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ABSTRACT

Point cloud is an important data structure for a wide range of ap-

plications, including robotics, AR/VR, and autonomous driving. To

process the point cloud, many deep-learning-based point cloud

recognition algorithms have been proposed. However, to meet the

requirement of applications like autonomous driving, the algorithm

must be fast enough, rendering accelerators necessary at the infer-

ence stage. But existing point cloud accelerators are still inefficient

due to two challenges. First, the multi-layer perceptron (MLP) dur-

ing feature computation is the performance bottleneck. Second, the

feature vector fetching operation incurs heavy DRAM access.

In this paper, we propose Pointer, an efficient Resistive Random

Access Memory (ReRAM)-based point cloud recognition accelerator

with inter- and intra-layer optimizations. It proposes three tech-

niques for point cloud acceleration. First, Pointer adopts ReRAM-

based architecture to significantly accelerate the MLP in feature

computation. Second, to reduce DRAM access, Pointer proposes

inter-layer coordination. It schedules the next layer to fetch the

results of the previous layer as soon as they are available, which

allows on-chip fetching thus reduces DRAM access. Third, Pointer

proposes topology-aware intra-layer reordering, which improves

the execution order for better data locality. Pointer proves to achieve

40× to 393× speedup and 22× to 163× energy efficiency over prior

accelerators without any accuracy loss.

CCS CONCEPTS

• Computer systems organization→ Architectures.

KEYWORDS

Point cloud, AI accelerator

ACM Reference Format:

Qijun Zhang, Zhiyao Xie. 2025. Pointer: An Energy-Efficient ReRAM-based

Point Cloud Recognition Accelerator with Inter-layer and Intra-layer Op-

timizations. In 30th Asia and South Pacific Design Automation Conference

(ASPDAC ’25), January 20–23, 2025, Tokyo, Japan. ACM, New York, NY, USA,

8 pages. https://doi.org/10.1145/3658617.3697658

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPDAC ’25, January 20–23, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01
https://doi.org/10.1145/3658617.3697658

1 INTRODUCTION

Point cloud is a data structure dedicated to describing three di-

mensional (3D) objects using coordinates and other auxiliary fea-

tures [12]. It is increasingly popular in many applications, including

virtual reality, augmented reality, autonomous driving, and robotics.

To process the point cloud data, multiple point cloud recognition

algorithms have been proposed [10, 11]. PointNet++ [11] and its

variants are one of the most widely used point cloud recognition

algorithms. As Fig. 1 shows, PointNet++ consists of multiple set-

abstraction layers. Each set-abstraction layer includes two stages:

1) Point mapping stage, which performs the farthest point sample

(FPS) and neighbor search to compute the mapping between out-

put point cloud and input point cloud; 2) Feature processing stage,

which first aggregates feature vectors according to the mapping,

then computes features with multi-layer perceptron (MLP), finally

reduces intermediate results to output feature vector.

However, most point-cloud applications require the point cloud

recognition to be performed in real-time to enable interactions with

humans or environments, bringing a long-lasting efficiency chal-

lenge in deployment. To solve this challenge, an energy-efficient

high-performance point cloud accelerator is crucial. Existing ac-

celerator designs include Mesorasi [3], Crescent [2], Point-X [19],

PointAcc [4], PRADA [14], FLNA [8], TiPU [20],MARS [17], Sava [7],

and FusionArch [6]. However, despite these explorations [2–4, 6–

8, 14, 17, 19, 20], as summarized in Fig. 1, there are still two unsolved

challenges in existing point cloud accelerators:

(1) The first challenge is slowMLP execution in feature computa-

tion. MLP takes up about 70% execution time when executed

on GPUs [3]. Despite existing efforts in optimizing [3, 14] or

optimizing [4] MLP executions, it is still the bottleneck.

(2) The second challenge is the heavy DRAM access in the ag-

gregation step, as depicted in Fig 1. For each point, it needs

to fetch the feature vectors of all input points from DRAM.

This operation incurs heavy DRAM access.

To solve these two challenges, we propose Pointer, a ReRAM-

based point cloud recognition accelerator with both inter- and intra-

layer optimizations. As Fig 1 shows, it brings three essential im-

provements, denoted as 1 2 3 . For challenge 1, Pointer proposes

1 a ReRAM-based architecture to accelerate the MLP execution

bottleneck [1][13] in PointNet++. Such in-memory processing ac-

celerates MLP by reducing costly data movement of weight fetching

in this MLP operation. For challenge 2, Pointer reduces the heavy

DRAM access by optimizing the dataflow across set-abstraction

layers. Existing solutions first complete all computations in the

previous layer and save results to DRAM, then fetch these results

from DRAM as the inputs for the next layer. To reduce such DRAM
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Figure 1: The workflow of PointNet++, which consists of two major stages named point mapping and feature processing. The

point mapping stage includes farthest point sample (FPS) and neighbor search. The feature processing stage includes aggregation,

feature computation, and reduction. In the aggregation step, for each sampled point 𝑃𝑖 with feature vector 𝐹𝑖 , its neighboring
points 𝑃 𝑗 ’s feature vectors 𝐹 𝑗 are also fetched. Then their difference D(𝐹𝑖 , 𝐹 𝑗 ) is computed. Then an MLPM performs feature

computation, generatingM(D(𝐹𝑖 , 𝐹 𝑗 )) for each 𝑃 𝑗 . Finally all results are reduced by computing the maximum of each column.

access, Pointer proposes 2 inter-layer coordination to enable on-

chip fetching. It starts the calculation of the point in next layer as

soon as all its required inputs from the previous layer are available.

Such immediate data reuse allows on-chip storage and fetching of

previous layer’s results. To further improve data locality, Pointer

proposes 3 topology-aware intra-layer reordering to reorder execu-

tion. The new execution order maximizes the reuse of the common

inputs of processed points, further reducing DRAM accesses.

The contributions in Pointer can be summarized as below.

• To the best of our knowledge, Pointer is the first ReRAM-

based accelerator for PointNet++-based point cloud recogni-

tion. ReRAM array greatly speeds up the slow and energy-

hungry MLP execution during feature computation step.

• To reduce DRAM access, Pointer proposes inter-layer coordi-

nation. It schedules the next layer to fetch the results of the

previous layer as soon as they are available, which allows

on-chip fetching thus reduces DRAM access.

• To further reduce DRAM access, Pointer proposes intra-layer

reordering. It reschedules the execution order with topology

awareness, further allowing data reuse of common inputs.

• Pointer achieves 40× to 393× speedup and 22× to 163× en-

ergy efficiency over the state-of-the-art no-accuracy-loss

accelerator with a similar hardware cost.

2 BACKGROUND AND RELATEDWORK

2.1 PointNet++: Deep Learning on Point Clouds

PointNet++ [11] is one of the most widely-adopted point cloud

recognition algorithms. It consists of multiple set-abstraction lay-

ers. As Fig. 1 shows, each set-abstraction layer will transform an

input point cloud to an output point cloud with fewer points, which

belong to a subset of the original input. Then this output point

cloud will be the input of the next set-abstraction layer. Each set-

abstraction layer consists of two major stages, named point map-

ping and feature processing.

The point mapping stage consists of two steps, named farthest

point sampling (FPS) and neighbor search. The FPS will determine

which input points should remain in the output point cloud of this

layer, as shown in Fig. 1. As mentioned, for the output point cloud

of each layer, its points are the subset of the input point cloud. The

neighbor search determines the neighbors of each output point by

searching for the top-k nearest points of it.

The feature processing stage consists of three steps, named ag-

gregation, feature computation, and reduction. We use a point 𝑃𝑖
as an example, assuming it is selected to remain in the output

cloud point. We denote its feature vector as 𝐹𝑖 and its neighbor-
ing points as 𝑃 𝑗 with feature vector 𝐹 𝑗 . The aggregation stage first
calculates the “difference" D(𝐹𝑖 , 𝐹 𝑗 ) between feature vector of 𝑃𝑖
and each of its neighbors. Then at the feature computation stage,

an multi-layer perceptron (MLP)M is applied on D(𝐹𝑖 , 𝐹 𝑗 ) to gen-
erateM(D(𝐹𝑖 , 𝐹 𝑗 )). Then all of theM(D(𝐹𝑖 , 𝐹 𝑗 )) corresponding
to all neighbors 𝑃 𝑗 are reduced by maximum pooling, generating
the output feature vector 𝐹𝑜𝑢𝑡𝑖 for point 𝑃𝑖 .

2.2 Process-In-Memory with ReRAM

ReRAM is an emerging non-volatile memory technology. Besides

storing data, the ReRAM crossbar architecture is widely adopted to

accelerate the vector-matrix multiplication [1, 13]. The mechanism

is shown in Fig. 2(a), with the vertical line denoting bitline, and hor-

izontal line denoting wordline. The resistances of each memristor

cell can be programmed for computation. Assuming the resistances

of the two cells in Fig. 2(a) are programmed as 𝑅1 and 𝑅2, thus the
conductance values are 𝐺1 = 1/𝑅1 and 𝐺2 = 1/𝑅2. When the volt-
ages of these wordlines are𝑉1 and𝑉2, thus the current on the bitline
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is 𝐼 = 𝐼1 + 𝐼2 = 𝑉1 ∗𝐺1 +𝑉2 ∗𝐺2. Therefore, if we set conductance
values {𝐺1,𝐺2, ...,𝐺𝑛} equal to 𝑛 elements in a vector and voltages
{𝑉1,𝑉2, ...,𝑉𝑛} equal to the other vector, then the current on the
bitline 𝐼 is the dot product result of two vectors.
To extend the vector product engine to a vector-matrix multiplier,

which is the fundamental operation in MLP, the structure in Fig. 2(a)

can be horizontally extended to a crossbar architecture in Fig. 2(b).

Assume the vector length is still 𝑛 and the matrix shape is 𝑛 ×𝑚. In
this case, the𝑚 current values on the𝑚 bitlines {𝐼1, 𝐼2, ..., 𝐼𝑚} can
represent the output vector.

2.3 Related Work

Existing accelerators for PointNet++-based point cloud recogni-

tion algorithms can be categorized into two types, depending on

whether they incur accuracy variation. Accelerators with accu-

racy variation include Mesorasi [3], Crescent [2], PRADA [14],

FLNA [8], TiPU [20], Sava [7], and FusionArch [6]. But accuracy

variation is often unacceptable, especially in accuracy-critical sce-

narios where the accuracy variation can lead to catastrophic con-

sequences. The accelerators without accuracy variation include

Point-X [19], PointAcc [4], MARS [17]. The Point-X only focuses on

DGCNN [15], which cannot be directly applied to widely-adopted

PointNet++ and its other variants. In other words, it does not

generalize well. Only PointAcc and MARS can accelerate general

point cloud recognition algorithms without accuracy variation, and

MARS mainly enhances the mapping unit of PointAcc. Our Pointer

is also a general point cloud accelerator without accuracy variation.

So in this paper, the baseline is MARS-like accelerator, which is a

state-of-the-art no-accuracy-variation point cloud accelerator.

Although HSPA [5] proposed a ReRAM-based point cloud recog-

nition accelerator, it focuses on the DeepSets [18] algorithms. It can

not fully support the PointNet++-based algorithms, where irregular

DRAM access is critical even with the ReRAM engine. Moreover,

although Point-X [19], TiPU [20], and FusionArch [6] discussed

the “spatial-locality” and packed adjacent point processing together

spatially or temporally, they did not consider the global schedule

space where the inter-layer coordination is applied, which is hard

to support directly by their architecture design. In comparison, a

simple reordering with light hardware overhead proposed in our

work can be natural when integrating with the inter-layer coordina-

tion which is also an order-related technique. These two techniques

can be achieved in a scheduler uniformly.

Figure 2: (a) Multiply-accumulate operation with ReRAM. (b)

The ReRAM array used as vector-matrix multiplier.

3 METHODOLOGY

In this Section, we will present Pointer in detail. We first cover the

basic ReRAM-based PointNet++ accelerator design, which greatly

accelerates the MLP operation. Then we introduce our proposed

inter-layer coordination and topology-aware intra-layer reordering

techniques, which further effectively reduce the DRAM access. Fi-

nally, we describe the detailed hardware implementation of Pointer.

3.1 Basic ReRAM-based Point Cloud Accelerator

Conventional PointNet++ accelerators commonly use Multiply-

and-Accumulate (MAC) array to compute MLP. Because of the

limited on-chip buffer, it requires repeatedly loading the weight

from DRAM, leading to the slow and energy-hungry execution of

MLP. In comparison, ReRAM is a promising solution for vector-

matrix multiplication. By performing in-memory computing, the

data movement overhead in existing MLP is eliminated, which

improves performance and reduces energy consumption. This leads

to the basic ReRAM-based PointNet++ accelerator. Similar to the

existing dataflow in Fig. 1, the feature vectors are fetched and

differences are computed, then fed into ReRAM-based MLP engine,

finally the feature vector of output point is written into the DRAM.

Reliability is a main concern when adopting ReRAM-based accel-

erators. For better reliability, we propose to adopt the ReRAM array

with a relatively small number of bits per cell (i.e. 2 bits per cell). In

addition, since the ReRAM computation is not the speed bottleneck,

we can trade off the ReRAM computation speed for lower overhead.

For example, we can accept more sequential operations by adopting

fewer ReRAM array replications [13].

Because different set-abstraction layers are mapped to different

ReRAM arrays, different layers can be theoretically executed in par-

allel. But in fact, because of complex data dependency between lay-

ers, for basic ReRAM-based design, each set-abstraction layer is still

executed sequentially, as shown in Fig. 3(a). In other words, the next

set-abstraction layer still starts after all computation in the previous

layer is completed. And for each set-abstraction layer, following

existing solution, output points are still calculated directly by their

index orders. For example, if output points are {𝑃1, 𝑃3, 𝑃5, 𝑃7, 𝑃9},
then at this layer, execution order is 𝑂 = [𝑃1 − 𝑃3 − 𝑃5 − 𝑃7 − 𝑃9].
This naive scheduling will be improved in subsequent subsections.

3.2 Enable On-Chip Fetching with Inter-layer
Coordination

After adopting ReRAM, the MLP execution is no longer the runtime

bottleneck. The new bottleneck becomes the heavy DRAM access

during feature vector fetching in aggregation, which also incurs

high energy consumption for DRAM.

DRAM access of feature vector fetching can be reduced by buffer-

ing the data and fetching them on-chip, which can not only improve

performance but also reduce energy consumed by DRAM. However,

since the existing design requires previous set-abstraction layer

to be fully completed before starting the next layer, it will require

all feature vectors to be held on-chip till the fetching, requiring a

prohibitively large buffer. Otherwise, feature vectors generated by

1Here we assume there is a simple buffer in the basic ReRAM-based accelerator, in
order to compare with designs with inter-layer coordination and intra-layer reordering.
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Figure 3: Inter-layer coordination and intra-layer reordering, using the example in Fig. 1. The upper sub-figures (i)(ii)(iii)

illustrate the point execution order in each layer. The number within circles is the index of points 𝑃𝑖 , and the 𝑂𝑖 outside the

circles is the process order within each layer. The bottom sub-figures (a)(b)(c) illustrate how inter-layer coordination and

intra-layer reordering improve the on-chip buffer hit rate thus performance. The buffer content shows the available content at

the start point of each time step. (a) Basic ReRAM-based acceleartor1. It simply schedules the execution by index order. (b)

Accelerator with inter-layer coordination. It schedules the execution order in layer 1 based on the receptive field of points in

layer 2. (c) Accelerator with both inter-layer coordination and intra-layer reordering (i.e., Pointer). The intra-layer reordering

determines the execution order of layer 2. The inter-layer coordination still determines the execution order of layer 1.

previous layer will be evicted into DRAM before they are requested

by the next layer. We illustrate this scenario in Fig. 3(a).

To address this DRAM access bottleneck, we propose the inter-

layer coordination technique to improve on-chip fetching. The key

idea is to start the computation of the point in the next layer earlier,

immediately after the calculations of all its required input points

from the previous layer have finished. It requires coordinating the

execution of the previous layer based on the execution order of

the next layer. For such optimization, the dependency between the

points in different layers is critical.

As Fig. 4 shows, the dependency across multiple consecutive

layers leads to a pyramid-shaped receptive field for each last-layer

output point, which can be viewed as the top of the “pyramid”.

In this example, two set-abstraction layers will lead to a 3-level

pyramid-shaped receptive field.

The algorithm of inter-layer coordination is shown as the lines 9-

13 of Algorithm 1. The example of inter-layer coordination is illus-

trated in Fig. 3(ii)(b) where the number of layer 𝑙 is 2. We denote

the computation of point 𝑃𝑖 in the layer 𝑗 as 𝐸
𝑗
𝑖 . For the example

with two set-abstraction layers, we represent a pyramid-shaped

receptive field as E2i − {𝐸
1
𝑗 }, where E

2
i represents the executions of

𝑃𝑖 in layer 2 and {𝐸
1
𝑗 } represents the execution of all points in 𝑃𝑖 ’s

receptive field in layer 1. To distinguish two different layers in our

Figure 4: An example of the pyramid-shaped receptive field.

This example is consistent with Fig. 1 and Fig. 3.

example, we use bold type to emphasize executions of points in

layer 2. In our example, corresponding to the three output points,

there are three pyramid-shaped receptive fields: (1)E21−{𝐸
1
1, 𝐸

1
4, 𝐸

1
7},

(2)E23 − {𝐸
1
2, 𝐸

1
3, 𝐸

1
6}, (3)E

2
5 − {𝐸

1
4, 𝐸

1
5, 𝐸

1
7}. Such receptive field infor-

mation determines the data dependency.

We schedule the computation to maximize data reuse according

to the data dependency. As the example shown in Fig. 3(ii)(b), the

computation is now receptive-field by receptive-field, instead of

layer by layer. Because the computation order of the last layer (layer

2) is the index order by default, whichmeans that𝑂2 = [𝑃1−𝑃3−𝑃5],
equivalent to 𝑂2 = [E21 − E23 − E25]. So such receptive-field by
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receptive-field scheduling first calculates 𝐸11 − 𝐸14 − 𝐸17 − E21, then

𝐸12 − 𝐸13 − 𝐸16 − E23, then 𝐸
1
4 − 𝐸17 − 𝐸15 − E25. But actually 𝐸

1
4 and 𝐸

1
7

appear in two receptive fields and they only need to be calculated

once. When we schedule these three receptive fields directly using

the index order in the second layer E21 −E23 −E25, the final execution

order with both layers is shown below:

𝐸11 − 𝐸14 − 𝐸17 − E21 − 𝐸12 − 𝐸13 − 𝐸16 − E23 − 𝐸15 − E25 (1)

It can also be expressed as𝑂1 = [𝐸11−𝐸
1
4−𝐸

1
7−𝐸

1
2−𝐸

1
3−𝐸

1
6−𝐸

1
5],𝑂2 =

[E21 − E23 − E25]. Since the executions in layer 1 and layer 2 can be

executed in parallel in the ReRAM-based accelerator, this final order

in Equation 1 is the same as the schedule of both layers in Fig. 3(b).

In summary, the inter-layer coordination reduces DRAM ac-

cess by holding feature vectors on-chip for immediate subsequent

fetching. But as shown in Fig. 3(b), there are still some on-chip

buffer misses when the 𝐸14 and 𝐸
1
7 are fetched at the second time. It

indicates that inter-layer coordination alone is still insufficient.

3.3 Topology-aware Intra-layer Reordering

The limitation of only using inter-layer coordination is that current

scheduling is unaware of point cloud topology. It simply schedules

the execution of the whole receptive field based on the index order

of points in the last layer (i.e., 𝑂2 = [E21 − E23 − E25]), without

considering the actual topology of the point cloud. As a result,

consecutive executed receptive fields have small overlap thus poor

Algorithm 1 Scheduling Order Generation

Input: The number of layers, 𝑙 . All output points of the last layer, 𝑆𝑃 . The
distance function between two points,𝑇 (𝑃𝑖 , 𝑃 𝑗 ) . Receptive fields of each

point Eki − {𝐸𝑘−1𝑗 }

Output: The execution order of each layer {𝑂1,𝑂2, ...𝑂𝑙 }

/* line 1-8 are algorithm of 3 Intra-layer reordering */

/* Select points one by one based on the topology */

1: Initiate an empty order list for the last layer𝑂𝑙 = [ ]

/* Start from a random point */

2: Select a point 𝑃𝑖 from 𝑆𝑃 randomly
3: Take 𝑃𝑖 out from 𝑆𝑃 , append it to𝑂𝑙

4: Set 𝐿𝑃 = 𝑃𝑖
5: while 𝑆𝑃 is not empty do

/* Select point nearest to the last selected point*/

6: 𝐶𝑃 = argmin
𝑃𝑗 ∈𝑆𝑃

𝑇 (𝐿𝑃, 𝑃 𝑗 )

/*𝐶𝑃 denotes the current selected point*/

/* 𝐿𝑃 denotes the last selected point*/

7: Take𝐶𝑃 out from 𝑆𝑃 , append it to𝑂𝑙

8: Set 𝐿𝑃 =𝐶𝑃

/* line 9-13 are algorithm of 2 Inter-layer coordination */

/* The execution order of prior layers depend on later layers, thus it iterates

from later layer to prior layers */

9: for 𝑘 : 𝑓 𝑟𝑜𝑚 𝑙 − 1 𝑡𝑜 1 (𝑑𝑒𝑠𝑐𝑒𝑛𝑑 ) do
/* Generate the order for layer 𝑘*/

10: Initiate an empty order list for layer 𝑘 ,𝑂𝑘 = [ ]

11: for 𝐸𝑘+1𝑗 ∈ 𝑂𝑘+1 (by order) do

12: Read its receptive field Ek+1j − {𝐸𝑘𝑚 }

13: 𝑂𝑘 .append({𝐸
𝑘
𝑚 })

Figure 5: An obvious overlap between the receptive fields of

two neighboring points in the last layer. (a) Original point

cloud. (b) Green points are the output points in the last set-

abstraction layer, the red and blue points are two neighboring

points. (c) Green points are original point cloud, the red and

blue points are the receptive fields of the two points in (b)

respectively. There is a large overlap between these twofields.

Figure 6: The architecture of Pointer. The blue part is the

support for the ReRAM-based accelerator, the green part is

for inter-layer coordination, and the orange part is for intra-

layer reordering.

data locality. Using the example in Fig. 3(ii), there is no overlap

between receptive fields of E21 and E
2
3, and also that of E

2
3 and E

2
5.

To tackle the problem, we propose topology-aware intra-layer

reordering to schedule the execution order of the last layer (i.e.,

layer 2 in this example). The topology-aware intra-layer reordering

is shown as the lines 1-8 of Algorithm 1. The topology-aware order

means that rather than scheduling them by index order, we generate

a new order that tries to schedule consecutive points to be neighbor-

ing in the physical space. In this example, it reorders the scheduling

of points in the last layer from the original 𝑂2 = [E21 − E23 − E25] to

the 𝑂 ′2 = [E21 − E25 − E23]. Since inter-layer coordination makes a

receptive-field by receptive-field scheduling, executions in previous

layers in the receptive field will follow the order in the last layer.

The new overall order will now become:

𝐸11 − 𝐸14 − 𝐸17 − E21 − 𝐸15 − E25 − 𝐸12 − 𝐸13 − 𝐸16 − E23 (2)

as illustrated in Fig. 3(c). It can also be expressed as𝑂1 = [𝐸11 −𝐸
1
4 −

𝐸17 − 𝐸15 − 𝐸12 − 𝐸13 − 𝐸16],𝑂2 = [E21 − E25 − E23]. It now successfully

removes all on-chip buffer misses by further exploiting data locality

and boosting data reuse. The improved data reuse can further reduce

DRAM access, thus improving performance and energy efficiency.

However, a challenge in this intra-layer reordering is how to find

out which points in the last layer have the largest common part in

their receptive fields. The most intuitive solution is to search all of

the possible orders and analyze the data reuse of each order, which

is unrealistic. The accelerator should explore an efficient way to

generate the execution order.

1066



ASPDAC ’25, January 20–23, 2025, Tokyo, Japan Qijun Zhang, Zhiyao Xie

In Pointer, we adopt a highly lightweight yet effective technique

to generate topology-aware execution order of points in the last

layer. For all unexecuted points in the last layer, the (i+1)th point

in the order should be the nearest to the ith point. Since these

points are close in the last layer, points in their receptive field in

previous layers are expected to also be close and overlap well. This

is validated by an example from our experiment in Fig. 5, which

randomly selects two consecutive points in our generated topology-

aware order, as shown in Fig. 5(b). We find that their receptive fields

in blue and red overlap very well, as Fig. 5(c) shows. It indicates

that this approximation can still generate a high-quality execution

order. In addition, this reordering technique introduces negligible

overhead, since it only requires the distance between selected pair

of points, which fortunately has already been calculated during the

existing FPS and neighbor search steps.

3.4 Hardware Implementation of Pointer

Fig. 6 shows the overview of the Pointer architecture design. The ba-

sic ReRAM-based PointNet++ accelerator introduced in Section 3.1

is the part without color. It consists of front-end and back-end. Sim-

ilar to the prior work [14], the front-end is for the point mapping

stage, and the back-end is for the feature processing stage. The back-

end mainly consists of four parts: ReRAM tile, reconfigurable data

path, digital computation unit, and main controller. 1) The ReRAM

tile consists of many ReRAM arrays, which serve the computation

and storage for weight in MLP. 2) The reconfigurable data path will

control and transfer data between different ReRAM arrays.3) The

digital computation unit executes some operations such as ADD,

MAX, and non-linear function. 4) The main controller coordinates

different parts of the accelerator.

The architecture support for inter-layer coordination is shown as

the green part in Fig. 6. The support for topology-aware intra-layer

reordering is shown as the orange part of Fig. 6. It is a small order

generator added to front-end with negligible hardware overhead.

4 EXPERIMENT

4.1 Experiment Setup

4.1.1 Benchmarks. We evaluate the representative point cloud

recognition model PointNet++ [11] on our accelerator. Three dif-

ferent configurations of evaluated PointNet++ are summarized in

Table. 1. Same as the original PointNet++, all three models consist of

two set-abstraction layers. The input point cloud size is 1024 points

in our models. For dataset, we adopt ModelNet40 [16], which is

widely adopted in many point cloud recognition research and point

cloud accelerator evaluations, consisting of 12311 point clouds.

4.1.2 Modeling Accelerator Architecture. To evaluate our design,

we develop a simulator to model the behavior of our design as-

suming 8GB/s DDR3 bandwidth. Specifically, we mainly simulate

the back-end (i.e., feature processing stage) of the Pointer and our

baseline. It is because when deployed in the application, the point

mapping and feature processing stages can be pipelined and the

feature processing is slower than point mapping.

Our design is evaluated under 40nm technology and the fre-

quency is set to 1GHz. As for area, we use CACTI [9] to model

2The number of central points is the number of selected output points in FPS.

Model ID Model 0 Model 1 Model 2

Layer 1

Input Feature Vector Length 4 8 16

Output Feature Vector Length 128 256 512

The Shape of MLP (three layers)

4*64 8*128 16*256

64*64 128*128 256*256

64*128 128*256 256*512

The Number of Neighbors 16 16 16

The Number of Central Point2 512 512 512

Layer 2

Input Feature Vector Length 129 256 512

Output Feature Vector Length 256 512 1024

The Shape of MLP (three layers)

128*128 256*256 512*512

128*128 256*256 512*512

128*256 256*512 512*1024

The Number of Neighbors 16 16 16

The Number of Central Point 128 128 128

Table 1: Three PointNet++ models evaluated in experiment.

the SRAM and published data from the prior work [13] to model

ReRAM. The evaluated area of the back-end and the order gener-

ator of our design3 is 1.25𝑚𝑚2. For our design configuration, the
ReRAM tile consists of 96 IMAs with each IMA consisting of 8

128*128 ReRAM arrays, and the buffer size is 9KB. We estimate

energy efficiency with reference energy data collected from [9, 13].

We select a baseline accelerator similar to MARS [17]. The base-

line’s MAC array consists of 32*32 MAC. For a fair comparison, we

always keep the SRAM size used in our design and baseline the

same, which is a 9KB on-chip buffer. The area of the back-end of

the MARS-like baseline accelerator is 1.56𝑚𝑚2, which indicates
that the hardware overhead of our design is similar to the baseline.

To further clearly evaluate each of our proposed methods, we

also introduce two variants of Pointer for ablation study. The first

one is the Pointer without inter-layer coordination and intra-layer

reordering, which is called Pointer-1 (i.e., only with contribution

1 ). The second one is the Pointer without intra-layer reordering,

which is called Pointer-12 (i.e., only with contribution 1 2 ).

4.2 Experimental Result

4.2.1 Performance Speedup and Energy Efficiency. Fig. 7 shows the

speedup of Pointer over theMARS-like baseline. For three evaluated

PointNet++ models, Pointer speedups by 40×, 135×, and 393×. This

speedup is more obvious for larger models, demonstrating the great

scalability of Pointer. When the model scales up, the weight matrix

becomes larger, so the data movement overhead in the baseline is

heavier. But for Pointer, because the data movement overhead has

been eliminated by using ReRAM, the performance slowdown is

much slower than baseline, so the speedup is becoming significant.

The result also shows that the performance of Pointer-12 always

outperforms Pointer-1. It validates the benefit of inter-layer coor-

dination. The Pointer also always outperforms the Pointer-12. It

validates the benefit of intra-layer topology-aware reordering.

Fig. 8 shows energy consumption of Pointer compared with

the MARS-like baseline. The energy consumption is normalized

with the baseline. For the three evaluated models, Pointer improves

the energy efficiency by 22×, 62×, and 163×, which demonstrates

the energy efficiency improvement of Pointer. Because the energy

consumption mainly comes from the DRAM access, the reduction

of DRAM access in Pointer can significantly reduce the energy.

3The front-end of our design is similar to the baseline except for the order generator.
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Figure 7: The speedup of Pointer and its two variants (i.e.,

Pointer-1, Pointer-12), compared with the MARS-like base-

line [17]. It measures the performance of three different

Point++ models, whose configurations are shown in Table 1.

Figure 8: The energy consumption of Pointer and its two

variants normalized with MARS-like baseline.

4.2.2 Source of Performance Gain. To further analyze Pointer’s

superior performance, we present a breakdown of the overall DRAM

access traffic into three parts: feature vector fetching, feature vector

writing, and weight fetching for MLP, as shown in Fig. 9(a).

In Fig. 9(a), the comparison between Pointer-1 and baseline

shows that the ReRAM-based accelerator eliminates weight fetch-

ing. Compared with Pointer-1, the average DRAM traffic of feature

vector fetching in Pointer-12 is reduced from 627KB to 396KB, cut-

ting down 37% of traffic by enabling on-chip fetching. Please notice

that the feature vector writing remains unchanged, because all of

the computed feature vectors will be saved back into the DRAM

once. Compared with Pointer-12, the average DRAM traffic of fea-

ture vector fetching in Pointer is further reduced to 121KB, further

cutting down 69% of the traffic, also 81% compared with Pointer-1,

because the intra-layer reordering improves the data reuse.

(a) (b)

Figure 9: (a) The breakdown of DRAM traffic for feature

vector fetching, feature vector writing, and weight fetching

of Pointer, baseline, and two variants of Pointer for ablation

study. (b) The comparison of Pointer-12 and Pointer for how

the performance changes with the buffer size. There is no

buffer for Pointer-1 so it is not shown.

(a) Hit rate in layer 1 (b) Hit rate in layer 2

Figure 10: On-chip buffer hit rate with different buffer sizes.

No buffer for Pointer-1 so it is not shown.

To further inspect how the intra-layer reordering reduces the

feature vector fetching, we analyze the on-chip buffer hit rate with

and without intra-layer reordering to demonstrate the data locality

improvement. It shows that after equipping the accelerator with

intra-layer reordering, the on-chip buffer hit rate of set-abstraction

layer 1 is improved from 68% to 71%, and that of layer 2 is improved

from 33% to 82%, which shows that data locality is improved.

4.2.3 Impact of Buffer Size. The buffer size has a large impact on

the performance. Fig. 9(b) shows how the speedup values change

with respect to the buffer size in Pointer-12 and Pointer. The buffer

size has such performance impact since it directly affects the on-

chip buffer hit rate. Here we further explore the correlation between

on-chip buffer hit rate and buffer size in Fig. 10(a) and Fig. 10(b).

For the first layer, as shown in Fig. 10(a), because there are a

larger number of input points to process in this first layer, the hit

rate is relatively low when the buffer is small, lower than 50% for

both Pointer-12 and Pointer. With the increase of the buffer size,

the hit rate also increases, but the hit rate of Pointer increases more

significantly than Pointer-12 due to its better data locality.

For the second layer, as shown in Fig. 10(b), the on-chip buffer hit

rate of Pointer is always higher than Pointer-12 when the buffer size

is smaller than 512. As the buffer size increases, the gap between

Pointer and Pointer-12 becomes smaller. It is because the effect of

the poor data locality is less obvious when given a larger buffer.

When the buffer size reaches 512, the hit rate is 100% because there

are only 512 points in the input point cloud of layer 2.

5 CONCLUSION

In this paper, we propose Pointer, a ReRAM-based point cloud ac-

celerator with inter- and intra-layer optimizations. We first design

a basic ReRAM-based accelerator to accelerate feature computa-

tion. Then we propose inter-layer coordination and intra-layer

reordering to reduce DRAM access. Experiments show that Pointer

outperforms MARS under different model sizes and buffer sizes.

Our proposed techniques may be transferred to other applications

with irregular feature vector fetching such as graph neural network.
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