
FirePower: Towards a Foundation with Generalizable Knowledge
for Architecture-Level Power Modeling

Qijun Zhang, Mengming Li, Yao Lu, Zhiyao Xie∗

Hong Kong University of Science and Technology
{qzhangcs,mengming.li,yludf}@connect.ust.hk,eezhiyao@ust.hk

ABSTRACT
Power efficiency is a critical design objective in modern processor
design. A high-fidelity architecture-level power modeling method
is greatly needed by CPU architects for guiding early optimizations.
However, traditional architecture-level power models can not meet
the accuracy requirement, largely due to the discrepancy between
the power model and actual design implementation. While some
machine learning (ML)-based architecture-level power modeling
methods have been proposed in recent years, the data-hungry ML
model training process requires sufficient similar known designs,
which are unrealistic in many development scenarios.
This work proposes a new power modeling solution FirePower

that targets few-shot learning scenario for new target architec-
tures. FirePower proposes multiple new policies to utilize cross-
architecture knowledge. First, it develops power models at compo-
nent level, and components are defined in a power-friendly manner.
Second, it supports different generalization strategies for models
of different components. Third, it formulates generalizable and
architecture-specific design knowledge into two separate models.
FirePower also supports the evaluation of the generalization quality.
In our experiments, FirePower can achieve a low error percentage
of 5.8% and a high correlation 𝑅 of 0.98 on average only using two
configurations of target architecture. This is 8.8% lower in error
percentage and 0.03 higher in 𝑅 compared with directly training
McPAT-Calib baseline on configurations of target architecture.

CCS CONCEPTS
• Hardware→ Power estimation and optimization.

KEYWORDS
Power model, machine learning

ACM Reference Format:
Qijun Zhang, Mengming Li, Yao Lu, Zhiyao Xie. 2025. FirePower: Towards

a Foundation with Generalizable Knowledge for Architecture-Level Power

Modeling. In 30th Asia and South Pacific Design Automation Conference

(ASPDAC ’25), January 20–23, 2025, Tokyo, Japan. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3658617.3697554

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697554

Figure 1: Proposed power modeling paradigm FirePower vs.
existing architecture-specific paradigm. FirePower targets
few-shot learning for new target architectures. It extracts
general knowledge from an already known architecture, pro-
viding a “foundation” to supportmodeling new architectures.

1 INTRODUCTION
Power efficiency is a critical design objective for processor design.
With the increasing design complexity, it takes significant time and
effort in power optimization. As a result, a fast and highly accurate
architecture-level power modeling method is greatly needed for
early power evaluation prior to RTL implementation. Traditional
analytical architecture-level power models such as McPAT [19]
and Wattch [9] are often inaccurate, largely due to the discrepancy
among architecture-level simulator, power model, and real target
CPU. This has been discussed in many prior works [26, 30]. Despite
some works [13, 25] updating internal design of analytical power
models, they require significant human efforts and are primarily
developed in-house to cater to proprietary designs.
In recent years, ML-based architecture-level power modeling

methods [18, 30–32] have been explored and demonstrated better
accuracy by calibrating analytical models with ML models. How-
ever, as Fig. 1(a) shows, most ML-based power models are developed
for a specific architecture, and are only applicable to new configura-
tions under exactly the same architecture. For example, most prior
works train and test power models on BOOMCPUs [33] only. Train-
ing and testing are performed on different BOOM configurations,
sharing obvious similarities. Building an ML-based power model
requires sufficient ground-truth power labels of known configura-
tions of target architecture [18, 30, 31]. For a new project developing
a slightly different architecture, the whole power model must be
retrained from scratch based on a brand-new training dataset.
In practice, for an ongoing project targeting a specific architec-

ture, there are not many already accomplished designs available to
provide training labels. If collecting labels from scratch, the process
can be highly expensive: For each design configuration, its label
collection requires register-transfer level (RTL) implementation,
synthesis, and simulation with workloads. RTL implementation
can be especially tedious. A more practical scenario is, only a few

1145

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Qijun Zhang, Mengming Li, Yao Lu, Zhiyao Xie

design configurations under the target architecture are available to
provide training labels. This is a typical few-shot learning scenario.
The existing architecture-specific power modeling paradigm suffers
from limited accuracy when only a few labels are available.
Motivated by the limitation of architecture-specific methods, we

propose to extract general knowledge that can be applied across
architectures. This is possible since different architectures still have
similarities. Take out-of-order CPUs as an example, despite different
design decisions, general design principles are similar, leading to
partially similar power characteristics. However, separating general
and specific knowledge at the architecture level is challenging since
there is no clear standard of general or architecture-specific part of
power. To the best of our knowledge, no prior ML power models
have explicitly explored this topic at the architecture level.
In this work, we propose a two-phase power modeling paradigm

named FirePower, as shown in Fig. 1(b). (1) The first phase is named
knowledge extraction. This first phase can be time-consuming, but
it is performed only once and by us, FirePower developers. Devel-
opers will first collect data on one known architecture (e.g., BOOM
CPU series). Sufficient power labels will be collected for multiple
configurations with good coverage for the design space. The frame-
work will extract generalizable knowledge from this architecture.
This general knowledge will provide a foundation for the few-shot
power modeling tasks on other architectures. (2) The second phase
will utilize the foundation with general knowledge to build the
power model for each new target architecture. With only a few
available configurations of the target architecture (i.e., few-shot),
the power model significantly outperforms existing architecture-
specific models, which have to be trained from scratch.
The contributions of this work can be summarized below.

• We analyze the limitation of the architecture-specific power
modeling paradigm when applied to different target archi-

tectures. Then we propose a new paradigm FirePower1 that
targets the few-shot learning scenario for new target archi-
tectures by different users.

• To the best of our knowledge, FirePower is the first data-
driven architecture-level power model that explores cross-
architecture design knowledge. This exploration contributes
to the understanding of the gap among architectures. This
framework is fully automated, without requiring additional
designer knowledge about any target architecture.

• FirePower proposes multiple new policies to use cross-archi-
tecture knowledge. 1) It develops models at component level,
and components are defined in power-friendly manner. 2)
It supports different generalization strategies for different
components. 3) It formulates generalizable and architecture-
specific design knowledge into two separate models.

• To detect the risk of huge differences between known and
target architectures, FirePower supports the evaluation of
the generalization quality for any target architecture. This
helps provide the applicable scope of the method.

• We evaluate FirePower using two widely adopted open-
source RISC-VCPU designs: BOOMandXiangShan. It demon-
strates that FirePower can achieve a low MAPE of 5.8% and
a high correlation 𝑅 of 0.98 on average only using two con-
figurations of the target architecture. It achieves 8.8% lower

1It is open-sourced at https://github.com/hkust-zhiyao/FirePower

MAPE and 0.03 higher 𝑅 compared with directly training
McPAT-Calib on configurations of the target architecture.

2 RELATEDWORK
Standard power estimation flow includes RTL implementation, logic
synthesis, RTL simulation, and power simulation [23, 24]. In recent
years, design-specific ML power models have been proposed [11, 12,
14–16, 20, 22, 27, 28, 34] for RTL stage using RTL signals as input.
However, they still require RTL implementation, and a new model
needs to be developed from scratch for each design. For pre-RTL
stage, an accurate architecture-level power model is greatly needed.
Architecture-level power modeling takes architecture-level hard-

ware parameters (denoted as 𝐻) and event statistics (denoted as 𝐸)
as input to calculate power. Hardware parameters are the parame-
ters used to describe the CPU configuration, such as 𝐹𝑒𝑡𝑐ℎ𝑊 𝑖𝑑𝑡ℎ
and 𝐷𝐶𝑎𝑐ℎ𝑒𝑊𝑎𝑦. Event statistics are the information generated
by running the workloads on the architecture-level performance
simulator, such as the number of cache hits and branch instructions.
Traditional analytical architecture-level power models like Mc-

PAT [19] calculate energy consumption for each event based on
hardware parameters, then divide the accumulation of them by the
execution time to calculate power. Wattch [9] also adopts a similar
method. It calculates the power of each cycle by accumulating the
energy consumption for each event in this cycle and then dividing it
by the time of a cycle. However, because of the discrepancy among
the architecture-level performance simulator, the power model, and
the actual CPU design, these analytical models are often inaccurate.
To deal with the inaccuracy of the analytical power model, data-

driven ML power models have been proposed in recent years [30–
32]. One of the representative data-driven architecture-level power
models is McPAT-Calib [30]. McPAT-Calib trains an ML model to
calibrate McPAT output towards power labels. Denoting the output
of McPAT as𝑀 , the McPAT-Calib can be formulated below.

𝑃 = 𝑭𝒎𝒍 (𝐻, 𝐸,𝑀)

This ML model tries to capture the mapping from these features to
the power, such mapping is obviously different for different archi-
tectures. In this case, it needs to be retrained from scratch when
applied to a new architecture. The work of [31] uses the same for-
mulation but performs transfer learning to a new domain of the
same architecture design, where a domain means configurations
with the same 𝐷𝑒𝑐𝑜𝑑𝑒𝑊 𝑖𝑑𝑡ℎ. Therefore, it [31] still doesn’t sup-
port cross-architecture power modeling. The PANDA [32] proposes
human-crafted resource functions to achieve few-shot learning
where the known configuration is limited. However, designing the
resource function requires significant engineering expertise for
each target architecture. This is not an automated solution.

3 PROBLEM FORMULATION
Here we introduce problem formulation. FirePower developer starts
with a known architecture. The design space of the known ar-
chitecture is already well-explored by the developer so there are
sufficient known configurations. The power simulation of these
configurations has also been performed with multiple workloads.
The collection of the dataset is denoted as D𝑘𝑛𝑜𝑤𝑛 .
When applying FirePower, there aremultiple in-progress projects

that need to build power models for their own target architectures
at a low cost. For these ongoing design projects, there are only a few
available configurations of target architectures. The dataset with a

1146

FirePower: Towards a Foundation with Generalizable Knowledge for Architecture-Level Power Modeling ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

few configurations of target architecture and corresponding power
labels is denoted asD𝑡𝑎𝑟𝑔𝑒𝑡 . In experiments, we test three scenarios
when there are 2, 3, or 4 available configurations in D𝑡𝑎𝑟𝑔𝑒𝑡 .
Our goal is to facilitate power modeling of these in-progress

projects based on limited data of their target architectures D𝑡𝑎𝑟𝑔𝑒𝑡 .
FirePower achieves this in two phases: knowledge extraction and ap-
plication. In the knowledge extraction phase, the developer extracts
generalizable knowledge based on known architecture D𝑘𝑛𝑜𝑤𝑛 . In
the application phase, the knowledge is generalized to help develop
power models for target architectures based on D𝑡𝑎𝑟𝑔𝑒𝑡 .

4 METHODOLOGY

4.1 Power Model Overview
The general FirePower solution is based on two basic insights.
Insight 1. Instead of directly modeling total power, architecture-

level power should be modeled for each power-friendly component.
Specifically, the whole design will be partitioned into multiple com-
mon components for power modeling purposes. Individual power
models will be developed for each component, and total power is a
summation of all component power. This brings multiple benefits:
1) compared with total power, individual components altogether
provide more power labels; 2) designers have the flexibility to define
components in a power-friendly manner, which is introduced in
Section 4.2; and 3) smaller common components are affected by
very few hardware parameters, thus component power model tends
to be simple thus more general. It is further discussed in Insight 2.
Insight 2.When developing data-driven architecture-level power

models, we observe that some knowledge tends to be more gen-
eral, while others are more architecture-specific. Here more general
knowledge refers to correlation patterns between basic component
hardware parameters 𝐻 and component hardware scale, which de-
scribes the overall amount of logic (e.g., number of logic gates) in
the component. One important reason is, the number of hardware
parameters of each component is very limited, ranging from 1 to 4
in our experiment. Patterns based on fewer hardware parameters
tend to be simpler and thus less “overfit” to a specific architecture.
In contrast, knowledge related to event statistics 𝐸 involves not only
complex event activities but also the interaction between events
and hardware scale. This makes patterns related to event statistics
relatively complex. We thus set this part architecture-specific.
Inspired by two aforementioned insights, FirePower chooses

com-ponent-level power modeling, with each component’s power
decoupled into generalizable and architecture-specific parts. With
hardware parameters of the 𝑖-th component as 𝐻𝑖 and event statis-
tics as 𝐸𝑖 , the FirePower power model can be formulated below.

𝑃𝑖 = 𝑭𝒉𝒘
𝑖 (𝐻𝑖) ∗ 𝑭𝒆𝒗𝒆𝒏𝒕

𝑖 (𝐻𝑖 , 𝐸𝑖)

The 𝑭𝒉𝒘
𝑖 denotes the hardware model of component 𝑖 , which learns

the basic correlation between hardware scale and hardware parame-

ters. The 𝑭𝒆𝒗𝒆𝒏𝒕 𝑖 denotes the event model, an ML model to capture
more complex correlations related to event statistics. As for why
multiplication is used to associate these two models, power con-

sumption 𝑃𝑖 is roughly proportional to hardware scale (e.g., number
of logic gates) in 𝑭𝒉𝒘

𝑖 , assuming a constant average toggle rate.

The event-related knowledge captured by 𝑭𝒆𝒗𝒆𝒏𝒕 𝑖 partially reflects
the toggle rate of the real workload. The toggle rate is also propor-
tional to power. Multiplication is the simplest operator to capture
the linear relationship between these two models and power.

Figure 2: The illustration of our power-friendly component
definition for the out-of-order CPU core.

Component 𝑖
Hardware Parameters of Important

Each Component 𝐻𝑖 Parameter

BPTAGE FetchWidth, BranchCount FetchWidth

BPBTB FetchWidth, BranchCount FetchWidth

BPOthers FetchWidth, BranchCount FetchWidth

IFU
FetchWidth, DecodeWidth,

–
FetchBufferEntry, ICacheFetchBytes

I-TLB ICacheTLBEntry –

ICacheTagArray ICacheWay, ICacheFetchBytes DCache/ICacheWay

ICacheDataArray ICacheWay, ICacheFetchBytes FetchWidth

ICacheOthers ICacheWay, ICacheFetchBytes –

RNU DecodeWidth DecodeWidth

ROB DecodeWidth, RobEntry –

FP ISU DecodeWidth, FpIssueWidth –

Int ISU DecodeWidth, IntIssueWidth, DecodeWidth

Mem ISU DecodeWidth, MemIssueWidth –

Regfile DecodeWidth, IntPhyRegister, FpPhyRegister –

FU Pool Mem/FpIssueWidth, IntIssueWidth Mem/FpIssueWidth

LSU LDQEntry, STQEntry, MemIssueWidth –

D-TLB DCacheTLBEntry DTLBEntry

DCacheTagArray
DCacheWay, DCacheTLBEntry,

–
MemIssueWidth

DCacheDataArray
DCacheWay, DCacheTLBEntry,

–
MemIssueWidth

DCacheMSHR MSHREntry MSHREntry

DCacheOthers
DCacheWay, DCacheTLBEntry,

–
MSHREntry, MemIssueWidth

Other Logic All –

Table 1: Our identified architecture-level hardware parame-
ters and the important parameter detected for Retraining.

The remainder of this sectionwill introduce the FirePowermethod-
ology in detail. Section 4.2 describes our proposed power-friendly
component definition for power modeling at the component level.
Section 4.3 and Section 4.4 will introduce the knowledge extraction
(Phase 1) and application (Phase 2) of FirePower, respectively.

4.2 Power-Friendly Component Definition
To facilitate component-level data-driven power modeling, we pro-
pose a power-friendly component definition for out-of-order CPU.
The component definition has two targets: being common and fine-
grained. 1) To generalize powermodel to differentmicroarchitecture
designs, the component definition should be common, where each
component can be found in different out-of-order CPUs. 2) To facil-
itate per-component power modeling, component definition should
be fine-grained so that the circuit in the same component should
correlate with similar hardware parameters and event statistics.
To meet the two targets above, we propose a power-friendly

component definition. The components are in three main parts:
Frontend, Execution, andMemAccess. Details are introduced below.

• The Frontend includes 8 components: TAGE in branch pre-
dictor (BPTAGE), BTB in branch predictor (BPBTB), others
in branch predictor (BPOthers), instruction fetch unit (IFU),
instruction translation lookup buffer (I-TLB), instruction
cache tag array (ICacheTagArray), instruction cache data
array (ICacheDataArray), and others in instruction cache
(ICacheOthers).

1147

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Qijun Zhang, Mengming Li, Yao Lu, Zhiyao Xie

(a) DCacheDataArray (b) DCacheMSHR

Figure 3: Correlation between power and the most related
hardware parameter. The two components correlate with
different hardware parameters. DCacheDataArray correlates
with 𝐷𝐶𝑎𝑐ℎ𝑒𝑊𝑎𝑦, DCacheMSHR correlates with𝑀𝑆𝐻𝑅𝐸𝑛𝑡𝑟𝑦.

• The Execution consists of 7 components: renaming unit
(RNU), reorder buffer (ROB), issue unit of float point in-
struction (Fp ISU), issue unit of integer instruction (Int ISU),
issue unit of memory access instruction (Mem ISU), register
file (Regfile), and function unit pool (FU Pool).

• The Mem Access has 6 components: load-store unit (LSU),
data translation lookup buffer (D-TLB), miss status handle
register (DCacheMSHR), data cache tag array (DCacheTagAr-
ray), data cache data array (DCacheDataArray), and others
in data cache (DCacheOthers).

• Other circuits not covered by the above components are
referred to as a new component named Other Logic.

Table 1 shows the associated hardware parameters of each compo-
nent, where event statistics are not listed because of page limitation.
No existing architecture-level ML power modeling works built

component-levelmodels except PANDA [32]. The component power
model in PANDA [32] is based on default component partitioning
without considering power. For example, in [32], the DCache is a
whole component, but within this DCache, we can find that the
DCacheDataArray highly correlates with a hardware parameter
𝐷𝐶𝑎𝑐ℎ𝑒𝑊𝑎𝑦, while DCacheMSHR correlates with another hard-
ware parameter𝑀𝑆𝐻𝑅𝐸𝑛𝑡𝑟𝑦. The correlation is illustrated in Fig. 3
using the XiangShan CPU [29], showing their correlations with
different hardware parameters. They are thus separated and pro-
cessed with different power models in FirePower to capture clearer
patterns. It conforms to the aforementioned fine-granularity target.

4.3 Phase 1: Knowledge Extraction
In phase 1 of FirePower, developers perform knowledge extraction,
extracting the generalizable knowledge based on sufficient data
of an already known architecture. This process only needs to be
performed once by solution developers, as shown in the left of
Fig. 4. Based on the known architecture, generalizable knowledge is
extracted for each component, including two types of information:

(1) hardware model 𝐹 𝑖
ℎ𝑤
built on the known architecture, (2) the

importance of the hardware parameters of this component.

4.3.1 Hardware Model. The hardware model 𝑭𝒉𝒘
𝑖 learns the rela-

tionship between hardware scale and hardware parameters, as in-
troduced in the overview. To represent the hardware scale as labels,
we calculate the average power across all workloads. This average
power label reflects the general power characteristics across work-
loads. The input features, as summarized in Table 1, are hardware
parameters 𝐻𝑖 of each component. The ML model we use is the
XGBoost [10], which is one of the most widely adopted regressors.

Figure 4: The FirePower framework with two phases. Knowl-
edge extraction in phase 1 extracts hardware model and pa-
rameter importance from a known architecture as general
knowledge. Application in phase 2 adopts two knowledge
generalization strategies, Retraining and No Retraining, de-
pending on the parameter importance distribution.

It is a decision-tree-based ensemble learning algorithm using an
ensemble of weak prediction models for regression.

4.3.2 Parameter Importance. In addition to the hardware model,
we will further evaluate the importance of hardware parameters 𝐻𝑖
for each component. Such importance reflects the impact of each
hardware parameter on the component power. The distribution of
parameter importance will help us analyze the power correlation
pattern for each component: The key idea is to evaluate whether
there is a dominating hardware parameter for each component. It
will affect how to generalize the knowledge in phase 2. More details
about the usage of parameter importance are discussed in Sec. 4.4.1.
The hardware parameter importance is calculated based on the

hardware model. Such a tree-model-based evaluation calculates
feature importance based on impurity decreases contributed by each
feature (e.g., parameter) [8]. Importance evaluation is not limited
to tree models, there are also some methods, such as SHAP [21], to
evaluate parameter importance for arbitrary ML models.

4.4 Phase 2: Application
The application as phase 2 of FirePower is shown in the right of
Fig. 4. Compared to knowledge extraction, which is performed
only once in total by the developer, the application phase can be
applied many times to different projects and target architectures. In
each project, phase 2 utilizes the extracted generalizable knowledge
and the limited data of the target architecture to build the power
model for the target architecture. Specifically, the application phase
performs three steps: (1) apply the generalizable knowledge to build

the hardware model 𝑭𝒉𝒘
𝑖 , (2) train the event model 𝑭 𝒊

𝒆𝒗𝒆𝒏𝒕 , and (3)
evaluate the generalization to estimate the generalization’s quality.

4.4.1 HardwareModel. For each component, we support two knowl-
edge generalization strategies, named Retraining and No Retraining,
as illustrated in Fig. 4.

1148

FirePower: Towards a Foundation with Generalizable Knowledge for Architecture-Level Power Modeling ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

Strategy 1: No Retraining is straightforward, it directly adopts
hardwaremodel 𝑭𝒉𝒘

𝑖 trained on known architecture datasetD𝑘𝑛𝑜𝑤𝑛
for target one. Directly applying hardware model may not accu-
rately estimate average power due to differences in hardware scale
of different architectures. The rationale behind No Retraining is
hardware model primarily captures the correlation rather than the
absolute average power value. The ratio between known and target

architecture will be captured by additional event model 𝑭 𝒊
𝒆𝒗𝒆𝒏𝒕 .

Strategy 2: For Retraining, it trains a brand new hardware model
using limited available configurationsD𝑡𝑎𝑟𝑔𝑒𝑡 of the target architec-
ture. Such a retraining faces a trade-off. On the one hand, available
configurations directly from target architecture naturally help trans-
fer. On the other hand, since available configurations in D𝑡𝑎𝑟𝑔𝑒𝑡
are limited, the model can easily overfit. To avoid overfitting, the
key idea behind retraining is to maximally simplify new hardware

model 𝑭𝒉𝒘
𝑖 . This retrained hardware model 𝑭𝒉𝒘

𝑖 will be a linear
model based on one most important parameter from 𝐻𝑖 . Retraining
policy is more suitable for components with relatively simple power
characteristics with one dominating important parameter.
Strategy selection: For each component, we select the most

appropriate strategy (Retraining vs. No Retraining) based on param-
eter importance distribution. Such parameter importance is also the
knowledge extracted from known architecture in phase 1. When
only one hardware parameter has a dominating importance, it indi-
cates the overall power correlation is simple. On the contrary, if the
distribution is more uniform, it means this component is relatively
complex. Therefore, if maximum parameter importance exceeds a

threshold2, Retraining will be adopted. Otherwise, No Retraining
is selected. The strategy selection result based on BOOM CPU ar-
chitecture is listed in Table 1, where the important parameter used
for Retraining is listed, and the “–" means No Retraining.

4.4.2 Event Model. The event model 𝑭 𝒊
𝒆𝒗𝒆𝒏𝒕 will mainly capture

the more complex correlation related to event statistics, which is
highly architecture-specific. To train the event model for target
architectures, for each component, we take both hardware parame-
ters 𝐻𝑖 and event statistics 𝐸𝑖 of each component as features. The
event model’s training label is 𝑃𝑖/𝑭 𝒊

𝑯 , which is the ratio between

the component power label inD𝑡𝑎𝑟𝑔𝑒𝑡 and the hardware model 𝑭 𝒊
𝑯 .

The adopted ML model is also XGBoost [10].

4.5 Generalization Quality Evaluation
The effectiveness of knowledge generalization can be compromised
when there is a significant difference between the target architec-
ture and the known architecture. Hence, it is crucial to evaluate
the generalization’s quality to help determine whether to accept
generalized power model or resort to time-consuming traditional
power modeling paradigm. Such quality evaluation helps indicate
applicable scope of FirePower based on the known architecture.
For such generalization evaluation on each component, we com-

pare average power labels of each target configuration fromD𝑡𝑎𝑟𝑔𝑒𝑡

with predictions of hardware model 𝑭 𝒊
𝒉𝒘
from phase 1, without con-

sidering retraining. Such 𝑭 𝒊
𝒉𝒘
reflects known architecture D𝑘𝑛𝑜𝑤𝑛 ,

and thus the comparison indicates the difference between known
and target architecture. When comparing, we adjust prediction of
hardware model by multiplying it with an ideal scaling factor, since

2We set the threshold to 0.95 in the experiment, with the sum of all hardware parameters
𝐻𝑖 in each component normalized to 1.

hardware model 𝑭 𝒊
𝒉𝒘
only captures the trend and detailed ratios

are left for event models 𝑭 𝒊
𝒆𝒗𝒆𝒏𝒕 , as discussed in Sec. 4.4.1.

5 EXPERIMENT SETUP

5.1 RISC-V CPU Cores for Experiment
In our experiment, we adopt two different RISC-V CPU cores as our
experimented architectures. RISC-V [5] is one of the most widely
adopted open-source instruction set architecture. Nowadays, most
open-source CPU design projects are based on RISC-V, the most
representative two projects of which are BOOM [33] and Xiang-
Shan [29]. BOOM and XiangShan are both highly configurable,
enabling us to generate different configurations for each architec-
ture. They are both out-of-order CPU cores with similar major CPU
components but there are also many differences. Although they
both use RISC-V, the version is not the same, with RV64GC for
BOOM and RV64GCBK for XiangShan. Besides, architectural de-
signs for components are different. Taking the second-level branch
predictor as an example, BOOM adopts traditional BTB for target
prediction, while XiangShan adopts Fetch Target Buffer to replace
BTB. Considering the reasonable similarities and differences be-
tween BOOM and XiangShan, we evaluate our paradigm on them.
When evaluating each method, we conduct multiple experiments

with different known/target architecture settings and different num-
bers of configurations of target architecture. Because of limited
accessible open-source RISC-V CPU architectures, there is only
one target architecture. Known/target architecture settings include
BOOM as known architecture and XiangShan as target architecture
denoted as BOOM→XS and vice versa denoted as XS→BOOM.
For different numbers of configurations of target architecture, in
knowledge extraction (Phase 1), all known architecture configura-
tions are used. For application (Phase 2), configurations of target
architecture are used for knowledge generalization, and remaining
ones are used for testing. We evaluate the accuracy with mean
absolute percentage error (MAPE) and correlation coefficient 𝑅.
Configurations adopted for BOOM and XiangShan are listed in

Table 2, covering different scales. There are 15 configurations for
BOOM named B1 to B15 and 10 for XiangShan named X1 to X10.
To reflect the scenario where only a few configurations of target
architecture are accessible, the number of labeled configurations of
target architecture is set as 4, 3, and 2 for three sets of experiments.

5.2 Design Implementation Flow
In our experiment, to collect the dataset, RTL code generation and
RTL simulation of BOOM CPU [33] is performed with Chipyard [6]
v1.8.1, and that of XiangShan CPU [29] is performed with OpenX-
iangShan [4]. For workload-driven power simulation to generate
ground truth power, we used eight workloads in riscv-tests [3] in-
cluding dhrystone, median, multiply, qsort, rsort, towers, spmv, and
vvadd. Minor modifications are made for adaptation on XiangShan.

The RTL simulation is performed with Synopsys VCS® [2]. We
performed logic synthesis and power simulation with Synopsis

Design Compiler® [1] and PrimePower [24] respectively. Our VLSI
flow is based on TSMC 40nm standard cell library and associated
Memory Compiler for SRAM generation. For the microarchitecture
simulation, we use gem5 [7] as performance simulator to generate
event statistics. We also useMcPAT [19] as power model to generate
power estimation as some of features for McPAT-Calib.

1149

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Qijun Zhang, Mengming Li, Yao Lu, Zhiyao Xie

Hardware Parameter B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 4 4 4 4 4 8 8 8 8 8

DecodeWidth 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 2 2 2 3 3 3 4 4 4 5

FetchBufferEntry 5 8 16 8 16 24 18 24 30 24 32 40 30 35 40 8 16 24 16 24 24 24 32 32 24

RobEntry 16 32 48 64 64 80 81 96 114 112 128 136 125 130 140 16 32 48 64 64 80 81 96 114 112

IntPhyRegister 36 53 68 64 80 88 88 110 112 108 128 136 108 128 140 36 53 68 64 80 88 88 110 112 108

FpPhyRegister 36 48 56 56 64 72 88 96 112 108 128 136 108 128 140 36 53 68 64 80 88 88 110 112 108

LDQ/STQEntry 4 8 16 12 16 20 16 24 32 24 32 36 24 32 36 16 20 24 20 24 28 24 32 40 32

BranchCount 6 8 10 10 12 14 14 16 16 18 20 20 18 20 20 7 7 7 7 7 7 7 7 7 7

Mem/FpIssueWidth 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

IntIssueWidth 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 2 2 2 2 4 4 4 6 6 6

DCache/ICacheWay 2 4 8 4 4 8 8 8 8 8 8 8 8 8 8 4 4 8 4 4 8 8 8 8 8

DTLBEntry 8 8 16 8 8 16 16 16 32 32 32 32 32 32 32 8 8 16 8 8 16 16 16 32 32

MSHREntry 2 2 4 2 2 4 4 4 4 4 4 8 8 8 8 2 2 4 2 2 4 4 4 4 4

ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 2 2 2

Table 2: The CPU configurations used in our experiment. The B1-B15 denote the 15 configurations of BOOM, and the X1-X10
denote the 10 configurations of XiangShan.

5.3 Summary of Baseline Methods
We compare FirePower with the state-of-the-art architecture-level
power model McPAT-Calib [30] as our baseline. The other work [32]
is not included since it is not an automated method, requiring
engineer-defined functions. Besides McPAT-Calib [30], we further
include four more ablation studies based on part of FirePower’s
policies. (1) The McPAT-Calib + Component. It builds ML models
for each component, using the associated hardware parameters and
event statistics as features and per-component power as labels. (2)
The McPAT-Calib + Transfer Learning. It adopts the McPAT-Calib
as the power modeling method, builds a model on known architec-
ture as the source model, and then adopts one of the most widely
adopted transfer learning algorithms, pseudo label [17], for knowl-
edge generalization. In detail, for each testing data of the target
architecture, we search for the nearest labeled data of the target
architecture using the distance in feature space, where the label is
𝐿. We use the source model to make predictions for the testing data
and its nearest sample, denoted as 𝑝𝑡 and 𝑝𝑙 . The prediction on test
data is 𝑃𝑡 = 𝑝𝑡

𝑝𝑙
𝐿. (3) The McPAT-Calib + Component + Transfer

Learning. It combines (1) and (2), performing transfer learning for
each component respectively. (4) FirePower without Retraining. It
only adopts the No Retraining as the knowledge generalization
strategy, without taking the parameter importance as the gener-
alizable knowledge. For a fair comparison, for all baselines and
our FirePower solution, we adopt the same XGBoost [10], which
is the best ML model reported in McPAT-Calib [30], with default
hyperparameters, i.e. n_estimator=100 and depth=3.

6 EXPERIMENTAL RESULTS

6.1 Power Modeling Accuracy
Fig. 5 summarizes comparisons between FirePower with our base-
line, McPAT-Calib, and four ablation studies, under different num-
bers of available configurations of target architecture, i.e. 4, 3, and
2 configurations. Fig. 6 further visualize detailed results for Fire-
Power andMcPAT-Calib with only 2 available configurations, where
samples of the same configuration are in the same color. The com-
parison with McPAT-Calib shows that FirePower can consistently
achieve superior accuracy overMcPAT-Calib regardless of scenarios.
FirePower achieves the lowest MAPE and the highest correlation
coefficient 𝑅, with at most (on average) 11.5% (7%) lower MAPE and
0.04 (0.03) higher correlation 𝑅 compared with McPAT-Calib. With
only two configurations of target architecture, FirePower can still
achieve a low MAPE of 5.8% and a high correlation 𝑅 of 0.98 on
average, which is 8.8% lower in error percentage and 0.03 higher in

(a) XS→BOOM

(b) BOOM→XS

Figure 5: Summary of the comparison between FirePower and
other methods under different numbers of configurations
of target architecture. “Comp” stands for Component and
“Transfer” stands for Transfer Learning.

𝑅 compared with McPAT-Calib. The superiority of FirePower over
McPAT-Calib is contributed by its ability to generalize knowledge
acquired from known architecture. In contrast, architecture-specific
McPAT-Calib trains model from scratch.
Fig. 5 also shows FirePower can constantly achieve the best

accuracy compared with four ablation studies for both MAPE and
correlation 𝑅. McPAT-Calib + Component is an enhanced version
of McPAT-Calib by building models for each component. It has
an advantage over McPAT-Calib, validating the effect of power-
friendly component definition. However, it can still not achieve
a high accuracy compared with FirePower. It verifies knowledge
generalization is critical to enable few-shot power modeling.
McPAT-Calib + Transfer Learning and McPAT-Calib + Compo-

nent + Transfer Learning are two knowledge generalization meth-
ods based on transfer learning. They directly transfer the power
model as a whole, regardless of generality. Results in Fig. 5 show
that they outperform McPAT-Calib and McPAT-Calib + Compo-
nent in many scenarios. It demonstrates that information from
other known architecture can improve accuracy of few-shot mod-
eling. But FirePower still has an obvious advantage over them,

1150

FirePower: Towards a Foundation with Generalizable Knowledge for Architecture-Level Power Modeling ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

(a) McPAT-Calib (BOOM) (b) McPAT-Calib (XS)

(c) FirePower (XS→BOOM) (d) FirePower (BOOM→XS)

Figure 6: Accuracy comparison between FirePower and
McPAT-Calib (Available Config of Target Arch = 2).

which is because these two methods do not decouple general and
architecture-specific knowledge. It verifies the necessity of decou-
pling generalizable and architecture-specific knowledge, where
generalizing architecture-specific knowledge has negative impact.
Fig. 5 also shows that “FirePower without Retraining” is more

accurate than McPAT-Calib + Component, also outperforming two
transfer-learning-based methods in some scenarios. This validates
that even generalization with No Retraining can also work. Compar-
ison between FirePower and FirePower without Retraining verifies
that the Retraining and strategy selection are crucial. The parameter
importance is essential generalizable knowledge for FirePower.

6.2 Generalization Evaluation
Fig. 7 illustrates the generalization evaluation for components with
high similarity between known and target architecture. Fig. 8 shows
the lower-similarity one. Higher similarity is supposed to result in
a high generalization quality, and vice versa.
In Fig. 7 and 8, each point represents a configuration of the tar-

get architecture. The x-axis is the golden average power across
workloads. The y-axis is the adjusted prediction of the hardware
model trained on known architecture, which is discussed in Sec. 4.5.
The similarity between these two values indicates generalization
quality, which can be measured with MAPE. Fig. 7(b)(d) and Fig. 8(b)
show actual generalization quality with all configurations of the
target architecture, which is not accessible when building the model.
Fig. 7(a)(c) and Fig. 8(a) show generalization quality that we can ob-
serve with limited accessible configurations of target architecture.
We can find the actual generalization quality evaluated with all

configurations in Fig. 7(b)(d) and Fig. 8(b) correlates with gener-
alization quality measured with the accessible ones in Fig. 7(a)(c)
and Fig. 8(a). This means architects can roughly estimate the qual-
ity with the generalization quality observed with the accessible
configurations. Generally, as illustrated in these figures, if the gen-
eralization quality observed with the accessible configurations has
a MAPE lower than 10%, it suggests a relatively high actual gen-
eralization quality indicating that it can result in a high-quality
generalized model. Conversely, if MAPE exceeds this threshold, the

(a) D-TLB (Accessible Config of Target) (b) D-TLB (All Config of Target)

(c) OtherLogic (Accessible Config of
Target)

(d) OtherLogic (All Config of Target)

Figure 7: Generalization quality evaluation for components
with high similarity across architectures. (a)(c) The general-
ization qualities observed with the accessible configuration
of the target architecture. (b)(d) The generalization qualities
evaluated with all configurations of the target architecture.

(a) LSU (Accessible Config of Target) (b) LSU (All Config of Target)

Figure 8: Generalization quality evaluation for components
with low similarity across architectures. (a) The generaliza-
tion quality observed with the accessible configuration of the
target architecture. (b) The generalization quality evaluated
with all configurations of the target architecture.

generalization may result in a low-quality model. In experiments,
we always adopt generalized hardware model, because power per-
centage of evaluated low-similarity components is relatively small.

7 CONCLUSION
We propose FirePower which targets few-shot learning scenario for
new target architectures by different users. Developer extracts the
generalizable knowledge from a well-developed architecture, and
then multiple projects can use this knowledge for few-shot power
modeling, with limited available configurations of target architec-
tures. The foundation-based paradigm reduces data requirement
significantly, which is a compelling addition to architects’ toolbox.

ACKNOWLEDGEMENT
This work is partially supported by National Natural Science Foun-
dation of China 62304192, and ACCESS – AI Chip Center for Emerg-
ing Smart Systems, sponsored by InnoHK funding, Hong Kong SAR.
We acknowledge the suggestions from Dr. Andrea Mondelli.

1151

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Qijun Zhang, Mengming Li, Yao Lu, Zhiyao Xie

REFERENCES
[1] 2021. Design Compiler® RTL Synthesis. https://www.synopsys.com/

implementation-and-signoff/rtl-synthesis-test/design-compiler-nxt.html.
[2] 2021. VCS® functional verification solution. https://www.synopsys.com/

verification/simulation/vcs.html.
[3] 2022. RISC-V Tests. https://github.com/riscv-software-src/riscv-tests.
[4] 2023. OpenXiangShan. https://github.com/OpenXiangShan.
[5] 2023. RISC-V. https://riscv.org.
[6] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,

Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton, et al.
2020. Chipyard: Integrated design, simulation, and implementation framework
for custom socs. IEEE Micro 40, 4 (2020), 10–21.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture

news 39, 2 (2011), 1–7.
[8] Leo Breiman. 2001. Random forests. Machine learning (2001).
[9] David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch: A frame-

work for architectural-level power analysis and optimizations. ACM SIGARCH

Computer Architecture News 28, 2 (2000), 83–94.
[10] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining. 785–794.
[11] Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce

Zhang, and Zhiyao Xie. 2023. MasterRTL: A Pre-Synthesis PPA Estimation
Framework for Any RTL Design. In 2023 IEEE/ACM International Conference on

Computer Aided Design (ICCAD). IEEE, 1–9.
[12] Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce

Zhang, and Zhiyao Xie. 2024. Transferable Pre-Synthesis PPA Estimation for RTL
Designs With Data Augmentation Techniques. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems (2024).
[13] Abdullah Guler and Niraj K Jha. 2020. McPAT-Monolithic: An area/power/timing

architecture modeling framework for 3-D hybrid monolithic multicore systems.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, 10 (2020),
2146–2156.

[14] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanović. 2019. Sim-
mani: Runtime power modeling for arbitrary RTL with automatic signal selection.
In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microar-

chitecture. 1050–1062.
[15] Ajay Krishna Ananda Kumar, Sami Al-Salamin, Hussam Amrouch, and Andreas

Gerstlauer. 2022. Machine learning-based microarchitecture-level power model-
ing of CPUs. IEEE Trans. Comput. 72, 4 (2022), 941–956.

[16] Ajay Krishna Ananda Kumar and Andreas Gerstlauer. 2019. Learning-based CPU
power modeling. In 2019 ACM/IEEE 1st Workshop on Machine Learning for CAD

(MLCAD). IEEE, 1–6.
[17] Dong-Hyun Lee et al. 2013. Pseudo-label: The simple and efficient semi-

supervised learning method for deep neural networks. InWorkshop on challenges

in representation learning, ICML, Vol. 3. Atlanta, 896.
[18] Wooseok Lee, Youngchun Kim, Jee Ho Ryoo, Dam Sunwoo, Andreas Gerstlauer,

and Lizy K John. 2015. PowerTrain: A learning-based calibration of McPAT power
models. In 2015 IEEE/ACM International Symposium on Low Power Electronics and

Design (ISLPED). IEEE, 189–194.
[19] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and

Norman P Jouppi. 2009. McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures. In Proceedings of the 42nd
annual ieee/acm international symposium on microarchitecture (MICRO). 469–480.

[20] Yao Lu, Qijun Zhang, and Zhiyao Xie. 2024. Unleashing Flexibility of ML-based
Power Estimators Through Efficient Development Strategies. In Proceedings of
the 29th ACM/IEEE International Symposium on Low Power Electronics and Design.
1–6.

[21] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. Advances in neural information processing systems 30 (2017).

[22] Jian Peng, Tingyuan Liang, Zhiyao Xie, and Wei Zhang. 2023. PROPHET: Pre-
dictive On-Chip Power Meter in Hardware Accelerator for DNN. In 2023 60th
ACM/IEEE Design Automation Conference (DAC). IEEE, 1–6.

[23] Siemens. 2023. PowerPro RTL Low-Power. https://www.mentor.com/hls-
lp/powerpro-rtl-low-power/

[24] Synopsys. 2023. PrimePower: RTL to Signoff Power Analysis. https://www.
synopsys.com/implementation-and-signoff/signoff/primepower.html

[25] Aoxiang Tang, Yang Yang, Chun-Yi Lee, and Niraj K Jha. 2014. McPAT-PVT:
Delay and power modeling framework for FinFET processor architectures under
PVT variations. IEEE Transactions on Very Large Scale Integration (VLSI) Systems

23, 9 (2014), 1616–1627.
[26] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-YeonWei, and David Brooks. 2015.

Quantifying sources of error in McPAT and potential impacts on architectural
studies. In 2015 IEEE 21st International symposium on high performance computer

architecture (HPCA). IEEE, 577–589.
[27] Zhiyao Xie, Shiyu Li, Mingyuan Ma, Chen-Chia Chang, Jingyu Pan, Yiran Chen,

and Jiang Hu. 2022. DEEP: Developing extremely efficient runtime on-chip
power meters. In Proceedings of the 41st IEEE/ACM International Conference on

Computer-Aided Design. 1–9.
[28] Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, Kumaraguru Palaniswamy,

Nicolas Hebert, Jiang Hu, Huanrui Yang, Yiran Chen, and Shidhartha Das. 2021.
APOLLO: An automated power modeling framework for runtime power intro-
spection in high-volume commercial microprocessors. In MICRO-54: 54th Annual

IEEE/ACM International Symposium on Microarchitecture. 1–14.
[29] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin,

Qianruo Li, Xin Li, Zuojun Li, et al. 2022. Towards developing high performance
RISC-V processors using agile methodology. In 2022 55th IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 1178–1199.
[30] Jianwang Zhai, Chen Bai, Binwu Zhu, Yici Cai, Qiang Zhou, and Bei Yu. 2022.

McPAT-Calib: A RISC-V BOOM microarchitecture power modeling framework.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

(TCAD) 42, 1 (2022), 243–256.
[31] Jianwang Zhai, Yici Cai, and Bei Yu. 2023. Microarchitecture Power Modeling

via Artificial Neural Network and Transfer Learning. In 2023 28th Asia and South

Pacific Design Automation Conference (ASPDAC).
[32] Qijun Zhang, Shiyu Li, Guanglei Zhou, Jingyu Pan, Chen-Chia Chang, Yiran

Chen, and Zhiyao Xie. 2023. PANDA: Architecture-level power evaluation by uni-
fying analytical and machine learning solutions. In 2023 IEEE/ACM International

Conference on Computer Aided Design (ICCAD). IEEE, 01–09.
[33] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. 2020. Sonic-

boom: The 3rd generation berkeley out-of-order machine. In Fourth Workshop on

Computer Architecture Research with RISC-V, Vol. 5.
[34] Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and Zhiru

Zhang. 2019. PRIMAL: Power inference using machine learning. In Proceedings
of the 56th Annual Design Automation Conference 2019. 1–6.

1152

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1000
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 4.83300
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1000
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 4.83300
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

