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ABSTRACT

Assertion-based verification (ABV) is a critical method to ensure
logic designs comply with their architectural specifications. ABV
requires assertions, which are generally converted from specifi-
cations through human interpretation by verification engineers.
Existing methods for generating assertions from specification docu-
ments are limited to sentences extracted by engineers, discouraging
their practical applications. In this work, we present AssertLLM, an
automatic assertion generation framework that processes complete
specification documents. AssertLLM can generate assertions from
both natural language and waveform diagrams in specification files.
It first converts unstructured specification sentences and waveforms
into structured descriptions using natural language templates. Then,
a customized Large Language Model (LLM) generates the final as-
sertions based on these descriptions. Our evaluation demonstrates
that AssertLLM can generate more accurate and higher-quality
assertions compared to GPT-40 and GPT-3.5.
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1 INTRODUCTION

Hardware functional verification is critical in the VLSI design flow.
It addresses the following question: whether an implementation
adheres to its specification. The specifications are typically drafted
in natural language by architects and then translated into RTL
code by designers. Verification engineers then check the functional
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correctness of the RTL designs according to the specifications. In
the verification process, assertion-based verification (ABV) [35]
is a widely adopted technique, which utilizes assertions crafted
from specifications to verify the functional behavior of RTL designs.
ABV can be performed either by simulation or formal property
verification (FPV), where assertions are often written in the form
of SystemVerilog Assertions (SVAs). However, a significant chal-
lenge in ABV is the generation of sufficient, high-quality assertions.
Currently, designing SVAs manually is a time-consuming and error-
prone task, demanding unignorable human effort.

To address this challenge, research has focused on generating
SVAs automatically, which can be mainly categorized into two
types: (1) dynamic mining from simulation traces and (2) static
analysis of specifications. Dynamic methods [6, 10, 33] combine
simulation with static design constraint analysis but risk generating
incorrect SVAs due to their reliance on potentially flawed RTL de-
signs. Static methods utilize predefined templates [7, 25] or natural
language processing (NLP)-based machine learning (ML) technolo-
gies [1, 4, 8, 11, 14-16, 27, 38]. Recently, the potential of generative
Al technologies like Large Language Models (LLMs) has gained sig-
nificant attention in hardware design process [5, 17, 19-21, 28, 36].
Researchers are also exploring the use of LLMs to generate hard-
ware assertions [12, 26, 29, 31, 32].

We further categorize the existing static ML-based methods
based on their application in different design phases: the RTL and
pre-RTL stages. Table 1 details these ML-based SVA generation
methods in both the RTL stage and the pre-RTL stage. During the
RTL stage, the process typically involves using LLMs to process both
human-written specification sentences and the RTL design to gener-
ate SVAs describing security or functional properties [12, 18, 26, 32].
However, similar to the dynamic methods, inaccuracies in RTL im-
plementations could result in flawed SVAs.

Regarding the pre-RTL stage, with the specification document fi-
nalized, RTL designers proceed to implement behavioral designs sat-
isfying the specification. Numerous studies [1, 8, 11, 14-16, 27, 38]
have used NLP techniques to generate SVAs from natural language
sentences, focusing on sentence-level analysis from extensive speci-
fications. However, this approach has several limitations. It is labor-
intensive, requiring manual extraction of relevant sentences. It also
struggles with diverse grammatical structures, and its evaluation of-
ten relies on design-specific checkers, limiting broader applicability.
Furthermore, specifications frequently include waveform diagrams
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Figure 1: AssertLLM generation and evaluation workflow. AssertLLM incorporates three LLMs, each enhanced with specific
techniques for the decomposed tasks: extracting structural information from natural language, extracting structural informa-
tion from waveform diagrams, and translating extractions into various SVA types. The generated SVAs are further evaluated
based on the golden RTL implementations using model checking tools.

Table 1: Existing works on generating SVAs from natural waveform descriptions based on these templates. Unlike previous
language specifications. AssertLLM is the first work that can methods [7, 25], AssertLLM does not require an additional human
handle full-size specification files and generate comprehen- input to create templates. Finally, a customized LLM translates the
sive types of SVAs for each architectural signal. extracted information into SVAs. The resulting SVAs check various
design aspects, including bit-width, connectivity, and functionality.
Gen. ‘ NL Specification ‘ Verification 1 o 3 1 1 .
Stage ‘ Works Method [ FuioProe | Souree | Foll s | Target Our contributions in this work are summarized below:
RIL [13,22] LiMbased | X (Zentences) X Secuily e To the best of our knowledge, AssertLLM is the first au-
. ngineers, unction . . .
[16. 26,52] (few examples) tomatic assertion generation method that can handle the
Sentences Function . .
pre.rTL || (18 11, 14-16.27.38] | NLP-based X k(lsllt;l‘;:;)‘b v (property checkers Complete spec1ﬁcat10n files.
E ) artficial cases) e We decompose the assertion-generation process into three
Ours LLM-based v’ Do v’ F“mhm? . . .
(SPEC) (general designs) key steps: extracting structural information from natural

language, generating descriptions from waveform diagrams,
and translating the information into SVAs. These SVAs sup-
port checks for bit-width, connectivity, and functionality.

o To demonstrate the effectiveness of AssertLLM, we conduct
a comprehensive evaluation on a set of designs. The result
shows that 88% of generated SVAs are evaluated to be cor-
rect both syntactically and functionally. Furthermore, these
correct SVAs achieve 97% cone of influence coverage, demon-
strating the high quality of the generated SVAs.

that illustrate functional behaviors across different signals. Never-
theless, there is no existing technique that can generate SVAs from
these diagrams currently, representing a significant gap in the field.

Here we summarize three key challenges that currently hin-
der the practical application of SVA generation from specification
documents:

(1) Natural language VLSI specifications are often unstructured
and are hard to be directly used for assertion generation.

(2) Even \yith struct1.1red speci.ﬁcatiO.nS, translating natural Iap- 2 METHODOLOGY
guage into assertions remains a highly complex task, requir-
ing both a deep understanding of the design functionality 2.1 Workflow Overview
and an expertise in SVA. Figure 1 illustrates the process of generating and evaluating SVAs
(3) While waveforms commonly exist in specification docu- for AssertLLM. Our approach integrates three LLMs to generate
ments, no current research focuses on capturing functional hardware verification assertions from comprehensive specification
behaviors from waveforms and generating corresponding documents. These models perform the following tasks: 1) extract
SVAs. relevant information from the natural language in the specification
To tackle these challenges in SVA generation, in this work, we necessary for SVA generation; 2) extract behavioral descriptions
propose AssertLLM, a novel automatic assertion generation frame- from waveform diagrams for SVA generation; 3) generate high-
work incorporating multiple LLMs to deal with the decomposed quality SVAs based on the previous extracted information.
tasks separately. This framework is designed to process the en- In the subsequent subsections, we will detail the functionalities
tire specification files as they are, and automatically produce SVAs of each LLM of the assertion generation flow. Following this, our
across different signals, significantly benefits both design-time bug SVA evaluation methodology will be presented.

prevention and verification-time bug detection. AssertLLM oper-
ates in three main steps. First, it processes natural language in

2.2 Natural Language Analyzer

specification documents, using an LLM to convert unstructured A comprehensive natural language specification typically includes
information into a structured format via a unified template. Second, seven key sections: 1) introduction: outlines the design’s concepts
it analyzes waveform diagrams in the specification files, employ- and features; 2) IO ports: provides detailed information for the
ing another LLM to create natural language templates and extract interface; 3) registers: describes all the architecture-level registers
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in the design; 4) operation: explains the operational procedures for
dataflow and control; 5) architecture: the high-level workflow and
dataflow of the design; and 6) usage examples: offers basic usage
scenarios for the design. For signals, the specification may only
define critical architecture-level IO ports and registers, leaving the
designers to detail internal signals for RTL implementations. 7)
waveform diagram: describe behaviors for different signals.

[Prompt for SPEC Analyzer|
[Upload the original SPEC file] Here is the design specification file,
please analyze it carefully.
[For each signal] Please extract all the information related to the signal
control register (CTR) from the spec file.

[Response from SPEC Analyzer]
The Control Register (CTR) in the 12C-Master Core specification has the
following characteristics:

1. [Signal Name]: In Spec - Control Register (CTR).
2. [Description]
2.1. [Definition]:
- Bit-width: 8 bits
- Signal Type: Register (Access Type: RW - Read/Write)
2.2. [Functionality]:
- Bit 7: 12C core enable bit. When set to 'l', the core is enabled,
and when set to '0', the core is disabled.
- Bit 6: 12C core interrupt enable bit. When set to 'l', interrupts
are enabled, and when set to '0', interrupts are disabled.
- Bits 5:0: Reserved. These bits are read/write but are reserved for

future use.

2.3. [Interconnection|: This register directly controls the operation
of the 12C core, enabling or disabling it and controlling interrupt
behavior.

2.4. [Additional Information

- Reset Value for the Control Register is 0x00
3. [Related Signals]

- EN: Controls the enable state of the I2C core.
- IEN: Controls the interrupt enable state of the I12C core.

Figure 2: Prompt and Response Example of LLM @ Natural
Language Analyzer

The first step of our AssertLLM framework is to extract struc-
tured information from natural language specification documents
to enable SVA generation. As we discussed in Section 1, the first
key challenge of SVA generation lies in the inherent unstructured
nature of the original specifications, which contain background in-
formation, functional descriptions, microarchitecture designs, and
various diagrams, including dataflow and waveform, etc. Mean-
while, the existence of assertion-relevant information across differ-
ent sections further complicates the direct utilization of the original
specifications for SVA generation.

To address the challenge of processing original, unstructured,
full-size specification documents, we utilize an LLM tailored to
extract structural and relevant information for each defined signal,
thereby further facilitating the SVA generation process.

Specifically, in our LLM @ Natural Language Analyzer, we
first utilize system instructions to customize the LLM. The model
takes the full-size specification file as the input, and the multi-modal
function is employed to analyze the file containing text, tables, fig-
ures, etc. Then for each signal, the LLM is required to extract all
the related information of the signal. Here, we design a unified and
structured template to guide the LLM in extracting all essential
signal-related information. This template contains three key com-
ponents: the signal’s name, its description, and the interconnection
signals. We demonstrate the details of each part as follows:
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e Name: The identifier of the signal in the specification, en-
suring clear and unambiguous reference.

Description: To facilitate SVA generation, we divide the de-
scriptions into four categories, including 1) definitions such
as bit-width and signal type. 2) functionality which contains
all the function-related information of the target signal in
the entire specification file. 3) interconnection relationship
with all other signals. 4) additional information that is not
included in the above three types.

Interconnection Signals: A list of signals that interact or
are associated with the target signal, which are essential for
the subsequent assertion generation process.

Note that the extracted information is summarized across dif-
ferent sections of the original specification, which contains all the
textual information needed for assertion generation. In order to
incorporate specifications from the waveform, we employ another
LLM to extract information from the waveform diagrams as pre-
sented in next subsection, thereby enriching the set of SVAs and
potentially enhancing their overall quality.

2.3 Waveform Analyzer

In this work, we are interested in extracting design behaviors from
waveforms in the specification document, where these waveforms
are presented in the form of images (a two-dimensional array of
pixels). Unlike those prior methods [6, 10, 33] that assume a nu-
meric and structured waveform, such as those stored in the Value
Change Dump (VCD) format, AssertLLM needs to first interpret
the images of waveforms to obtain a description of behaviors. Tech-
niques like optical character recognition (OCR) [24] may be used
to convert diagrams of a fixed format into text, however, it would
be hard to accommodate various waveform styles. Whereas, LLM
is advantageous in its flexibility. Despite that multi-modal LLMs
can take images as input and there are prior works like image cap-
tioning [2, 3] that interpret input images with human languages.
However, they are not suitable for waveform interpretation.

To address this problem, we propose another LLM @ Waveform
Analyzer to extract behavior descriptions from waveform diagrams.
This analyzer employs natural language to describe the behavior
of various signals in the waveform through a two-step process. In
the first step, Waveform Analyzer automatically creates a set of
templates suitable for describing the behaviors in the given wave-
form. Subsequently, Waveform Analyzer produces the behavioral
descriptions based on these templates.

2.3.1 Template Generation. It requires significant effort for a hu-
man to write templates to describe behaviors on a single signal or
among various signals on the waveform diagrams. To solve this
problem, we employ prompt engineering to automate the template
generation process. Fig. 3 shows the prompt and corresponding
response in the step of template generation. These automatically
generated templates serve as references for producing descriptions
of given waveform diagrams in the subsequent step.

2.3.2 Description Generation. In this step, Waveform Analyzer
takes our unified prompt, extracted waveform diagrams, and gen-
erated templates as inputs to produce descriptions of the behavior
for the given waveform. Fig. 4 shows the corresponding prompt
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[Prompt for Template Generation]

You are an expert in digital hardware design at the register-transfer
level (RTL). Please generate a set of prompt templates. We will use
these prompt templates to summarize the behaviors that can be
observed in hardware waveforms, and these observations will be
further utilized to generate assertions in SystemVerilog format. As a
consequence, the generated templates need to describe all logic
behaviors at the RTL level for a variable or across different variables.
And it needs to be easily transferred to the SystemVerilog assertions
by human engineers. Here are the requirements for the answer:

1. Please keep templates as brief and clear as possible.

2. Please number the templates.

.r [Response from Template Generation|

| Here are some prompt templates for summarizing observed
1 behaviors in hardware waveforms at the RTL level:

1If is high, then must be low in the next cycle.
2.When <condition> occurs, <variable1> should be equal
to <variable2>.

should remain stable for

b cycles
after
19. must be greater than after
20. must be equal to when is
true.

—_
=3

Figure 3: Prompt and Response Example for template gener-
ation in LLM @ Waveform Analyzer

and response in the description generation step. By processing and
analyzing the waveform diagrams and the templates, our Waveform
Analyzer comprehensively investigates the functional informa-
tion in the waveforms, thereby identifying potential relationships
among different signals. For example, it can determine whether
the output signal is valid when a specific signal is enabled or de-
duce that a signal should remain stable for a specific number of
cycles when the corresponding condition is met. Furthermore, we
prompt the LLM to directly use the provided templates or extend
them if necessary. This flexibility allows the Waveform Analyzer
to explore additional behaviors in the waveform.

2.4 Automatic Assertion Generation

For the conversion from textual descriptions to assertions, prior re-
search has explored traditional NLP techniques for pre-RTL stages
and LLM-based approaches for RTL designs, each with its limita-
tions. NLP methods require detailed syntax and semantics anal-
ysis, limiting adaptability to sentence structure variations. LLM
approaches, focusing on the RTL stage, depend on HDL code and
annotations but risk generating inaccurate SVAs from unverified
RTL code, potentially compromising the verification process.

To address these challenges, our work introduces the LLM @
SVA Generator, dedicated to generating assertions for each signal
utilizing the previously extracted structural information.

Considering the precise syntax and writing rules inherent to
SVAs and the potential for the original LLM failing to generate
syntactically correct SVAs, as discussed in [26], we incorporate the
Retrieval Augmented Generation (RAG) technique [37] to enhance
the LLM’s capability for SVA generation. This approach is enriched
by a knowledge database comprising tutorials and textbooks on
SVA and formal property verification [23, 30, 34], providing a ro-
bust foundation for the LLM to access and retrieve relevant SVA

Zhiyuan Yan, Wenji Fang, Mengming Li, Min Li, Shang Liu, Zhiyao Xie, and Hongce Zhang
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[Prompt for Description Generation]

You are an expert in digital hardware design and verification at the Register-transfer
level (RTL). Your task is to analyze the behaviors from the given hardware waveform
for a variable or across different variables. Please use different serial numbers to
represent different behaviors from the waveform.

Furthermore, we provide the potential templates for describing behaviors. There is no
need for you to use all templates. You only need to select some templates. Also, you
can revise the templates if they can better describe the behavior in the waveform:

* [Upload the generated templates from Template Generator]

I will provide the waveform you need to analyze in the following blocks. Please do use
the English to answer the question.
* [Upload the waveform diagram)]

— o o m m s s v W w e o & o w4 s & ] & s s sy

I W Y VA VO Y VA Yy VY Y o Y o W L Yy WY o Yy T Yy WY
T I I

b clk i

byte contrlerdent
byte contrllerat done 1 r

wh_clii

whinta o

ien

[Response from Description Generation]

Here are some typical behaviors you might observe in a waveform for a variable or across
different variables:

1. When byte_controller.dent is 3'b000, byte_controller.cnt_done is set to high.

2. byte_controller.dent decrements its value in each clock cycle until it reaches 3'b000.
3. byte_controller.cnt_done remains low until byte_controller.dent reaches 3'b000.

4. byte_controller.cnt_done remains high once byte_controller.dent is 3'b000.

1.When ien rises, irq_flag should be high in the next cycle.

2.irq_flag should remain stable for 5 cycles after ien rises.

3.wb_inta_o should be high only if irq_flag has been true for 3 cycles.
4.wb_inta_o should be deasserted within 1 cycle after irq_flag is deasserted.
5.irq_flag should be high only if ien has been true for 1 cycle.

o o
i

Figure 4: Prompt and Response Example for description gen-
eration in LLM @ Waveform Analyzer

knowledge based on the input query, thereby enhancing the quality
of the generated SVAs.

In addition to the RAG technique, we guide the SVA Generator
with the overall architecture diagram of the design. The LLM is
provided with the structured specifications extracted from the pre-
vious LLMs for each signal. Then the LLM is required to generate
SVAs that adhere strictly to the specifications. We categorize SVAs
into three types: 1) width: check if the signal bit width satisfies the
specification; 2) connectivity: check if the signal can be correctly
exercised and also the value propagation among all connected sig-
nals; 3) function: check if the function defined in the specification
is implemented as expected. Fig. 5 demonstrates an example of
generating SVAs for a signal.

2.5 Evaluation of Generated Assertions

After the SVA generation process, we then evaluate the quality of
the generated assertions. While some previous studies such as [8,
38] suggest using specifically-designed checkers for this purpose,
such an approach is limited to particular design types like protocols
and processors and lacks generalizability to all VLSI designs. Other
methods like [26] involve manual inspection by the engineers of
FPV results using the generated assertions. While in our approach,
we assume there are golden RTL implementations for the designs.
Especially, we pick such designs as test cases as they have been thor-
oughly tested and can be regarded as bug-free golden references.
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[Prompt for SVA Generator]|
* [Upload the architecture diagram] Here is the overall diagram workflow of the

design architecture.

Prscle

=>{ Regiser

WISHBONE

Intrface Command
Regiser

Sans

°—1 Regiser
Transic
Regiser
Receive
CZ‘ Regiser

* [For each signal and waveform diagram, upload the extracted information and
signal mapping] Please generate SVAs for the signal control register (CTR) and
waveform descriptions.

Byte

Controller

[Response from SVA Generator]

Based on the provided specification for the control register (CTR), we can write
SVAs to validate its behavior. Let's break down the SVAs according to the types
you specified:

[width]

assert property (@(posedge wb_clk_i) (ctr) == 8);

[connectivity]

assert property (@(posedge wb_clk_i) (ctr[7] == 1'b1) |-> (core_en ==
1'bl));

assert property (@(posedge wb_clk_i) (ctr[7] == 1'b@) |-> (core_en ==
1'b0));

assert property (@(posedge wb_clk_i) (ctr[6] == 1'b1l) |-> (ien ==
1'b1));

assert property (@(posedge wb_clk_i) (ctr[6] == 1'b0) |-> (ien ==
1'b0));

[function]

assert property (@(posedge wb_clk_i) (ctr[7]1) != ctrl7] |-> ##1
(core_en == ctr([7]));

assert property (@(posedge wb_clk_i) (ctr[6]) !'= ctrl6] |-> ##1
(ien == ctr[6]1));

assert property (@(posedge wb_clk_i) (wb_rst_i == 1'b1l) |-> (ctr ==

8'h00));

assert property (@(posedge wb_clk_i)
1'bl) |-> (core_en == 1'b1));

(wb_rst_i == 1'b0 && ctr[7]

assert property (@(posedge wb_clk_i) (wb_rst_i == 1'b0 && ctr[6] ==

1'b1) |-> (ien == 1'bl));

Based on the provided waveform descriptions, we can write SVAs to validate its
behavior:

[function]

assert property (@(posedge wb_clk_i) byte_controller.dcnt ==
3'b000 |-> byte_controller.cnt_done);
assert property (@(posedge wb_clk_i)
3'b000) |-> (byte_controller.dcnt ==
1));

assert property (@(posedge wb_clk_i) (byte_controller.dcnt !=
3'b000) |-> (byte_controller.cnt_done == 1'b0));

assert property (@(posedge wb_clk_i) byte_controller.dcnt ==
3'b000 |-> (byte_controller.cnt_done throughout
(byte_controller.dcnt == 3'b000)));

(byte_controller.dcnt !=
$past(byte_controller.dcnt) -

assert
assert

property (@(posedge
property (@(posedge
(irq_flag));

property (@(posedge
property (@(posedge

wb_clk_i)
wb_clk_i)

ien |-> ##1 irg_flag);
ien |—> ##[1:5]

assert wb_clk_i)
wb_clk_i)

irq_flag[*3] |-> wb_inta_o);

assert tirq_flag |-> ##1 !'wb_inta_o);

Figure 5: Prompt and Response Example of LLM @ SVA
Generator

For evaluation, we also utilize the FPV method. The generated
SVAs and the golden RTL designs are fed into a model checker. Af-
ter performing FPV, we compute the following metrics to evaluate
the quality of SVAs: 1) syntax: checks if the generated SVAs have
syntax errors; 2) FPV pass/fail: assuming the RTL designs are bug-
free, an SVA that passes the FPV check is considered semantically
correct, and conversely, a failure indicates an incorrect SVA. 3) COI
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coverage: Cone of Influence (COI) coverage measures the percent-
age of design logic that is structurally connected to the properties.
It is a common metric to evaluate the quality and usefulness of the
generated properties.

3 CASE STUDY
3.1 Experimental Setup

In our study, the original specification documents are provided in
PDF format, including a variety of multi-modal content including
text, tables, and figures. The signal definition files and the golden
RTL designs are formatted in Verilog. To assess the quality of the
generated SVAs, we utilize Cadence JasperGold, one of the leading
commercial model checking tools. This evaluation leverages the
FPV app in JasperGold to ensure a thorough analysis.

Our experimental setup involves the evaluation of three types of
LLMs using our developed generation and evaluation methodology:

(1) GPT-3.5: The freely available commercial version, GPT-3.5
Turbo, supports a context window of up to 16K tokens.

(2) GPT-40: The state-of-the-art commercial solution, GPT-4o,
offers up to 128K token context window and multi-modal
capabilities, making it adept at handling the diverse content
in the specification documents.

(3) AssertLLM: Customized GPT-40 by incorporating specialized
techniques such as RAG and custom instructions, tailoring
the models specialized to the SVA generation task.

3.2 Evaluation Metrics

To conduct a thorough evaluation of the generated SVAs, we pro-
pose a set of metrics that align with our evaluation methodology.
This approach ensures a detailed assessment of the SVAs’ quality
on both a per-signal and per-design basis.

For each assertion type of an individual signal, our evaluation
includes the following metrics: 1) the number of generated SVAs; 2)
the number of syntax-correct SVAs; 3) the number of FPV-passed
SVAs; 4) COI coverage for all FPV-passed SVAs. We consider an
SVA as “passed” if the model checker Jaspergold cannot find any
counterexample to it within 5 hours. Furthermore, all SVAs are
produced directly from LLMs without any subsequent modifications.
Once the evaluation for each signal is complete, we aggregate the
statistics of the generated SVAs for each design. We then calculate
the proportion of these SVAs that are syntactically correct and can
pass the FPV checks. Finally, we calculate the COI coverages for all
passed SVAs.

3.3 Assertion Generation Quality

To illustrate the efficacy of AssertLLM, we apply it to an illustrative
design case: the “I2C” protocol. The complete specification docu-
ment for the “I2C” design is structured into six main sections, as
discussed in Subsection 2.2. Note that the specification for each
signal is unstructured, mainly across the sections like IO ports, reg-
isters, and operation. Additionally, we provide the signal definition
file containing the IO ports and architectural registers and all the in-
ternal wires and registers defined for detailed RTL implementation.

The specification for the “I2C” design uses natural language to
define 23 signals, comprising 17 IO ports and 6 architecture-level
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registers. For the IO ports, we categorize them into 4 types: clock,
reset, control signal, and data signal. The architecture-level registers
are similarly categorized, based on their functionality, into control
and data types. Furthermore, the specification for the “I2C” design
utilizes two waveform diagrams to describe the behaviors on 5
different signals. AssertLLM will extract the described behaviors in
the waveforms and generate SVAs for these signals.

The evaluation of SVAs generated by our AssertLLM is presented
in Table 2. For each signal, we first verify each type of the generated
SVAs separately. Then we summarize all the SVAs to provide design-
level statistics. All SVAs related to bit-width checking performed
correctly. However, a minor portion of connectivity and function
SVAs contained errors. For SVAs generated from natural language,
the errors are attributed to misinterpretations of the specification
or hallucinations of language model. For SVAs generated from
waveform diagrams, the failures are mainly due to AssertLLM’s
inability to infer behaviors not explicitly depicted in the waveform
diagrams, resulting in incomplete assertions that do not pass the
FPV check. Overall, 86% of the SVAs are both syntactically correct
and functionally valid.

In addition to assessing AssertLLM’s performance, we also con-
duct an ablation study to compare the SVA generation capabilities
of the original GPT-40 and GPT-3.5 models without the additional
techniques, demonstrated in Table 2. When generating SVAs from
natural language, the absence of a mechanism for extracting struc-
tured signal specifications significantly limits GPT-40’s ability to
produce accurate SVAs. Specifically, GPT-4o fails to generate any
correct SVAs for I/O ports and only succeeds in creating reset check
assertions for registers, resulting in an overall accuracy of just 11%.
Furthermore, when generating SVAs from waveform diagrams, the
lack of a specialized waveform analysis method leads to fewer as-
sertions and a lower FPV-passing rate. As for GPT-3.5, due to the
lack of multi-modal processing capabilities, it cannot generate SVAs
directly from the original, multi-modal specification files.

100.0% 90.96% 93.44%
84.40% 85.87% 82.05%
80.0%
60.0%
40.0%
20.0%
0156 0156  102%  0.15%
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Figure 6: COI coverage of different signal-type SVAs gener-
ated by AssertLLM

We further examine the COI coverage for various signal-type
SVAs, as illustrated in Fig. 6. Our results demonstrate that SVAs
generated by AssertLLM achieve high COI coverage, with a total
coverage of 93.44% (different types of assertions could cover differ-
ent parts of the design, so the overall rate is higher than individual
ones). Additionally, we observe that SVAs generated for registers
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exhibit higher COI coverage compared to those for IO signals. This
can be attributed to the fact that registers typically connect to more
logic elements within the design. However, when using GPT-4o to
generate SVAs, the COI coverage only reaches 82.05%, primarily
due to its inability to generate a sufficient number of correct SVAs.

3.4 Assertion Generation for More Designs

To further analyze the capability of our AssertLLM, we extended its
application to generate SVAs for additional designs. In addition to
“I2C,” we evaluate “ECG” and “Pairing” designs. The “ECG” design
calculates the addition of two elements in the elliptic curve group,
while the “Pairing” design implements Tate bilinear pairing in the
elliptic curve group [9]. Table 3 presents the overall results, demon-
strating AssertLLM’s ability to generate high-quality SVAs across
various designs. All generated SVAs maintain syntactic correctness
and a significant proportion of SVAs can pass FPV. Moreover, the
FPV-passed SVAs achieve high COI coverage. These indicate good
generalizability of our approach. In contrast, GPT-4o struggles to
maintain consistent performance across different designs. It fails to
generate any FPV-passed SVAs for the “ECG” design and produces
only one FPV-passed SVA for the “Pairing” design. Consequently,
the COI coverage for GPT-40’s SVAs in these two examples is 0%,
as we only calculate COI coverage for FPV-passed assertions.

3.5 Discussion: the Impact of Specification
Quality

The generation of high-quality SVAs from natural language spec-
ifications relies not only on the capabilities of LLMs but also on
the intrinsic quality of the specification documents themselves. A
specification that provides only the basic information of signals,
such as their names and simple descriptions, without delving into
detailed functionalities or connectivities, inherently limits the po-
tential for generating meaningful SVAs, regardless of the power of
the LLMs employed. Conversely, specifications that offer compre-
hensive details, including clear definitions of signal functionalities
and connectivities, can facilitate the generation of SVAs even with
relatively simple LLMs. This observation can be concluded in the
Table 3. The “I2C” specification provides detailed information on
registers and functionality, enabling the generation of more SVAs.
By contrast, both AssertLLM and GPT-4o0 can only generate a lim-
ited number of SVAs for “ECG” and “Pairing” due to their less
detailed specifications.

4 CONCLUSION

In this paper, we introduce AssertLLM, an automated framework
designed for generating assertions from entire specification docu-
ments. AssertLLM breaks down this intricate task into three phases:
natural language information extraction, waveform description ex-
traction, and assertion generation, leveraging specialized LLMs for
each phase. Experimental results show that AssertLLM generates
assertions with an average of 88% passing both syntax-checking and
FPV checking. Furthermore, these assertions achieve 97% COI cov-
erage on average, achieving a notable improvement from GPT-40
and GPT-3.5.
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Table 2: Evaluation of the generated SVAs for design “I2C”. AssertLLM generates 65 properties, with 23 for bit-width, 14 for
connectivity, and 28 for function. 86% of these generated SVAs are evaluated to be correct both syntactically and functionally.

AssertLLM | GPT40 |  GPT-35
. Assertion Evaluation (#. Generated/#. Syntax Correct/#. FPV Pass)
Signal Type - P - - -
Width Conectivity ‘ Function | Signal Total | Function
Clock (1) 1/1 / 171 3/1/0
Reset (2) 2/2/2 / 2/212 6/2/0
From natual language | 10 (17) | == e e 3/3/3 wan | 77774 9/3/0
Data (11) | 11/11/11 / 11/11/11 33/11/0 Caﬁ n"t_h.an‘ile
Reg (6 Control (2) 2/2/2 10/10/9 13/13/13 25/25/24 622 | etcﬁ‘fic‘:tli%‘;‘?ﬂes
Data (4) 4/4/4 / 6/6/4 10/10/8 14/4/4 P .
From waveform / 9/9/6 9/9/6 4/4/2
Design Total 23/23/23*“ 14/14/10 28/28/23 65/65/56 75/27/8
100%/100%" 100%/71% 100%/82% 100%/86% 36%/11%

* The results represent the number of generated SVAs, syntax-correct SVAs, and FPV-passed SVAs.
T The percentages indicate the proportion of syntax-correct SVAs and FPV-passed SVAs.

Table 3: Evaluation on more designs.

SVA Evaluation
Desien AssertLLM GPT-40
8 Total Total Total Total
Correctness | Coverage || Correctness | Coverage
65/65/56 75/27/8
e 100%/86% 93% 36%/11% 82%
22/22/20 11/7/0
ECG 100%/91% 99% 64%/0% 0%
.. 15/15/14 12/8/1
Pairing || 500 /037 100% 67%/8% 0%
Average 100%/90% 97% 56%/6% 27%

The results share the same format as Table 2.
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