
Towards Big Data in AI for EDA Research:

Generation of New Pseudo-Circuits at RTL Stage

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Zhiyao Xie∗

Hong Kong University of Science and Technology

Hong Kong, China

{sliudx,wfang838,yludf,qzhangcs}@connect.ust.hk,eezhiyao@ust.hk

ABSTRACT
Machine learning (ML) techniques have demonstrated remarkable

effectiveness in electronic design automation (EDA). ML models

need to be trained on diverse circuit datasets for better accuracy

and generalization capabilities. However, the availability of circuit

data remains a long-standing severe issue. The strong data privacy

concern in the semiconductor industry makes direct sharing of cir-

cuit IPs almost impossible. To address the data availability problem,

open-source datasets like CircuitNet have been proposed, but they

mostly focus on collecting labels of several existing open-source de-

signs, instead of generating any new designs. In this work, we make

an innovative exploration to directly generate new pseudo-circuits

without human effort. We believe that generating pseudo-circuits

is the most promising, if not the only, approach to achieving “big

data” in the semiconductor industry in the foreseeable future. We

demonstrate that pseudo-circuits can significantly boost the perfor-

mance of ML models in early design quality predictions, as early as

the pre-synthesis RTL stage.

CCS CONCEPTS
• Hardware→ Software tools for EDA.

KEYWORDS
Pseudo-circuit, graph generation

ACM Reference Format:
Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Zhiyao Xie. 2025. Towards

Big Data in AI for EDA Research: Generation of New Pseudo-Circuits at

RTL Stage. In 30th Asia and South Pacific Design Automation Conference

(ASPDAC ’25), January 20–23, 2025, Tokyo, Japan. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3658617.3697613

1 INTRODUCTION
Artificial intelligence (AI) techniques have demonstrated remark-

able effectiveness in electronic design automation (EDA) and agile

IC design [11, 21]. For such data-driven technology, access to high-

quality, diverse, and representative circuit data is essential for both

ML model development and evaluation. However, the lack of circuit

data remains a long-standing and primary technical bottleneck.

This is largely attributed to the semiconductor industry’s strong re-

luctance to share their circuits, which are valuable commercial IPs.

The lack of open datasets raises a high barrier to the development

of AI for EDA solutions. For ML model training, the label collection

process can be highly time-consuming and resource-demanding.

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697613

Figure 1: Design augmentation has been developed to gen-

erate benchmarks and improve model performance in ML-

based EDA tasks. To augment the learning in all the EDA

stages, we propose the CircuitGen capable of generating un-

limited RTL circuits of varying complexities and scales.

More importantly, limited open-source circuit designs often can-

not provide sufficient diversity in training, limiting the ML model

performance. As the large language models (LLMs) [6, 15–18] and

large foundation models [4] become a trending topic in agile IC

design, the bottleneck of circuit availability becomes even more

serious.

Several open-source datasets [3, 6, 12, 15, 20] about circuits have

been proposed for various circuit design tasks. However, most

circuit datasets such as CircuitNet [3, 12] help generate labels of ex-

isting open-source circuit designs, instead of generating brand-new

circuit designs. In recent years, several works [5, 13] have explored

the generation of circuit datasets at the layout stage. However, as

Figure 1 shows, these generative methods are limited to circuit

layouts, without enforcing new legal circuit functionalities. As a

result, for many tasks related to circuit functionality, such as those

involving logic synthesis, existing circuit generation methods are

not directly applicable.

In this work, we propose a new framework named CircuitGen

to generate pseudo-circuits without human effort. We believe that

generating pseudo-circuits is the most promising, if not the only,

approach to achieving “big data” in the semiconductor industry in

the foreseeable future. CirCuitGen proposes a deep learning-based

circuit generative model, which not only captures deeper circuit

features but also generates new designs in a controllable manner

based on user-specified circuit requirements. In addition to the

graph connection structure, we also incorporate the type, width,

and logic level information of nodes in the register-transfer level

(RTL) into the directed graph neural network, providing a more

powerful expression ability. Moreover, our proposed logic level-

aware graph generation strategy is more effective in generating

synthetic graphs that closely resemble the topological structure of

real designs. Furthermore, CircuitGen is designed to be capable of

generating large-scale circuit graphs with more than 100K nodes.

Compared to existing general sequential-based graph generative

527

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Shang et al.

models [10, 14, 27, 28], CircuitGen has significantly lower compu-

tational complexity. This is due to our proposed fanout assignment

method, which greatly simplifies the process of adding edges.

To demonstrate the benefit of generated pseudo-circuits, we ap-

ply them as training data of a highly challenging ML for EDA task

involving the processing of circuit functionality: early prediction of

area and timing at the RTL stage. This early prediction requires esti-

mating the behavior of logic synthesis tools. Existing ML solutions

include [9, 19, 22, 25, 26], and we select the latest MasterRTL [9]

and RTLTimer [8] as the standard ML solutions to the problem. By

augmenting the training dataset with generated circuits, the ML

model accuracy proves to be significantly boosted.

Our data generation method will benefit all practitioners with an

interest in AI for EDA techniques, from both EDA and AI commu-

nities, both academia and industry. 1) For EDA researchers, open

datasets will greatly simplify the development process of AI so-

lutions to their interested problems. Open benchmarks provide

a platform for fair and convenient comparison of AI solutions.

Researchers are relieved from the tedious circuit collection, data

generation, and prior work replication processes. 2) For a large

number of AI researchers, this session will attract more of them

to contribute new AI algorithms for EDA tasks, reducing the high

barrier of circuit design background. 3) For the EDA and design

companies, engineers can easily identify and replicate high-quality

AI solutions according to the leaderboard of open benchmarks. In

addition, the EDA industry can collaborate with academia based

on the latest open datasets, if their design IPs cannot be shared.

Contributions in CircuitGen can be summarized below:

• To the best of our knowledge, CircuitGen is the first method

that generates new complete pseudo-circuits for ML model

training as early as the RTL stage.

• The logic level-aware generation method assisted with ML

predictors, user specifications, and predefined constraints

is introduced, which not only makes the generated design

exhibit a closer resemblance to the real design in terms of

its topological structure, but also greatly reduces the time

complexity of generating new graphs and makes CircuitGen

applicable for large-scale circuit generation.

• Experiments on the graph similarity between generated and

original circuits demonstrate that CircuitGen better captures

circuit characteristics and generates pseudo-circuits that are

closer to real designs.

• Experiments on early RTL-stage area and timing prediction

demonstrate that CircuitGen, as a data augmentationmethod,

can help alleviate the data availability problem in AI-based

solutions for EDA tasks.

2 PROBLEM FORMULATION
Given an RTL-level circuit graph 𝑔𝑟𝑒 𝑓 , generate a series of new

circuit graphs {𝑔𝑖 }
𝐷
𝑖=1 from scratch. The new graphs must satisfy

the internal constraint𝐶𝑣𝑎𝑙𝑖𝑑 (a set of rules, e.g., the mux type node

must have three inputs, the first one is a selection signal with 1 bit

and the other are data signals), allowing them to be converted into

RTL code using a parser.

Additionally, we require that these new circuit graphs closely

resemble the reference graph in terms of graph local features. Con-

sequently, these newly generated synthetic designs can enhance

the performance of machine learning models in EDA downstream

tasks when used as training data. In the future, these designs may

also serve as benchmarks to test EDA algorithms.

3 CIRCUITGEN OVERVIEW
In this work, we propose CircuitGen, an RTL-level circuit gen-

eration framework based on reference graph statistics and user

specifications. Figure 2 illustrates the process of CircuitGen in gen-

erating pseudo-circuit designs with controllable arbitrary numbers

and sizes based on a single existing RTL design. Stage I convert

the RTL code into a directed graph representation using predefined

rules. Stage II captures the circuit’s features using ML models and

collects the global statistics (e.g., node type distribution). For each

node, Graph Neural Networks are adopted to predict its parents and

fanout number. The prediction is only based on the subgraph that

contains nodes that precede the given vertex in the topological or-

dering. Stage III uses the trained ML predictors with the predefined

circuit valid constraints, and customized specifications to generate

pseudo-circuits from scratch. Finally, the generated circuit graphs

are converted back to the RTL code for downstream applications.

We define the “logic level" of a node as the maximum distance

from all source nodes (source nodes refer to nodes without parents)

that can reach it. We can perform a topological sort on the nodes

in the circuit graph. By traversing each node in this sequence, the

logical level of a target node is determined by adding 1 to the

maximum logical level among its parent nodes.

The graph generation process of CircuitGen starts from the

input nodes and proceeds sequentially by logic level. Each time a

new logic layer is generated, for each node in that layer, at least

one input edge must be connected to a node in the layer above.

when generating a new logic layer, we utilize two pre-trained GNN

models from the reference design to predict the parents and fanout.

In addition, the number of logic layers can be specified, and the

distribution of the nodes in the logic layers can also be obtained

from the reference design statistics. This generationmethod ensures

that the new circuit is topologically similar to the reference design.

4 METHODOLOGY

4.1 Represent RTL Code with Directed Acyclic
Graph in Stage I

The RTL code is in the format of structural language, named hard-

ware description language (HDL), such as Verilog or VHDL. To

convert RTL code into a graph representation, we developed a

parser based on the open-source tool Yosys to read and compile

the RTL code, obtaining a word-level directed graph representation

that includes edges, “data" nodes such as “input", “output", “reg",

and “operator" nodes such as “adder" and “multiplexer".

Each node has a “type” and “width” attribute after the Yosys

compiler. The “type” attribute includes wire, register, adder, etc.

For “data" nodes, the “width” attribute represents their bit width,

while for “operator" nodes, it represents the bit width of the output

and is determined by the inputs. For example, the width of “mux”

is the maximum width of its two data inputs, and the width of

“cat”(concatenate operator) is the sum.

To facilitate encoding of the circuit, we also need to remove

the edges that lead back to registers from a deeper logic level,

making the final directed graph acyclic. This is because we will do

encoding in a logic-level aware way and the generation process is

an autoregressive manner according to the topological ordering.

After removing loops from the graph, we add a “logic level" attribute

to each node.

Finally, we obtain a directed acyclic graph 𝐺 (𝑉 , 𝐸), where 𝑉
represents the set of nodes 𝑉 = {𝑣𝑖 } with three attributes on each
node, 𝐸 represents the set of edges 𝐸 =

{
𝑒𝑖, 𝑗

}
and 𝑒𝑖, 𝑗 represents

that there exists one edge from vertex 𝑖 to 𝑗 . Assume the node
number is |𝑉 | = 𝑁 and the edge number is |𝐸 | = 𝑀 .

528

Towards Big Data in AI for EDA Research:

Generation of New Pseudo-Circuits at RTL Stage ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Figure 2: An overview of the CircuitGen workflow.

4.2 Circuit Learning in Stage II
In stage II, we train the predictor of the edge and fanout of newly

added nodes by capturing the computation flow of the real circuit.

4.2.1 Motivation of Feature Learning. If simply randomly assign
parents for each new node, a significant amount of redundancy will

be introduced into the generated pseudo circuit. This redundancy

will be removed by logic synthesis tools during optimization. For

example, if the single-bit selection signal of a MUX turns out to be

a constant value, the other non-select input path will be removed

during synthesis. Our subsequent experiments have shown that

randomly assigning edges can greatly exacerbate this redundancy.

Such redundancy is less common for human-crafted design RTL.

Furthermore, randomly assigning edges will fail to capture many

local circuit patterns. For example, themajority of circuit nodes only

have a single child, while some nodes may have a larger fanout. In

CircuitGen, we have employed directed GNN-based edge predictors

and fanout predictors trained on the reference circuit to better

capture the circuit features in real design.

4.2.2 Edge Predictor. For a newly added node 𝑣𝑖 that has no connec-
tions with the graph, the edge predictor can compute the probability

of an edge existence between this new vertex and any other node

in the graph. Let’s assume that the node 𝑣𝑝 ’ embeddings are repre-
sented as ℎ𝑝 , and the feature vector of node 𝑣𝑖 is represented as 𝑧𝑖 .
The edge predictor can be formulated as an MLP with a sigmoid

activation 𝜎 :
𝑝 (𝑒𝑝,𝑖) = 𝜎 (𝑀𝐿𝑃𝜃 (ℎ𝑝 , 𝑧𝑖)) (1)

Where the 𝜃 is the MLP parameters and 𝑝 (𝑒𝑝,𝑖) represents the
edge existence probability between vertex 𝑣𝑝 and 𝑣𝑖 . So the current
problem is how to compute the feature vector and embeddings for

the node. For node features, we adopt the one-hot encoding for the

“type” attribute and obtain a 𝑇 dimension vector 𝑡𝑖 . In addition, we
perform positional encoding to the “logic level” attribute inspired

by the widely used Sinusoidal PE technique [23] in transformers

to facilitate learning the positional relationships between different

logic layers in the directed graph.

Then the 𝑇 dimension feature vector 𝑧𝑖 for node 𝑣𝑖 is obtained
by 𝑧𝑖 = 𝑡𝑖 + 𝑃𝐸𝑙 , where 𝑃𝐸𝑙 is the PE encodings for node in logic
level 𝑙 . To obtain embeddings for each node, we follow the directed

graph learning work and update node 𝑣 as:

ℎ
(𝑘+1)
𝑖 = 𝜎

���ℎ
(𝑘)
𝑖 +

∑
𝑗∈P (𝑖)

1

𝑐𝑖
·𝑊 (𝑘) · ℎ

(𝑘)
𝑗

�	
 (2)

ℎ
(𝑘)
𝑖 represents the embedding of node 𝑖 in the neural network’s 𝑘
layer. The P(𝑣) represents the parent nodes set of node 𝑖 .
During the training stage of the edge predictor, for node 𝑖 in

layer 𝑙 , we extract all nodes with logical levels less than 𝑙 as 𝑔<𝑙
and then do graph encoding according to Equation 2. Since the

edge existence is a binary value, we sample some nodes from 𝑔<𝑙
that do not have a connection with node 𝑖 as negative samples and
calculate the loss using cross-entropy.

4.2.3 Fanout Number Predictor. The number of child nodes of a
node is referred to as the node’s fanout. In digital circuits, fanout is

an important characteristic that reflects a node’s driving capability

and, to some extent, indicates the node’s significance within the

circuit logic. The fanout predictor uses the node’s embedding ag-

gregated from its parents to predict its fanout. Assume we can get

the embeddings of the target node as ℎ𝑖 according to Equation 2,
then the fanout predictor can be written as follows:

𝐹𝑎𝑛𝑜𝑢𝑡 (𝑖) = 𝑀𝐿𝑃𝜙 (ℎ𝑖) (3)

To predict the number of child node, we can use mean squared

error (MSE) loss during the training process.

4.3 Graph Generation in Stage III
In this section, we will introduce our ML predictor-assisted circuit

generation process in detail.

4.3.1 Logic-Aware Autoregressive Generation Overview. Our graph
generation framework based on logic levels conforms to the inher-

ent logic of circuits, enabling the generation of synthetic graphs

that closely resemble the topological structure of the reference

circuit design.

Considering the connection relationships between circuit nodes

have strong constraints, the generation process should be per-

formed in a step-by-step manner rather than generating the adja-

cency matrix in one shot [24]. This is because, during the process

of stepwise graph expansion, we can identify and correct any in-

valid connection relationships at any intermediate step. Therefore,

we follow the topological order of the circuit nodes to gradually

construct the entire graph. The advantage of this approach is that

when adding new nodes, we already have the information of the

529

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Shang et al.

Figure 3: In process 1©, we randomly sample a set of nodes with type attributes for the newly added logic layer based on the

global information of the reference circuit. In the second step 2©, we select parent candidates according to the connection

constraints, also ensuring that the current node must have at least one parent node from the previous logic layer. In the third

step 3©, we use the trained edge predictor to select a parent node from the parent candidates. In steps 4© and 5©, we update the

node fanout and width based on the inputs. The operation for other nodes in this layer follows the same procedure.

entire input cone to predict the node properties, and we only need

to assign its parent node from the existing subgraph.

The nodes generated in sequence according to logic levels do

not have interconnections, and each node has at least one input

edge originating from a node in the preceding logic level. This

approach significantly simplifies our generation process. In addition,

our proposed logic level-aware autoregressive generation method

leverages the topological statistics of the reference design, enabling

the generated design to more closely resemble the real design in

terms of the graph structure.

4.3.2 Circuit Generation Process in Detail. Given an existing sub-
graph 𝑔<𝑙 , Figure 3 illustrates the 𝑙-th layer generation. In practice,
we start the graph construction from the first logic layer containing

only “in" nodes.

In process 1©, we assign a set of nodes with type attributes to

the new logic layer. Based on the global statistics of the reference

design obtained in stage II, we extract the distribution of node

numbers across each logic level as 𝑁𝑙𝑎𝑦𝑒𝑟 and the distribution of

node numbers for different types as 𝑁𝑡𝑦𝑝𝑒 . To generate the 𝑖-th
logic layer (𝑙=130 in Figure 3), we sample from 𝑁𝑙𝑎𝑦𝑒𝑟 and 𝑁𝑡𝑦𝑝𝑒 ,

thereby creating several new vertices with node “type" attributes.

It is important to note that at this stage, the newly added nodes

lack “width" attributes because their connectivity has not yet been

determined.

In the following procedure, We will sequentially process these

newly added nodes to determine their parent candidates and width

attributes. In process 2©, for node ADD, we need to determine a set

of parent candidates from the existing subgraph. The criteria for

selecting candidates are as follows: Firstly, due to the constraints

imposed by the assigned fanout on node outputs, the fanout at-

tribute of the parent node must be greater than its number of child

nodes. Secondly, at least one parent must be located in the preced-

ing logic layer which is highlighted as a red dot line. Otherwise,

the logic level of the node will no longer be 𝑙 , conflicting with our
assumptions. Lastly, the parent nodes must comply with predefined

circuit constraints. For example, different types of nodes have vary-

ing fan-in requirements: “reg" nodes require 1 input, “mux" nodes

require 3, while “cat" nodes have no restrictions.

In process 3©, we use the edge predictor to calculate the edge

existing probability based on the embedding of each parent candi-

date and the feature vector of the newly added node. Based on the

obtained probability distribution, we sample a specified number

of parent nodes in a stochastic way. It is also important to ensure

that the newly added edges comply with predefined rules during

this process. For instance, a “mux" node must have at least one

single-bit input.

In process 4© and 5©, we update the bit-width information of

the node based on its type and the bit-width of its parent nodes.

Additionally, we assign the fanout attribute to the node using the

fanout predictor. At this point, the node 𝑖 (ADD in Figure 3) has

been fully processed. Subsequently, we apply the same procedure

to the other nodes in this logic layer.

It is important to note that some nodes in the subgraph 𝑔<𝑙 may
reach their fanout limit and thus can no longer be considered as par-

ent candidates as process 6© shows. However, the node embeddings

in 𝑔<𝑙 do not need to be recomputed. This is because our graph
encoder employs a directed message-passing approach, and there

are no connections between nodes within the same logic layers.

4.3.3 The Graph Generation Process Discussion. In the generation
process, we can specify the node number and proportion of different

types. Moreover, we can also control the logic length and newly

generated node number at each logic level. This makes it easier to

generate circuits that meet users’ specific requirements.

Our proposed generation flow has a better time complexity com-

pared with the representative general graph generation works. In

their generation process, each newly generated node requires edge

probability prediction with all existing nodes, leading to a time com-

plexity of 𝑂 (𝑁 2). The generation cost is unaffordable, especially
for large-scale graphs such as RV design with around 100K nodes.

By introducing the fanout constraint, we can significantly reduce

the number of parent candidates. This is because, in real circuits,

the node majority have a fanout of 1. For example, in the graph

representation of the TinyRocket design, nodes with a fanout of 1

account for 86.2% of the total, while nodes with a fanout greater

than 5 account for only 2.05%.

5 EXPERIMENTAL RESULTS
The register-transfer level (RTL) stage is a crucial early step in

modern VLSI design flows, providing maximum optimization flexi-

bility. To meet design specifications, it is essential for designers to

optimize their RTL designs adequately at this early stage. Recently,

ML-based RTL-level PPA prediction methods have been proposed,

which can directly predict the performance of designs without logic

synthesis [25] [9] [8]. This can greatly accelerate the design iter-

ation process. However, this application is limited by insufficient

open-source RTL code.

The primary objective of this experiment is to utilize the pro-

posed CircuitGen model to generate a set of pseudo-design training

530

Towards Big Data in AI for EDA Research:

Generation of New Pseudo-Circuits at RTL Stage ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Figure 4: Netlist statistics for the three synthetic datasets and real benchmarks are presented. The distributions of four types

of features: area, sequential cell number, violating path number, and WNS are shown in (a), (b), (c), and (d), respectively. The

dataset generated by CircuitGen exhibits broader feature coverage and its feature distributions are closer to those of the real

designs compared to GraphRNN [27] and DVAE[28].

datasets and to explore the effectiveness of new synthetic circuits

for QoR modeling at the RTL level. To the best of our knowledge,

this is the first work of applying complete pseudo-RTL designs to

machine learning tasks in the EDA frontend stage.

5.1 Experiment Setup
Firstly, we constructed a dataset containing 22 designs with an av-

erage size of 13.5K gates based on open-source RTL, which consists

of (1) 8 designs in Chipyard [2], (2) 8 designs in Opencores [1], (3)

6 designs in ITC’99 [7]. The dataset encompasses a broad range

of digital circuit modules, such as CPU cores and cryptographic

units with almost the highest quality available in the open-source

community.

To obtain the netlist features after the synthesis stage including

design area, reg slack (SL), worst negative slack (WNS), and total

negative slack (TNS), Synopsys Design Compiler® 2021 with the

NanGate 45nm technology library is used. In order to maintain

consistency with real-world scenarios, multiple Design Compiler

parameters are used, and the PPA value on the Pareto curve is used

as the design ground truth label to ensure optimal trade-offs.

To prepare for the pseudo-data, we not only used CircuitGen to

generate a set of synthetic designs but also employed two represen-

tative graph generative models, GraphRNN [27] and DVAE [28], to

produce two additional datasets for comparison. Since these models

were not originally customized for circuit generation, we modified

the official code and incorporated circuit constraints to ensure that

the generated graphs could be converted into RTL code.

We utilized an Intel(R) Xeon(R) Gold 6438Y+ processor and

8*4090 GPUs as the platform. For CircuitGen, we employed 2-layer

and 5-layer message passing for the edge predictor and fanout

predictor, respectively. This lightweight model allows for paral-

lel training across the entire graph, enabling model convergence

within a few minutes even when using only the CPU. In contrast,

GraphRNN [27] is based on RNN and DVAE [28] is based on a

sequential variational autoencoder. Their time complexity grows

quadratically with the number of nodes, resulting in several days

of training time to achieve model convergence, even for relatively

small graphs. These graph learning models are all trained on the

TinyRocket and aes_cipher_top designs.

To ensure greater diversity in the pseudo-designs, we randomly

specify the number of nodes to be between 5K and 20K, and the

maximum logic level to be between 200 and 1000. Additionally, we

can manually control the ratio of different types of nodes to obtain a

wider variety of circuits. Under the same circuit predefined settings,

we generated circuits using the three generative models including

our CircuitGen.

5.2 Observation for Synthetic Dataset
Figure 4 presents the statistical data of the synthesized circuits

from the pseudo datasets generated by the three models, along

with the real design benchmark. The statistics include circuit area,

sequential cell number, violating path number, and worst negative

slack.

From the area statistics, we can observe that although a simi-

lar node number is specified for the three-generation models, the

graphs produced by CircuitGen still retain a significant area after

synthesis. This indicates that, compared to CircuitGen, the graphs

generated by the other two baseline methods contained a consid-

erable amount of logic redundancy that was optimized during the

synthesis stage.

The design area obtained by CircuitGen is notably larger than

that of the real design benchmark. This is because the node number

we specified is large, and we did not intend to make the size of the

generated circuit similar to the existing benchmark.

In terms of the number of sequential cells, the designs gener-

ated by CircuitGen are more similar to the real designs, whereas

the designs produced by GraphRNN [27] have most of their regis-

ters synthesized away. This is also due to logical redundancy; for

instance, registers connected to nodes that are determined to be

constant values during logic analysis will be removed.

Additionally, although the graphs generated by DVAE [28] still

contain a significant number of sequential cells after synthesis, the

very small violating path number indicates that the connection

paths of these registers are very short, which does not align with

real circuits. On the other hand, CircuitGen still shows no significant

gap compared to real designs in terms of the path number metric.

Finally, the WNS metric reflects the longest delay in signal trans-

mission between registers in the netlist, which can partially indicate

the length of the paths. We observe that the graphs generated by

GraphRNN [27] and DVAE [28] exhibit very small WNS values,

failing to capture the delay characteristics inherent in circuits. In

contrast, CircuitGen demonstrates a broader coverage of WNS even

compared to real designs, indicating that CircuitGen can generate

circuit structures with a wide range of WNS values.

A significant gap between RTL design and its netlist can be detri-

mental to ML-based task learning. This discrepancy arises because

these designs may significantly differ from the distribution of real

datasets, potentially reducing the model’s accuracy. Considering
CircuitGen’s ability to achieve broader statistics coverage, it
is more suitable to generate and select better pseudo designs
in downstream ML-based EDA tasks for data augmentation.

531

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Shang et al.

Target R MAPE RRSE Target R MAPE RRSE Target R MAPE RRSE Target R MAPE RRSE

No Pseudo-Circuits

WNS

0.86 20 % 0.83

TNS

0.81 50% 0.97

Register Slack

0.7 27% 0.83

Area

0.89 30 % 0.62

GraphRNN [27] 0.88 21 % 0.83 0.80 54 % 0.97 0.7 27% 0.83 0.84 44 % 0.75

DVAE [28] 0.88 24% 0.86 0.78 50 % 0.97 0.69 29% 0.94 0.84 61% 0.96

CircuitGen 0.90 23 % 0.79 1.0 42% 0.60 0.75 17 % 0.72 0.93 22% 0.29

(a) Basic training dataset contains 15 real designs

Target R MAPE RRSE Target R MAPE RRSE Target R MAPE RRSE Target R MAPE RRSE

No Pseudo-Circuits

WNS

NA 52 % 2.1

TNS

NA 67% 1.1

Register Slack

0.52 34% 1.05

Area

0.65 66 % 1.3

GraphRNN [27] 0.71 42 % 1.7 -0.30 74% 1.1 0.52 34% 1.05 0.51 77 % 1.6

DVAE [28] 0.75 77% 2.6 0.76 93 % 1.1 0.49 36% 1.31 0.70 86% 2.4

CircuitGen 0.88 36 % 1.3 1.0 63% 0.61 0.62 28 % 0.83 0.97 31% 0.46

(b) Basic training dataset contains 5 real designs

Table 1: Model Performance on the WNS, TNS, register slack, and area prediction tasks. The basic training dataset in (a) and (b)

contains 15 and 5 real designs respectively. In (a) and (b), the augmentation datasets are added to the basic training set, each

always with 25 pseudo-circuits, generated from CircuitGen, GraphRNN [27], and DVAE [28].

5.3 Downstream Tasks at RTL Stage
In this section, we will explore the potential applications of pseudo

circuit generation for QoR prediction at RTL-level and we mainly

refer to the overall design evaluation (i.e., area, WNS, and TNS)

method proposed by MasterRTL [9] and fine-grained timing slack

evaluation by RTL-Timer [8].

We use three metrics to measure model performance, They are

correlation coefficient (R), Mean Absolute Error Percentage (MAPE),

and Root Relative Square Error (RRSE). The lower MAPE and RRSE

indicate a better model performance.

We randomly selected 5 and 15 designs in the real benchmark to

create two different basic training datasets and randomly selected

the 7 designs (Not overlapping with the training set) as the testing

set. For each basic training dataset, we augmented it with different

synthetic datasets (i.e., three sets of 25 designs each, generated

respectively by CircuitGen, GraphRNN [27], and DVAE [28]) to

study how these pseudo-designs affect model performance.

5.3.1 Area Prediction. The area prediction accuracy is shown in
Table 1. In both basic training dataset settings, models trained on

the combined dataset augmented with CircuitGen-generated data

always outperformed the model trained solely on real designs and

performed the best in all the metrics. It is noteworthy that the mod-

els augmented with both DVAE [28]-generated and GraphRNN [27]-

generated data performed even worse, regardless of the training

dataset setting. This may indicate the significant gap between data

generated from the two baselines and the real one due to the logic

redundancy.

5.3.2 WNS and TNS Prediction. To implement the overall timing
model for WNS and TNS prediction, we follow the two-step proce-

dure described in [9]: (1) training a path-level timing model, and

(2) design-level calibration.

The overall timing results are shown in Table 1. Benefiting from

the pseudo-designs generated by CircuitGen, themodel achieves the

best performance across most metrics, attaining an R of 1 for TNS

prediction in the training settingwith 15 real designs. The results for

GraphRNN [27] and DVAE [28] are similar to those for the area, and

in many cases, they lead to performance reduction. As observed

in Figure 4, the synthetic data generated from GraphRNN [27]

and DVAE [28] contain very few paths with large delays. This

discrepancy may have caused the model’s learning to deviate from

the normal timing features.

5.3.3 Register Slack Prediction. In addition to the above overall
design quality evaluation, we employ fine-grained register slack

prediction for RTL designs [8]. This task is more challenging than

overall quality prediction as it requires accurate modeling of the

critical timing slack for each register within the logic cone. It can

significantly reflect the details (e.g., topological levels and connec-

tivity between register pairs) of our generated RTL designs.

Similar to the analysis of the previous experiments, incorporat-

ing synthetic data generated by CircuitGen allowed the machine

learning model to achieve the best performance across all metrics.

In this experiment, violating paths were extracted from the designs

to serve as the training data. However, due to the lack of usable

paths from GraphRNN [27], there was no gain to the basic training

set. Therefore, the model performance trained on real designs plus

GraphRNN [27]-augmented pseudo-circuits is the same as that only

trained on real designs. Moreover, although DVAE [28] provided

some paths, the significant discrepancy between their delays and

the actual distribution still led to poorer model performance in all

the cases.

6 CONCLUSION
Data-driven automation in digital circuit design has been widely

applied in recent years. However, the number of existing open-

source circuits is often limited, and large-scale designs are even

rarer. To alleviate this problem, we designed a customized genera-

tive model for RTL in a logic-level aware manner. This technique

greatly speeds up the graph generation process and makes Cir-

CuitGen applicable for large-scale graph generation. Experimental

results demonstrate that CirCuitGen has a better circuit generation

ability than existing general graph generative works. Furthermore,

the comprehensive analysis of area, WNS, TNS, and register slack

prediction tasks further demonstrates that CirCuitGen, as a data

augmentation method, helps improve the performance of existing

machine learning models.

ACKNOWLEDGEMENT
This work is partially supported by Hong Kong Research Grants

Council (RGC) ECS Grant 26208723, National Natural Science Foun-

dation of China (62304192, 92364102), andACCESS –AI Chip Center

for Emerging Smart Systems, sponsored by InnoHK funding, Hong

Kong SAR.

532

Towards Big Data in AI for EDA Research:

Generation of New Pseudo-Circuits at RTL Stage ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

REFERENCES
[1] Christoph Albrecht. 2005. IWLS 2005 benchmarks. In International Workshop for

Logic Synthesis (IWLS): http://www. iwls. org.
[2] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,

Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, et al.
2020. Chipyard: Integrated design, simulation, and implementation framework
for custom socs. IEEE Micro 40, 4 (2020).

[3] Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Runsheng Wang, and Ru Huang.
2023. Circuitnet: An open-source dataset for machine learning in vlsi cad appli-
cations with improved domain-specific evaluation metric and learning strategies.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(2023).
[4] Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-Yi Ho, Yu Huang, Sadaf

Khan, Min Li, Xingquan Li, Yun Liang, et al. 2024. The Dawn of AI-Native EDA:
Promises and Challenges of Large Circuit Models. arXiv preprint arXiv:2403.07257
(2024).

[5] Vidya A Chhabria, Kishor Kunal, Masoud Zabihi, and Sachin S Sapatnekar. 2021.
BeGAN: Power grid benchmark generation using a process-portable GAN-based
methodology. In 2021 IEEE/ACM International Conference On Computer Aided

Design (ICCAD). IEEE, 1–8.
[6] Animesh B Chowdhury, Shailja Thakur, Hammond Pearce, Ramesh Karri, and

Siddharth Garg. 2023. Towards the Imagenets of ML4EDA. In IEEE/ACM Interna-

tional Conference on Computer Aided Design (ICCAD). IEEE.
[7] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. 2000. RT-level

ITC’99 benchmarks and first ATPG results. Design & Test of computers (ITC)

(2000).
[8] Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. 2024. Annotating Slack

Directly on Your Verilog: Fine-Grained RTL Timing Evaluation for Early Opti-
mization. In Proceedings of 2024 ACM/IEEE Design Automation Conference (DAC).
ACM, 1–6.

[9] Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce
Zhang, and Zhiyao Xie. 2023. MasterRTL: A Pre-Synthesis PPA Estimation
Framework for Any RTL Design. In Proceedings of 2023 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD). IEEE, 1–9.
[10] Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. 2020. Graphgen: A scalable

approach to domain-agnostic labeled graph generation. In Proceedings of The

Web Conference 2020. 1253–1263.
[11] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen,

Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. 2021. Machine learn-
ing for electronic design automation: A survey. ACM Transactions on Design

Automation of Electronic Systems (TODAES) (2021).
[12] Xun Jiang, Yuxiang Zhao, Yibo Lin, Runsheng Wang, Ru Huang, et al. 2023. Cir-

cuitNet 2.0: An Advanced Dataset for Promoting Machine Learning Innovations
in Realistic Chip Design Environment. In International Conference on Learning

Representations (ICLR).
[13] Daeyeon Kim, Hyunjeong Kwon, Sung-Yun Lee, Seungwon Kim, Mingyu Woo,

and Seokhyeong Kang. 2021. Machine learning framework for early routability
prediction with artificial netlist generator. In 2021 Design, Automation & Test in

Europe Conference & Exhibition (DATE). IEEE, 1809–1814.
[14] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duve-

naud, Raquel Urtasun, and Richard Zemel. 2019. Efficient graph generation with
graph recurrent attention networks. Advances in neural information processing

systems (NeurIPS) 32 (2019).
[15] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. 2023. Verilo-

geval: Evaluating large languagemodels for verilog code generation. In IEEE/ACM
International Conference on Computer Aided Design (ICCAD). IEEE, 1–8.

[16] Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang, and
Zhiyao Xie. 2024. RTLCoder: Fully Open-Source and Efficient LLM-Assisted RTL
Code Generation Technique. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (2024).
[17] Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. 2024. OpenLLM-

RTL: Open Dataset and Benchmark for LLM-Aided Design RTL Generation. In
2024 IEEE/ACM International Conference on Computer Aided Design (ICCAD).
IEEE/ACM.

[18] Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. 2024. Rtllm: An open-source
benchmark for design rtl generation with large language model. In 2024 29th

Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 722–727.
[19] Yikang Ouyang, Sicheng Li, Dongsheng Zuo, et al. 2023. ASAP: Accurate Syn-

thesis Analysis and Prediction with Multi-Task Learning. In MLCAD.
[20] Jingyu Pan, Chen-Chia Chang, Zhiyao Xie, and Yiran Chen. 2023. EDALearn: A

Comprehensive RTL-to-Signoff EDA Benchmark for Democratized and Repro-
ducible ML for EDA Research. arXiv preprint arXiv:2312.01674 (2023).

[21] Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z Pan, Marilyn Wolf,
and Jörg Henkel. 2021. MLCAD: A Survey of Research in Machine Learning for
CAD Keynote Paper. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (TCAD) (2021).
[22] Prianka Sengupta, Aakash Tyagi, Yiran Chen, et al. 2022. How Good Is Your

Verilog RTL Code? A Quick Answer from Machine Learning. In ICCAD.
[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[24] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher,
and Pascal Frossard. 2022. Digress: Discrete denoising diffusion for graph gener-
ation. arXiv preprint arXiv:2209.14734 (2022).

[25] Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills. 2022. SNS’s not a synthesizer:
a deep-learning-based synthesis predictor. In Proceedings of the 49th Annual

International Symposium on Computer Architecture (ISCA). 847–859.
[26] Ceyu Xu, Pragya Sharma, Tianshu Wang, and Lisa Wu Wills. 2023. Fast, Robust

and Transferable Prediction for Hardware Logic Synthesis. In Proceedings of the

56th Annual IEEE/ACM International Symposium on Microarchitecture. 167–179.
[27] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. 2018.

Graphrnn: Generating realistic graphs with deep auto-regressive models. In
International conference on machine learning. PMLR, 5708–5717.

[28] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. 2019.
D-vae: A variational autoencoder for directed acyclic graphs. Advances in neural

information processing systems 32 (2019).

533

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

