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ABSTRACT

Machine learning (ML) techniques have shown remarkable effec-

tiveness in electronic design automation (EDA). Traditionally, most

ML for EDA approaches are task-specific, requiring a tedious devel-

opment process of a tailored ML model for each individual design

task. Recently, circuit representation learning has emerged as a

promising trend. This approach converts circuits into embeddings,

which can then be adapted to distinct downstream tasks. However,

existing methods still fall short of providing a truly general cir-

cuit representation that supports highly diverse tasks. In this work,

we introduce CircuitEncoder, a self-supervised, pre-trained, and

cross-stage-aligned general circuit encoder. It provides a general

foundation for diverse ML-based EDA tasks, including both design

quality and functional reasoning. CircuitEncoder is pre-trained

throughmulti-stage contrastive learning utilizing unlabeled circuits.

It encodes circuits from different design stages into embedding vec-

tors within shared latent space, facilitating fine-tuning for various

downstream tasks. CircuitEncoder outperforms the state-of-the-art

task-specific supervised solutions for multiple EDA tasks, including

design quality tasks for register-transfer level (RTL)-stage timing

and area prediction, as well as functional tasks for netlist-stage

state register identification.
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1 INTRODUCTION

Machine learning (ML) techniques have demonstrated remarkable

effectiveness in electronic design automation (EDA). ExistingML for

EDAworks are mostly task-specific, tailoring a dedicated MLmodel

for each specific EDA task individually. They may target either the

prediction of design objectives (e.g, timing [9, 13, 29], area [10, 11,

20, 22, 35], power [33, 34, 40], and routability [18, 32, 39]) or the

reasoning of circuit functionalities [5, 15, 31]. They are mostly de-

veloped by supervised training on a carefully crafted dataset for the
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Figure 1: The targetML for EDAparadigmbased onCircuitEn-

coder. The self-supervised, pre-trained, cross-stage-aligned

CircuitEncoder encodes circuit components into embeddings

with rich circuit information, based on which lightweight

ML solutions are easily developed for various design tasks.

specific task. Despite obvious effectiveness, there are two limita-

tions in this mainstream supervised ML for EDA paradigm. 1) The

development process of supervised task-specific solutions is tedious

and time-consuming. The development steps include circuit collec-

tion, label generation, feature engineering, model selection, model

training and testing. This whole process easily takes months of en-

gineering efforts. 2) Since supervised task-specific models cannot be

generalized to other tasks, it leads to an inefficient and repetitive de-

velopment of ML solutions. More importantly, it implies that these

ML solutions only capture task-specific patterns, instead of more

general and complete information from target circuit components.

Recently, circuit representation learning [4, 16, 17, 23, 25, 28, 36]

was explored to separate the ML for EDA process into two separate

phases. In phase 1, circuit models will learn to generate a general

representation (i.e., an embedding vector) for each circuit compo-

nent. In phase 2, downstream ML models can be easily trained for

each downstream task, directly taking the representation instead

of a complex raw circuit as model input. However, we argue that

existing works still do not provide perfectly general circuit repre-

sentation. For example, existing works only support one type of

design task, either design quality prediction [16, 36] or functional

reasoning [17, 23, 25, 28]. No prior work can provide a truly gen-

eral representation that supports largely different design tasks. In

addition, prior works only focus on one specific design stage, such

as RTL or netlist, without alignment across different stages.

In this work, we propose a more general circuit representation

learning method named CircuitEncoder, which targets as a general

foundation for various ML-based EDA tasks. A comparison between

CircuitEncoder and existingworks is given in Table 1, and our target

paradigm is summarized in Figure 1. In phase 1, CircuitEncoder is

pre-trained on unlabeled circuits by us and released to the public1.

1The code and pre-trained CircuitEncoder model are available at
https://github.com/hkust-zhiyao/CircuitEncoder. We will maintain this general
CircuitEncoder model and further pre-train it on more unlabeled circuit samples.

505



ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

Downstream Tasks Pre-Training Design Stage

Method Multi-

Type

Design

Quality
Function

Self-

Supervised

Train

Task

Cross-

Stage

Target

Stage

Support

Seq. Circuit

Open-Source

Model

Design2Vec [25] Cover Point RTL

SNS v2 [36] Contrastive RTL

FGNN [28] Contrastive Netlist

DeepGate [17] Probability Netlist

DeepGate2 [23] Truth Table Netlist

DeepSeq [16] ★ Probability Netlist

CircuitEncoder

(Ours)

Multi-Stage

Contrastive

RTL

Netlist

★ DeepSeq predicts netlist gate toggle rate at the node level to estimate power consumption, rather than directly modeling power.

It can convert the given circuit component to a general embedding,

encoding rich circuit information in it. This circuit embedding is

the direct model input for different types of design tasks, including

both design quality prediction and functional reasoning. In phase

2, users can fine-tune lightweight downstream models based on

embeddings. The few-shot transfer solution proves to significantly

outperform supervised solutions based on raw circuits. Similar

to the benefit of foundation models like BERT [8] or CLIP [21] in

natural language processing and computer vision, open-sourced pre-

trained CircuitEncoder will be widely accessible and support the

agile development of better ML solutions for various design tasks.

The multi-task generalization ability of CircuitEncoder implies

that it captures rich circuit information. This is achieved based on

the following two innovative learning policies: � CircuitEncoder

incorporates multi-stage self-supervised contrastive learning in its

learning process. Through contrastive learning within and across

the design stages, the encoder learns to maximize the similarity

in the embeddings of the sub-circuits with the same functionality

(i.e., positive samples), and minimize the similarity for negative

samples. � CircuitEncoder aligns circuit embedding at different

design stages within a shared latent space. In a typical design flow,

the earlier design stage (i.e., higher abstraction level) captures more

semantic content, while the later design stage (i.e., lower abstraction

level) provides complex implementation details. The cross-stage

alignment benefits both predictions of downstream design qualities

at early stages and reasoning of circuit functionality at late stages.

We summarize the contributions of CircuitEncoder as below:

• To the best of our knowledge, CircuitEncoder is the first gen-

eral method to achieve high performance in largely distinct

tasks, including design quality tasks for RTL-stage timing

and area modeling, as well as functional reasoning tasks for

netlist-stage state register identification. This indicates the

CircuitEncoder’s great generalization ability and potential

to provide a “foundation” for various tasks.

• For pre-training (phase 1), we propose a multi-stage con-

trastive learning scheme, training within and across design

stages at the sub-circuit level. Based on this, we align cir-

cuit embeddings from different stages within a shared latent

space, capturing rich circuit information.

• For application to various tasks (phase 2), the pre-trained Cir-

cuitEncoder generates embeddings for each new sub-circuit.

These embeddings serve as the general inputs to fine-tune

for various downstream tasks, avoiding tedious task-specific

feature engineering and model design.

• According to experiments, the general two-phase paradigm

supported by CircuitEncoder significantly outperforms task-

specific supervised solutions. It shows a 5% and 4% lower

MAPE for timing and area evaluations, respectively, and

achieves a 15% higher accuracy for functional identification.

2 PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Circuit Representation Learning

Table 1 summarizes the existing circuit representation learning

approaches for ASIC design. Most methods focus on functional

reasoning, while others target design quality evaluation. Specifi-

cally, Design2Vec [25] and the DeepGate family [17, 23] leverage

functional supervisions like cover points, signal probability, and

truth tables for pre-training, subsequently applying these models

to functional tasks such as testing, logic equivalence checking, and

SAT solving. FGNN [28] uses contrastive pre-training to identify

gate functionality. For design quality, SNS v2 [36] employs con-

trastive pre-training and predicts timing, power, and area metrics.

DeepSeq [16] models the sequential behavior of circuits, predicting

gate toggle rates, which are the input to power simulation tools.

However, these models are not general enough to support both

design quality and functional reasoning tasks. Many works [17,

23, 28] only apply to small combinational components. Addition-

ally, These methods focus on specific design stages, either the RTL

stage [25, 36] or the netlist stage [16, 17, 23, 28], lacking information

learned from earlier or later stages.

Besides the two-phase strategy, several works [7, 12, 37] propose

customized circuit learning models supporting supervised training

for various downstream EDA tasks. Additionally, efforts have been

made to develop representation learning methods tailored for other

types of circuit design, such as high-level synthesis for FPGAs [24]

and analog and mixed-signal circuits [41].

2.2 Problem Formulation

Our target is to develop a CircuitEncoder (𝑓𝐶𝐸 ) that can generate
embeddings 𝐸𝑅 and 𝐸𝑁 for any RTL and netlist design, providing

a foundation for various downstream tasks, including design qual-

ity tasks (𝑇𝑄 ) and functional reasoning tasks (𝑇𝐹 ). We denote the
RTL design as R and the gate-level netlist as N . CircuitEncoder

is pre-trained on unlabeled circuits across design stages to learn
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reg [1:0] R0,R1;
reg [2:0] R2;
wire [2:0] W1,W2;
...
assign W1 = R0 + R1;
...
always @(posedge clk)
R2 <= W2;
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Figure 2: Circuit data preprocessing and cross-stage alignment. (a) RTL code and gate-level netlist circuits. (b) Circuit in graph

format. (c) Aligned circuit cone graphs. RTL and netlist graphs are aligned based on registers. Each register backtracks all

combinational logic until reaching all other registers, ensuring functionally equivalent cross-stage alignment at the sub-circuit

level. (d) Circuit register dependency graph. All register cones from the same design are aggregated for the circuit-level tasks.

cross-stage circuit information, and then it can be easily applied

to various design tasks:

CircuitEncoder Pre-Training. During pre-training, CircuitEn-

coder encodes the aligned RTL and netlist and learns cross-stage

embeddings in a shared latent space through self-supervised tasks:

pre-train(𝑓𝐶𝐸 (R & N)) → {𝐸𝑅 & 𝐸𝑁 }. (1)

CircuitEncoder Application. Given a new circuit, CircuitEn-

coder generates embeddings supporting few-shot inferences for

downstream tasks. The downstream models (𝑓𝐷 ) are fine-tuned
based on the embeddings and specific task labels. This application

process is formulated below:

𝑓𝐶𝐸 (R) = 𝐸𝑅, 𝑓𝐶𝐸 (N) = 𝐸𝑁 ,

fine-tune: {𝑓𝐷 (𝐸𝑅), 𝑓𝐷 (𝐸𝑁 )} → {𝑇𝑄 ,𝑇𝐹 }.
(2)

3 CIRCUIT ENCODER FRAMEWORK

Figure 1 (b) illustrates the overall CircuitEncoder workflow. Cir-

cuits are encoded into embeddings that cluster functionally similar

circuits more closely. We propose to align the RTL and netlist de-

sign stages to bridge the gap between logic and physical design

processes. As detailed in this section, the model is pre-trained to

learn the cross-stage-aligned representations. Subsequently, the

pre-trained CircuitEncoder is applied to various downstream tasks.

3.1 Circuit Data Preprocessing and Alignment

3.1.1 Circuit-to-Graph Transformation. The original circuit data,

as shown in Figure 2 (a), consists of RTL code and gate-level netlists,

which cannot be directly processed by ML models. Here, we ini-

tially convert circuits at both stages into the graph format. First, for

RTL data in HDL code format, we convert the code into an abstract

syntax tree (AST) and subsequently extract the graph based on this

tree, a process similar to that described in [10]. The nodes of the

RTL graph include word-level register signals and operators (e.g.,

And, Add, Equal, Mux), with the wires in HDL code forming the

edges connecting these elements. Second, for gate-level netlists, the

transformation is more straightforward: flip-flops (FF) and logic

gates (e.g., AOI, INV, FA, AND) serve as nodes, and the wires con-

necting these gates form the edges of the graph. The graph format

of circuits is demonstrated in Figure 2 (b).

3.1.2 Sub-Circuit Format with RTL-Netlist Alignment. Figure 2 (c) il-

lustrates the alignment for RTL and netlist graphs at the sub-circuit

level. Sequential registers (including primary input/output pins)

remain unchanged2 during the logic synthesis and physical design

processes, allowing for the one-to-one mapping between register

signals in RTL and flip-flops in the netlist. This mapping forms the

foundation for cross-stage alignment across distinct abstraction

layers.

We propose to extract sub-circuits from both RTL and netlist

graphs based on the mapped registers. Specifically, for each mapped

register pair (i.e., word-level register signal in RTL and the corre-

sponding multi-bit flip-flops in netlist), we backtrack all the com-

binational logics in both graphs until reaching all other registers.

These specific sub-circuits are termed the cone of the register.

We summarize the advantages of the cone format: (1) The ex-

tracted register cones between RTL and netlist are strictly aligned

and functionally equivalent, ensuring consistency across design

stages. (2) Each register cone captures the complete state transition

of this register within a single clock cycle. It includes the com-

plete timing paths and logic computations for the register. This

enables learning the circuit’s sequential behavior, which is essential

for tasks such as timing evaluation and sequential functional rea-

soning. (3) The cone format serves as an intermediate granularity

level. It bridges the gap between fine-grained nodes and coarse-

grained overall design graphs, enhancing the model’s adaptability

for sub-circuit level tasks.

3.2 Self-Supervised Pre-Training Task

To learn the general intrinsic circuit information, we propose to

apply self-supervised learning [19] to unlabeled circuit data. It

enables CircuitEncoder to learn intrinsic semantics and structure

of numerous circuits through well-designed pretext tasks, without

supervision labels to guide learning for specific circuit properties.

This significantly enhances the model’s ability to generalize across

various tasks and datasets.

In our work, we propose multi-stage contrastive learning to

learn circuits within and across distinct design stages, as illustrated

in Figure 3. Contrastive learning is utilized to cluster functionally

similar circuits closely together, while others are distanced from

each other. We incorporate two contrastive schemes: intra-stage

2Although there are optimizations for registers such as retiming, pipelining, and
ungrouping, most registers remain unchanged across the design stages.
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(depicted in orange and blue) and inter-stage (shown in green)

contrastive learning, each with distinct loss functions.

Functionally Equivalent Circuit Augmentation. Since cir-

cuits with the same functionality contain diverse structures, we

propose to augment both RTL and netlist data using functionally

equivalent circuit transformations. These transformations maintain

the original semantics but change the structure of the circuit graph,

effectively serving as positive sample augmentation, denoted as

RTL+ and Net+ in Figure 3. This method follows similar processes

as those detailed in [28, 36]. For negative samples, we randomly

select non-equivalent circuit cones, shown as RTL− and Net− . This

circuit augmentation approach effectively facilitates contrastive

learning, which differentiates between functionally equivalent and

non-equivalent circuits.

1 Intra-Stage Contrastive Learning. Our intra-stage con-

trastive learning approach focuses on individually learning RTL

and netlist circuits within their respective design stages. For the

RTL stage, the goal is to preserve similarity within equivalent RTL

cones and to differentiate between non-equivalent cones. CircuitEn-

coder encodes the original, positively augmented, and negatively

augmented RTL cone graphs into cone-level embedding vectors 𝐸R,
𝐸R+ and 𝐸R− . The contrastive learning is then employed to minimize

the distance between 𝐸R and 𝐸R+ while maximizing the distance
between 𝐸R and 𝐸R− . The same methodology is applied to netlist

cones to ensure consistent and effective contrastive learning within

each design stage. The loss functions for the inter-stage contrastive

learning are defined below:

𝐿𝑟𝑟 =𝑚𝑎𝑥 (
�
�𝐸R − 𝐸R+

�
�
2 − ‖𝐸R − 𝐸R− ‖2 +𝑚𝑟𝑟 , 0),

𝐿𝑛𝑛 =𝑚𝑎𝑥 (
�
�𝐸N − 𝐸N+

�
�
2 − ‖𝐸N − 𝐸N− ‖2 +𝑚𝑛𝑛, 0),

(3)

where𝑚𝑟𝑟 and𝑚𝑛𝑛 are the margins to balance the positive and

negative similarities. This loss function with𝑚𝑎𝑥 applies a penalty
only when the margin between the similarities of positive and neg-

ative pairs is not met, focusing learning efforts on more challenging

and incorrectly classified samples.

2 Inter-Stage Contrastive Learning. Alignment is crucial to

enhance the CircuitEncoder’s ability to accurately interpret and

predict across distinct design stages. Most prediction tasks need to

infer the characteristics of an unknown circuit at an earlier or later

stage. Utilizing the cross-stage alignment insights, CircuitEncoder

effectively enhances design quality predictions at earlier stages and

functional reasoning at later stages.

To facilitate a bidirectional understanding between high-level

RTL semantics and low-level netlist implementations, we introduce

an inter-stage contrastive learning scheme to capture the cross-

stage interactions. Initially, CircuitEncoder encodes the aligned

RTL and netlist cone graphs into embeddings. Subsequently, Cir-

cuitEncoder is trained using a cross-stage contrastive loss to align

the embeddings within a shared latent space. This enables Circui-

tEncoder to express high-level RTL with low-level netlist imple-

mentations and, meanwhile, understand the low-level netlist with

high-level RTL semantics. The cross-stage contrastive loss function

is detailed as follows:

𝐿𝑟𝑛 =𝑚𝑎𝑥 (
�
�𝐸R − 𝐸N+

�
�
2 − ‖𝐸R − 𝐸N− ‖2 +𝑚𝑟𝑛, 0)

+𝑚𝑎𝑥 (
�
�𝐸N − 𝐸R+

�
�
2 − ‖𝐸N − 𝐸R− ‖2 +𝑚𝑟𝑛, 0).

(4)

Based on the two contrastive learning schemes, we formulate the

complete loss for our multi-stage contrastive learning as follows:

𝐿𝐶𝐿 = 𝛼𝑟𝑟𝐿𝑟𝑟 + 𝛼𝑛𝑛𝐿𝑛𝑛 + 𝛼𝑟𝑛𝐿𝑟𝑛, (5)

where 𝛼𝑟𝑟 , 𝛼𝑛𝑛 , and 𝛼𝑟𝑛 are trade-off hyperparameters among dif-
ferent contrative losses.

3.3 Encoder Model and Feature Extraction

In this subsection, we illustrate the CircuitEncoder’s ML models

and extracted features for RTL and netlist designs. The detailed

model architecture and hyperparameters will be provided later

in Section 4.1.

3.3.1 Graph Transformer for RTL-Stage. To encode the RTL design

into embedding vectors, we apply a graph transformer model to

effectively capture the complex relationships of the semantics and

structure of RTL design. The transformer’s self-attention and posi-

tional encoding mechanisms allow it to consider the entire graph

context, facilitating the generation of rich, context-aware embed-

dings at both the node and cone levels for the RTL design. The graph

transformer demonstrates significant enhancement compared to

traditional GNN models, as detailed further in Section 4.4.

Initially, we extract features for each node and edge within the

RTL cone graph. Node features include bit-width and operator type,

represented in one-hot encoding. Edge features are determined by

the types of nodes they connect, and also encoded in one-hot format.

Leveraging these features, we employ three graph positional

encodings, similar to our backbone [38], to effectively capture the

information of the circuit graph: (1) Centrality encoding enriches

each node’s features with numbers of fan-in and fan-out. (2) Spatial

encoding computes the shortest path distances between all con-

nected node pairs, applying them as a bias term in the self-attention

module. (3) Edge encoding utilizes the edge features along one of

the shortest paths between node pairs, also contributing as a bias

term in the self-attention module.

Please note that there is a special global node in the graph trans-

former, denoted as [C] shown in Figure 3. It is added to the original
graph and connected with each node, forming individual edges. Af-

ter training, due to the self-attention mechanism, the embedding of

[C] serves as the sub-circuit level embedding for the register cone.

3.3.2 Graph Neural Network for Netlist-Stage. Although the graph

transformer’s capability is powerful, it’s resource-consuming for

large-scale graphs, such as netlist graphs, which are significantly

larger than RTL graphs. Therefore, we use a GNN model to encode

the netlist cones.

In the netlist graph, the node features include the gate type in

one-hot encoding, the number of fan-in and fan-out nodes, and

physical characteristics such as driving strength, cell area, output

capacitance, and resistance. The GNN aggregates node information

through the message-passing mechanism, generating robust node-

level embeddings. Subsequently, average graph pooling is applied

to aggregate these node embeddings into a cone-level embedding,

also denoted as [C].
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Figure 3: CircuitEncoder cross-stage-aligned self-supervised pre-training workflow.We employmulti-stage contrastive learning

to understand circuits within and across design stages at the sub-circuit cone level.
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Figure 4: Few-shot fine-tuning for downstream tasks based

on CircuitEncoder.

3.4 Fine-Tuning for Downstream Tasks

To apply our CircuitEncoder on distinct downstream tasks, we

fine-tune additional task-specific ML models based on task labels,

similar to the widely adopted supervised learning. However, our

method differs from the supervised methods that process raw cir-

cuit data through tedious feature engineering and complex ML

models. Instead, we begin with embedding vectors generated by

CircuitEncoder. Our task-specific models are lightweight and eas-

ily integrated, such as multi-layer perceptrons (MLP), tree-based

models, and additional GNN layers.

This two-phase method significantly simplifies ML model devel-

opment and enhances accuracy across various tasks. Compared to

supervised methods, the pre-trained model improves accuracy by

capturing rich structural, semantic, and cross-stage information.

Additionally, unlike supervised methods that require an extensive

labeling process, few-shot fine-tuning with CircuitEncoder uses

fewer labeled datasets and still achieves higher accuracy, making

it more efficient. The detailed experimental evaluation will be pre-

sented in Section 4.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup

Our CircuitEncoder is implemented using Pytorch and DGL [27]

for self-supervised pre-training and graph modeling. Experiments

are conducted on a server with a 2.9 GHz Intel Xeon(R) Platinum

8375C CPU, 512 GB RAM, and an NVIDIA A4000 GPU.

Table 2 lists the open-source design benchmarks collected for our

dataset. We created a dataset of 41 open-source RTL designs, synthe-

sized into gate-level netlists using Synopsys Design Compiler® and

the NanGate 45nm technology library, with design metrics obtained

from Synopsys Prime Time®. The functionally equivalent RTL code

and netlists are augmented using Yosys [30] and ABC [3], then con-

verted into graphs using the similar methods described in [10, 28].

The dataset includes 7,166 RTL and netlist cone pairs, each with pos-

itive and negative samples, totaling 42,996 graphs. We employ an

80/20 training/test split based on complete designs, ensuring that no

sub-circuits from the same design appear in both training and test-

ing sets. This involves using 33 designs for training and 8 for testing.

Table 2: Benchmark design information.

Source

Benchmarks

#

Design

Design Size {Min, Avg, Max} Original

HDL Type#K Gates # Cones

ITC [6] 7 {7, 15, 22} {12, 21, 31} VHDL

OpenCores [1] 5 {2, 40, 59} {12, 96, 173} Verilog

Vex [26] 17 {8, 208, 591} {39, 168, 694} SpinalHDL

Chipyard [2] 12 {11, 49, 194} {28, 461, 2730} Chisel

Table 4 summarizes the hyperparameters for the ML models

employed in the two-phase processes. For RTL graphs, we utilize

Graphormer [38] as our graph transformer backbone, equipped

with positional encodings that handle up to 256 fan-ins and fan-

outs for centrality encoding, a maximum distance of 5 for spatial

encoding, and an edge dimension of 12 for edge encoding. For

netlist graphs, we employ GraphSage due to its efficiency in han-

dling larger graphs under computational constraints compared

with Graphormer. During contrastive pre-training, we employ the

triplet loss function [14] with margin parameters set to 1.0. We

maintain the intra-stage weights 𝛼𝑟𝑟 and 𝛼𝑛𝑛 at 1.0, and increase
the inter-stage weight 𝛼𝑟𝑛 from 0.4 to 1.2. The Pre-training process

lasted 50 epochs (20 hours), followed by fine-tuning with additional

lightweight models for only 0.05 hours.

4.2 Downstream Tasks and Baseline Methods

The pre-trained CircuitEncoder model can be easily adapted for

both design quality tasks and functional tasks for RTL and netlist

designs. All downstream tasks are set up strictly following the

baseline methods. We detail these tasks and state-of-the-art (SOTA)

baseline methods with corresponding evaluation metrics below:

Design Quality Evaluation. CircuitEncoder is evaluated at two

granularities for RTL-stage design quality evaluation tasks:

(1) Register slack prediction for RTL designs at the cone level,

compared with RTL-Timer [9]. Accurately predicting fine-grained
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Table 3: Accuracy comparison for the cone-level tasks for RTL and netlist designs.

RTL-Stage (Register Slack Prediction) Netlist-Stage (State Register Identification)

CircuitEncoder CircuitEncoder
Method

RTL-Timer

(supervised learning) (pre-train + few-shot)

ReIGNN★

(supervised learning) (pre-train + few-shot)

% of train 13% 50% 100% 13% 50% 13% 50% 100% 13% 50%

Test

Designs
R MAPE R MAPE R MAPE R MAPE R MAPE Sens. Acc. Sens. Acc. Sens. Acc. Sens. Acc. Sens. Acc.

ITC1 0.48 22% 0.77 20% 0.82 18% 0.91 21% 0.96 9% 0% 72% 50% 72% 50% 72% 100% 98% 100% 98%

ITC2 0.43 26% 0.83 12% 0.88 10% 0.92 19% 0.96 9% 0% 92% 100% 92% 100% 92% 100% 100% 100% 100%

Chipyard1 0.57 30% 0.89 12% 0.92 18% 0.81 15% 0.83 18% 0% 50% 0% 50% 30% 65% 78% 77% 79% 79%

Chipyard2 0.56 31% 0.85 19% 0.88 12% 0.84 12% 0.85 13% 0% 50% 0% 50% 30% 65% 84% 78% 89% 85%

Vex1 0.28 27% 0.65 15% 0.87 24% 0.69 25% 0.88 26% 0% 50% 0% 50% 50% 74% 76% 79% 82% 72%

Vex2 0.73 29% 0.93 17% 0.86 16% 0.85 13% 0.87 13% 15% 57% 21% 57% 32% 60% 73% 76% 79% 78%

Vex3 0.27 36% 0.56 40% 0.84 16% 0.81 14% 0.89 12% 16% 48% 0% 48% 50% 72% 81% 82% 85% 84%

Vex4 0.12 40% 0.76 18% 0.87 12% 0.83 16% 0.86 14% 30% 63% 33% 63% 33% 63% 88% 79% 90% 81%

Avg. 0.43 30% 0.78 19% 0.87 16% 0.83 17% 0.89 14% 8% 60% 26% 60% 47% 70% 85% 84% 88% 85%

★ ReIGNN further incorporates the structural analysis of the netlist graph to improve ML model predictions. For a fair comparison, we only evaluate the ML model component
of ReIGNN against our method. Please note that CircuitEncoder can also apply the same structural analysis method based on the register cone graph.

Table 4: ML model and training hyperparameters.

Training Phase Pre-Training Fine-Tuning

ML Model
Graphormer

(RTL)

GraphSage

(Netlist)
MLP GCN XGBoost

# Layers 7 3 2 2

100

estimator,

20

max depth

Hidden Dim 256 256 128 128

Activation GELU ReLU ReLU ReLU

Batch Size 128 32

Optimizer AdamW Adam

LR 0.001 0.001

Dataset Size 33162 3278

# Epochs 75 1000

Training Time 20h 0.05h

timing slack on each RTL register facilitates proactive early-stage

timing optimization, as demonstrated in [9]. Please note that this

task is highly challenging, since the RTL stage contains no physical

information necessary for timing evaluation.

(2) RTL-stage overall quality evaluation at the circuit level, in-

cluding worst negative slack (WNS), total negative slack (TNS), and

area. This task is benchmarked against SNS v2 [36], MasterRTL [10],

and RTL-Timer. Notably, RTL-Timer and MasterRTL utilize task-

specific supervised learning, whereas SNS v2 designs a two-phase

representation learning model for distinct design quality tasks.

The evaluation metrics of the above two tasks are consistent

with those used by the baseline methods, including correlation

coefficient (R) and mean absolute percentage error (MAPE).

Functional Reasoning.We evaluate CircuitEncoder at cone-

level for netlist-stage functional task: State register identification for

netlists at the cone level. This task focuses on correctly identifying

the control logic and data path registers, which is a critical chal-

lenge for reverse engineering [5]. We compare CircuitEncoder with

ReIGNN [5], following the label collection process and evaluation

metrics, including specificity (i.e., true positive rate) and balanced

accuracy (i.e., the average of specificity and true negative rate).

4.3 Evaluation on Downstream Tasks

This subsection highlights the effectiveness of CircuitEncoder on

all the above tasks3, including register slack prediction and state

register identification at the cone level, as well as overall WNS/TNS

3For the fine-tuning models, we employ MLP or XGBoost for cone-level tasks, and
additional GNN layers for circuit level.
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Figure 5: Accuracy comparison when varying the number of

datasets for baseline methods training and CircuitEncoder

fine-tuning. As the dataset decreases, accuracy drops for su-

pervised methods while CircuitEncoder remains stable.

and area prediction at the circuit level. These cover various highly

distinct design quality and functional reasoning tasks for RTL and

netlist design stages.

4.3.1 Cone-Level Tasks. We first evaluate CircuitEncoder at the

cone level on register timing slack prediction and stage register

identification. To highlight its effectiveness, we vary the dataset

proportions used for both supervised training of SOTA baseline

methods and the fine-tuning of CircuitEncoder. As results shown in

Figure 5, reducing the training data significantly decreases the ac-

curacy of baseline methods, whereas CircuitEncoder’s performance

remains stable due to the self-supervised pre-training.

Table 3 further details the evaluation results of the two cone-

level tasks for each test design. After fine-tuning with half of the

training designs, CircuitEncoder’s few-shot inference significantly

outperforms two SOTA methods [5, 9] trained with the full dataset

(i.e., MAPE = 14% < 16% and accuracy = 85% > 70%). CircuitEncoder

shows robust performance on cone-level tasks. Its effectiveness

is attributed to the pre-training that captures the complete state
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Figure 6: Accuracy comparison for the circuit-level and node-

level tasks for RTL and netlist designs.
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Figure 7: Ablation study. Evaluating the contribution of each

strategy used in CircuitEncoder.

transition of each register cone and utilizes cross-stage interactions

between RTL and netlist.

4.3.2 Circuit-level Tasks. CircuitEncoder aggregates individual reg-

ister cones based on their dependency relationships for precise

circuit-level modeling. Evaluation results for RTL-stage WNS, TNS,

and area predictions are shown in Figure 6. After fine-tuning with

50% of training designs, CircuitEncoder significantly improves accu-

racy across all three targets. Specifically, it achieves better MAPE in

WNS (16% < 17%), TNS (23% < 25%), and area (15% < 19%) predictions

than the dedicated supervised methods [9, 10, 36].

4.4 Ablation Study

To evaluate the contribution of various strategies within Circui-

tEncoder’s cross-stage-aligned pre-training process, we conduct

ablation studies by selectively removing these key strategies and

evaluating both cone-level design quality and functional tasks

from Section 4.3.1. The results are summarized in Figure 7. Re-

moving cross-stage alignment by pre-training the RTL and netlist

models separately, without incorporating the cross-stage aligned

contrastive scheme, results in notable drops in accuracy for both

tasks. Additionally, replacing the graph transformer for RTL de-

signs with a GNN leads to significant accuracy drops in both RTL

and netlist tasks. This shows that the captured high-level RTL-stage

information also benefits the low-level netlists-stage encoding, in-

dicating the effectiveness of cross-stage interactions.

5 CONCLUSION AND FUTUREWORK

In this paper, we present CircuitEncoder, the first self-supervised,

pre-trained, and cross-stage-aligned general circuit model. It en-

codes circuit components into embeddings with rich cross-stage

information, based on which lightweight ML models are easily de-

veloped for various design quality and functional reasoning tasks.

Our future work will focus on improving CircuitEncoder, including

supporting more tasks by aligning more design stages, pre-training

on more unlabeled circuits, and exploring decoding methods.
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