (0.01*)

ML Methods
1× 1 tiles 5× 5 tiles

VD1 VD2 VD3 VD4 VD1 VD2 VD3 VD4
XGBoost 97 98 98 96 99 97 98 97
CNN 96 93 95 95 98 92 97 96
PowerNet 98 98 99 97 100 98 100 98

VI. CONCLUSION

In this paper, we present a CNN-based dynamic IR drop estimator.
Unlike existing ML works, our model is general and transferable
to new designs. We validate the high accuracy of our approach
on multiple industrial designs. It takes an order of magnitude less
estimation time than commercial tools and significantly outperforms
state-of-the-art ML methods in both vector-based and vectorless
IR drop scenarios. The IR drop mitigation tool guided by our
model reduces IR drop by more than 20% with very limited PG
modification.

ACKNOWLEDGMENTS

This work is partially supported by Semiconductor Research
Corporation Tasks 2810.021 and 2810.022 through UT Dallas’ Texas
Analog Center of Excellence (TxACE).

REFERENCES

[1] Y. Yamato, T. Yoneda, K. Hatayama, and M. Inoue, “A fast and accurate
per-cell dynamic ir-drop estimation method for at-speed scan test pattern
validation,” in 2012 IEEE International Test Conference (ITC). IEEE,
2012, pp. 1–8.

[2] H. Dhotre, S. Eggersglüß, and R. Drechsler, “Identification of efficient
clustering techniques for test power activity on the layout,” in 2017 IEEE
26th Asian Test Symposium (ATS). IEEE, 2017, pp. 108–113.

[3] F. Ye, F. Firouzi, Y. Yang, K. Chakrabarty, and M. B. Tahoori, “On-chip
voltage-droop prediction using support-vector machines,” in 2014 IEEE
32nd VLSI Test Symposium (VTS). IEEE, 2014, pp. 1–6.

[4] S.-Y. Lin, Y.-C. Fang, Y.-C. Li, Y.-C. Liu, T.-S. Yang, S.-C. Lin, C.-M.
Li, and E. J.-W. Fang, “IR drop prediction of eco-revised circuits using
machine learning,” in 2018 IEEE 36th VLSI Test Symposium (VTS).
IEEE, 2018, pp. 1–6.

[5] Y.-C. Fang, H.-Y. Lin, M.-Y. Sui, C.-M. Li, and E. J.-W. Fang,
“Machine-learning-based dynamic IR drop prediction for eco,” in 2018
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2018, pp. 1–7.

[6] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep net-
work training by reducing internal covariate shift,” in International
Conference on Machine Learning (ICML), 2015, pp. 448–456.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference for Learning Representations (ICLR), 2015.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The Journal of Machine Learning Research (JMLR), vol. 15,
no. 1, pp. 1929–1958, 2014.

[9] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in pytorch,” in Advances in Neural Information Processing Systems
Workshops (NIPS-W), 2017.

[10] M. G. Kendall, “Rank correlation methods.” 1948.

