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Abstract—The growing IC complexity has led to a compelling
need for design efficiency improvement through new electronic
design automation (EDA) methodologies. In recent years, many
unprecedented efficient EDA methods have been enabled by
machine learning (ML) techniques. While ML demonstrates its
great potential in circuit design, however, the dark side about
security problems, is seldomly discussed. This paper gives a
comprehensive and impartial summary of all security concerns
we have observed in ML for EDA. Many of them are hidden
or neglected by practitioners in this field. In this paper, we first
provide our taxonomy to define four major types of security
concerns, then we analyze different application scenarios and
special properties in ML for EDA. After that, we present our
detailed analysis of each security concern with experiments.

I. INTRODUCTION

Driven by the continuously growing complexity in inte-
grated circuits (ICs), design companies are in increasingly
greater demand for experienced manpower and stressed with
unprecedented longer turnaround time. The nonrecurring en-
gineering (NRE) cost associated with chip design also keeps
skyrocketing accordingly [1]. Therefore, there is a com-
pelling need for essential improvement on IC design efficiency
through new methodologies and design automation techniques.
To solve this, machine learning (ML) techniques are consid-
ered a highly promising direction.

In recent years, machine learning for EDA has become a
trending topic [2], [3]. ML models are developed to improve
the predictability in chip design flows, by providing early
feedback on downstream design quality or accelerating the
solution of EDA problems. These ML models learn from prior
design solutions and typically perform orders-of-magnitude
faster design quality evaluations or optimizations. We have
witnessed ML solutions targeting various design objectives,
covering all major design stages for both analog and digital
designs [2], [3]. Some techniques are further adopted in
commercial EDA tools [4], [5]. In both EDA academia and
industry, ML for EDA has made an impressive impact. We
have strong reasons to believe ML models will be more widely
adopted in design automation in the future.

Existing ML for EDA techniques seek various attractive
properties, such as better design quality, shorter turn-around
time, and a higher level of automation. A significant amount of
research and engineering efforts have been invested in these
targets. However, these properties are no longer desirable if
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fundamental security requirements are not first satisfied. In
this study, we use the term ‘security’ in a broad sense to
include all measures about causing and preventing unforeseen
consequences.

Actually, as ML is introduced in design automation, many
unprecedented security concerns arise, but most practitioners
are not fully aware of them. According to our study, the negli-
gence of these potential security problems can lead to serious
consequences for both model providers and users. Possible
consequences include misleading results, design information
leakage, model information leakage, etc. While a few previous
works [6], [7], [8], [9] studied possible adversarial attacks
on ML models targeting lithography problems, they only
account for a very small portion of security challenges we
observed in ML for EDA. In this paper, we try to give a more
comprehensive and impartial study on all identified security
challenges. We propose our taxonomy to define four major
types of security concerns in ML for EDA:

1) Attacks against data privacy, e.g., attacks that try to
infer private information about design data.

2) Attacks against competitive advantage, e.g., attacks
that construct similar substitute models, which impair
the competitive advantage of the original model.

3) Attacks against ML performance, e.g., adversarial or
poisoning backdoor attacks that cause accuracy degra-
dation on specific testing samples.

4) Inherent unreliability in ML performance, e.g., un-
expected accuracy degradation on new testing samples.

Figure 1 illustrates a typical ML for EDA development and
usage flow, and corresponding concerns. Malicious attacks
are not the only source of security concerns in this paper.
We also pay attention to unreliability problems, which cause
unforeseen consequences in many scenarios and are especially
serious in EDA and chip design. According to this taxonomy,
all aforementioned previous studies [6], [7], [8], [9] can be
categorized into the third type. In addition, a recent survey [3]
on ML for EDA mentioned their concern about type-one attack
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Fig. 1: Mlustration of one typical ML for EDA flow.



on training data without a more detailed analysis.

In this paper, we present a comprehensive study with
our preliminary experimental results on all identified security
concerns. According to our observation, some of these security
challenges are actually less practical, while others pose a high
threat to data owners, model owners, or users. We will first
present representative works, application scenarios, and special
properties of ML for EDA in Section II. After that, these four
major security concerns are presented in Section III, IV, V,
and VI, respectively. Finally, in Section VII, we discuss other
potential concerns and impacts in the future, when ML for
EDA becomes ubiquitous.

II. ML FOR EDA BACKGROUND
A. Existing ML Solutions in EDA

We start with a brief inspection of representative ML
solutions in EDA. Nowadays, ML-based research efforts can
be observed at almost all major stages of a typical VLSI design
flow. For high-level synthesis (HLS), models are proposed for
fast quality of result (QoR) estimation [10], [11] or design
space exploration [12], [13]. Many power models [14], [15] are
also proposed in early design stages. Some power models [16],
[17] are further implemented for runtime circuit management.
At logic synthesis, ML models are proposed for chip quality
prediction [18], [19] and optimization [20], [21]. During phys-
ical design, more models perform predictions or optimizations
on almost all important design metrics, including timing [22],
[23], [24], macro placement [25], [26], routability [27], [28],
[29], IR drop [30], [31], [32], clock tree quality [33], intercon-
nect [34], crosstalk [35], 3D integration [36], etc. Also, ML
models are developed for design verification [37], [38], design
for testability (DFT) [39], and lithography problems [40],
[41]. Besides the methods applied at specific design stages,
automatic design flow tuning is another well explored topic in
ML for EDA [42], [43].

ML-based methods are of course not only limited to digital
designs. For analog design, similarly, various models have
been developed for topology design [44], [45], device siz-
ing [46], [47], pre-layout prediction [48], [49], layout eval-
uation [50], [51], layout generation [52], [53], and analog
design testing [54]. For a more complete survey on all existing
research efforts, please refer to previous survey papers [2], [3]
solely devoted to this topic.

Besides being a hot research topic in academia, ML-based
estimators have also gained popularity in the EDA industry.
Recent versions of commercial tools already support the
construction of ML models on delay [55] or congestion pre-
dictions [56], providing improved PPA or faster convergence
after invoking the ML models in their tools [55], [56]. In
addition, EDA vendors have provided ML models for design
space exploration or design flow tuning, named DSO.ai [4]
and Cerebrus [5].

Among these ML applications targeting digital or analog
designs, almost all popular ML techniques have been applied.
Most methods in ML for EDA adopt supervised models, espe-
cially neural network techniques, while some others perform
reinforcement learning. In this work, we also focus on the

most popular supervised methods. Considering the popularity
in both EDA academia and industry, we believe ML models
will play a more important role in design automation in the
future. Therefore, a deep understanding of all potential security
concerns is essentially important.

B. Application Scenarios

To better analyze all security concerns in ML for EDA,
we should first fully understand the practical applications
scenarios of these ML-based techniques. However, as an
emerging type of chip design technique, new explorations in
ML for EDA solutions are still ongoing while the pace of
commercialization in the industry lags behind. Thus, besides
observing existing solutions, we have to anticipate possible
application scenarios in near future.

Currently, many existing research efforts in ML for EDA
merely target the demonstration of their correctness and ef-
fectiveness. A small portion of works have been verified and
applied in private in-house design flows in design companies.
In addition, some ML models are deployed in EDA tools
by EDA vendors. They correspond to two major types of
application scenarios. 1) Same model providers and users.
For ML models developed and deployed for in-house flows
internally, the model provider and user are from the same
company and work rather closely. 2) Separate model providers
and users. As Figure 1 shows, there may be separate model
providers from EDA vendors or independent developers and
model users from design companies. In the future, we tend to
believe it is more likely for more ML model providers and
users to be separated, like the separation of IC design, EDA,
and fabrication in the semiconductor industry history.

Despite these observations, the anticipation of future appli-
cation scenarios is not straightforward. Compared with tradi-
tional EDA software, ML for EDA methods adopt a different
and more complex flow, which consists of multiple stages,
including model architecture design, data and label collection,
model training, model inference/prediction, and utilization of
prediction results. These tasks could be divided differently
between model providers and clients. Different partitions of
tasks lead to different scenarios.

Table I presents four possible application scenarios or busi-
ness models of ML for EDA based on our anticipation. In the
first scenario S1, a separate ML model provider provides their
well-trained model as a black-box to users, possibly through
cloud services. This is very similar to the popular ML-as-a-
service (MLaaS) business model in many general ML tasks,
like the cloud services offered by Amazon, Google, Microsoft,
BigML, etc [57]. Such cloud services allow model providers
to charge users for queries. These ML models are of high

TABLE I: Possible Application Scenarios of ML for EDA

Scenario | Black-Box  Trained  Separated Provider & User
S1 v v v
) X v v
S3 v X v
S4 X v X




commercial values. In this case, models will be vulnerable to
many possible malicious attacks.

In addition, there could be a special case, S2, where ML
models are actually white-box to users or potential attackers.
There are a few possible reasons causing the model to be
white-box. For example, researchers, individual developers,
and even companies may hope to directly open-source their
trained model for free. Also, models targeting black-box in
S1 may be hacked, especially if they are deployed locally
instead of through cloud platforms without enough security
measurements. In this scenario, the ML model itself is already
available to potential attackers, while new security concerns
about the training data arise.

Another possible scenario, S3, is to leave more tasks to
users. The model providers only design their ML. methodology
without performing the training. The method is provided as
black-box, with information like feature, architecture, and
optimization procedure not explicitly disclosed. Then users can
train and use their own customized ML models as black-box
with their own labeled data. Rather than being provided as
stand-alone services in S1, it is more likely for such method-
ologies to be integrated and released together with existing
EDA tools. This business model can already be observed in
some existing EDA tools [55] from vendors.

Finally, ML model providers and users may not be sepa-
rated. Users in design companies can design and train their
own models for specific problems in their in-house design
flow. This is scenario S4 in Table I. In this case, this rather
private flow will be much less vulnerable to malicious attacks.
But it will still be affected by the inherent unreliability of ML
models, which will be covered in detail in Section VI.

C. Overview of Special Properties

Before giving a detailed analysis of security challenges,
we briefly inspect some special properties of ML for EDA
solutions. Although many ML for EDA solutions have been
developed based on black-box use of existing ideas from the
ML community, we still observe some remarkable properties
different from general ML tasks.

Unprecedented data heterogeneity. Huge heterogeneity
can exist between data samples, resulting from the large
difference among circuit designs due to functionality, micro-
architecture, and technology node. For example, assuming we
already restrict the training and testing data of an ML model to
be only from Arm processors, we still cannot expect the model
trained on old designs like Cortex-M0O with 40nm technology
node to perform very well on latest designs like Neoverse N2
with 5Snm technology. This level of training and testing data
heterogeneity is uncommon in benchmarks for general ML
applications like computer vision.

High complexity in data and pattern to learn. A cir-
cuit contains orders-of-magnitude more information than an
ordinary image. For prediction tasks, models are learning
behaviors of highly complex EDA engines. For optimization
tasks like macro placement, models are exploring a huge
solution space [25], significantly larger than the Go game
solved by AlphaGo [58]. These complexities increase the
difficulty in studying security problems in ML for EDA.

More confidential design in higher demand. The con-
struction of ML models in EDA relies on training data
generated from circuit designs, which are highly confidential to
design companies. Due to the aforementioned data heterogene-
ity, for ML models targeting most cutting-edge circuit designs,
similarly latest cutting-edge circuits are typically desired as
training data for model construction. This tends to put these
advanced highly confidential circuit designs at a higher risk
of information leakage.

Potentially decentralized training data. Many ML for
EDA developers have very limited access to the latest de-
sign data owned by design companies. Therefore, training
with decentralized private circuit data is explored in recent
works [59]. They propose to perform collaborative training on
decentralized data with techniques like federated learning [60].
Such a scenario can lead to many additional risks.

Model performing binary classification or regression.
Most security studies in general ML tasks target common
multi-class classifiers. For example, there are 1000 classes
in Image-Net benchmark for convolutional neural network
(CNN) models and 3 classes in COLLAB benchmark [61]
for graph neural network (GNN) models. In comparison, most
predictive models in EDA perform binary classification or
regression, while optimization models adopt reinforcement
learning. This difference makes many attack and defense
methods targeting multi-class classifiers no longer applicable.

D. Overall Experiment Setup

In this paper, we try to cover all security concerns we
observe in ML for EDA and provide our studies based on a few
representative datasets. We perform our experiments mainly on
the routability problem, a well-studied topic in ML for EDA.

Previous routability estimators use either routing conges-
tions [29], [28] or DRC (design rule checking) [27], [62] as
the metric of routability. They detect congestion locations or
DRC hotspots locations. Given a set of placement solutions
with extracted input feature maps X, routability estimators
generate a neural network model f to detect the locations of
DRC hotspots or congestions y:

[ X e Ry e {0,137

where d and h are the width and height of the layout, and ¢
indicates the number of input features/channels.

In routability prediction tasks, congestion detection is sim-
pler than DRC violation detection in practice. Therefore, con-
gestion detection models generally achieve higher accuracy.

Most experiments in this work are based on a compre-
hensive dataset using 74 designs with largely varying sizes
from multiple benchmarks. There are 29 designs from IS-
CAS’89 [63], 13 designs from ITC 99 [64], 19 other designs
from Faraday and OpenCores in the IWLS’05 [65], 13 designs
from ISPD’15 [66]. For each design, multiple placement
solutions are generated with different logic synthesis and phys-
ical design settings. Altogether 7,131 placement solutions are
generated from these 74 designs. We apply Design Compiler®
for logic synthesis and Innovus® [55] for physical design, with
the NanGate 45nm technology library [67].



Besides routability tasks, we also conduct experiments on
lithography hotspot detection, another representative topic in
ML for EDA, to study relevant security concerns on adversar-
ial attacks. The lithography hotspot detectors are also CNN-
based. The experiment is based on a lithography dataset from
the previous work [8], with four groups of 400 hotspot clips
for adversarial sample generation and 34356 layout clips for
model training.

III. ATTACKS AGAINST DESIGN PRIVACY
A. Design Privacy Overview

Training data is the foundation of ML for EDA and it
directly determines the quality of ML models. Such data
includes both input features and ground-truth labels. For a
circuit design/IP used for data generation, input features are
different representations of the design, and labels are corre-
sponding circuit qualities including power, performance, etc.
A circuit is significantly more complex than an ordinary image,
thus provides rich information for model development. Such
information can be highly confidential for design companies.

Previous studies [68], [69] have demonstrated that given an
ML model, it is possible for attackers to reconstruct or recover
sensitive feature information in the model training data. The
process of malicious recovering input features is commonly
referred to as model inversion or reconstruction attack [69].
In ML for EDA, such attacks may cause serious security
challenges on circuit designs/IPs used in training. Even com-
pared with other ML applications involving private data, like
medical image processing or language models on smartphones,
attacks targeting ML for EDA models are more threatening,
since attackers do not require high-quality recovery of training
data. A very small part of information about the circuit design
may already benefit the attacker. For example, attackers may
only target basic information like dynamic scaling granularity,
target manufacturing process, flat/horizontal implementation
methodologies, etc. Based on the small piece of reconstructed
features, it is possible for attackers with sufficient background
to infer valuable information about the research or develop-
ment direction of their target company.

To make things worse, as mentioned in Subsection II-C,
in ML for EDA, due to data heterogeneity, more confidential
design is in higher demand as high-quality training data. This
property tends to put those most advanced and confidential
circuit designs at a high risk of information leakage. This
concern on design privacy is recognized as an open challenge
by the recent ML for EDA survey [3].

B. Attack Method on Design Privacy

We provide a demonstration of the malicious reconstruction
of training data in ML for EDA. It applies to most complex
ML models like deep neural networks. However, it turns out
that such an attack has very high requirements on information
available to attackers.

The fundamental attacking mechanism is straightforward.
Given a differentiable ML model F' with trained weights w,
denote the input features and the label of a training sample as
X and y, respectively. Then the trained model F’s prediction

of this training sample (X,y) can be denoted as p, which
equals F(X|w).

When the attacker can access the model as white-box, as
indicated by scenario S2 in Table I, he has full knowledge
of the weights w. However, the information about the ML
model itself is not enough. We apply a very strong assumption
to study the most threatening case of such an attack. If an
attacker targets the training sample, we assume he/she can
generate or hack a close estimation of the model prediction
p =~ p = F(X|w) of this sample. This assumption is
also made in representative reconstruction attack works [69]
on facial image models. Based on this, attackers can try to
reconstruct similar input features of the sample, denoted as X,
targeting X, ~ X. This X, can be referred to as reconstructed
input. The attacking process starts with an initial generation
of the X, with random signals. After that, gradient descent
with respect to X, is performed iteratively, as shown below,
until it reaches convergence.

In each iteration, X, — = Vx, Loss(F(X,|w), p’)
= Vx, |IF(X;|w) = p'lla (1)

Different from the model training process, where gradient
descent is performed with respect to model weights w, in
this attack, gradient descent is performed with respect to
the reconstructed input X,. This operation minimizes the
difference between the prediction F'(X,|w) based on attacker-
reconstructed input X, and the actual prediction p based on
X. By performing this, ideally X, is optimized to approximate
the original training data sample X.

However, in practice this simple loss function ||F(X,) —
p'||2 does not work well. Simply minimizing the difference
between original and new model output may not optimize
the reconstructed input X, towards the original feature X.
This is also verified in our own experiment. Instead, extra loss
function terms have to be introduced to steer the optimization
direction and enforce the similarities between X, and original
feature X [70].

To improve the attack quality, we provide additional guid-
ance to make the X, follow existing feature statistics, which
are stored in widely-used batch normalization (BN) layers of
deep neural networks. This is inspired by the work of [70]
in computer vision. The BN layer [71] normalizes the feature
maps during training and implicitly captures the channel-wise
running/moving means ppy and variances o%,. Therefore,
we can steer the mean y and variance o of input batches with
reconstructed input X, towards the running values stored in
all BN layers. We define regularization terms for the I BN
layer with ppy ; and O'ZB ~ 1> as shown below.

RY(X,) = [lm(Xy) = ppn_ll2 + |07 (Xr) — oy 4ll2

where ;(X,) and o7(X,) are the mean and variance of the
batch with reconstructed input X, at the I** BN layer. Then
these penalty terms corresponding to all BN layers are added
to the loss function, with a controllable weight a.

Loss(F(X,w),p) = [|[F(X,|w)—p|l2+a ) R'(X,) )
l
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Fig. 2: Malicious model inversion attack. (a) The feature X
in training data (left column). (b) The reconstructed input X,
(right column). Target features on: the distribution of macros
(1% row) and net bounding boxes (2"¢ row).

In this way, the extra regularization steers the optimization of
X, towards the recovery of original training features X.

C. Experiment on Design Privacy Attack

Experimental results on model inversion attack with loss in
Equation 2 are shown in Figure 2. We present our inversion
results on two routability prediction features: macro positions
and density of all net bounding boxes. The original features
are shown in Figure 2(a) and the features reconstructed by
attackers are in Figure 2(b). A certain degree of similarities
can indeed be observed, especially in large-scale patterns. For
the macro locations, the sizes and locations all six macros in
Figure 2(a) are reconstructed by X, in Figure 2(b). For net
bounding boxes, similarly, the regions with high net density
are reconstructed. However, obvious differences still exist
in both large-scale and small-scale patterns. For macros in
Figure 2(b), three false-positive macros are generated in the
middle. Similarly, there are also false-positive net bounding
box densities reconstructed in originally empty regions.

More importantly, we emphasize that such attack is already
based on a few very strong assumptions: (1) Attacker has
white-box access to the ML model; (2) Attacker has an
approximation of the prediction value p’. While the first
condition may be achieved by hacking in scenario S2 or
building very similar surrogate models, the generation of p’ is
very difficult in practice. Despite these strong assumptions and
the carefully designed attack algorithm in Equation 2, we still
get limited performance on design privacy attack, as reflected
in Figure 2. Therefore, we conclude that based on existing
techniques and our current exploration, the overall difficulty

to conduct a model inversion attack on design privacy in ML
for EDA is actually high.

IV. ATTACKS AGAINST ML MODEL COMPETITIVENESS
A. ML Models Competitiveness Overview

As indicated by scenario S1 in Table I, trained ML models
can be provided on the cloud as a service in ML for EDA.
Such MLaaS typically charges clients based on their queries.
For service providers, it takes extensive efforts to construct
these high-quality models, with steps including data collection,
label generation, ML model design, ML model training and
validation, etc. To provide even better service, they may have
to construct multiple ML models for different types of design
and technologies, taking extra engineering efforts. In summary,
these trained ML models are important business assets and are
costly to develop.

However, it is possible for attackers to ‘steal’ these models.
Here the ‘steal’ broadly refers to all activities where attackers
develop their own substitute ML models with very similar
functionality, utilizing the existing model in MLaaS. In other
words, based on an existing black-box model F, attackers
can train their own model, named attack model F,, with
much lower cost. This malicious attack is referred to as model
extraction. Although this attack does not affect the function
of the original MLaaS, the attack model F, poses an obvious
threat to the competitive advantage and business value of the
original model F'.

In addition, aforementioned scenario S1 in Table I is not
the only vulnerable business model. In scenario S3, where
only ML model architecture is provided as black-box without
performing the training, malicious attacks are also possible.
Attackers may infer the model architecture, in order to save
their own research cost. In general ML applications, this has
been achieved by building an extra ML model to map from
the concatenation of query outputs to the model architecture
attributes [72]. It can be further improved by crafting own
training data that maximizes information leakage. However,
this attack on model architecture has only been verified on
very simple models with less than 5 convolutional layers [72].

B. Attack Method on Model Competitiveness

For attackers who hope to build their own attack model F,
in scenario S1, they can actually greatly benefit from existing
trained ML models. The most fundamental yet effective attack
methodology is to generate pseudo labels by querying the
MLaaS-provided model F' with attackers’ own unlabeled data.
In practice, label generation is one of the most costly steps
during model development in ML for EDA. First, it can
take a large computation cost and long runtime to finish a
design flow and get accurate simulation results, which are
the labels. For example, assuming we work on a design
with more than one million gates, it easily takes more than
one day to finish synthesis and physical design to generate
one complete layout. If developers plan to generate 1,000
labeled samples on designs at this level of complexity, it will
take dozens of machines running for months. Second, this
label generation process requires licenses of commercial tools.
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Fig. 3: The partitioning of dataset to study model competitive-
ness attack. Performance of these models are in Table II.

Third, it requires great engineering expertise and efforts to
generate reasonable and realistic training labels. In summary,
label generation requires extensive computation resources,
commercial EDA tool licenses, engineer efforts, time, etc.

If potential competitors/attackers can skip the label genera-
tion process to build their own dataset, the model construction
will be much easier. We refer the provided MLaaS black-box
model as the victim model F with trained weights w and the
ML model developed by attackers as the attack model F, with
weights w,. Given unlabeled input data X,,, the attacker can
query the victim model F(X,|w) and use it as the pseudo
label to train the attack model F,. So the attack method is a
very simple gradient descent optimization, as shown below.

In each iteration, w, — = Vy, Loss(Fo(Xy|w,), F(Xy|w))

This is the most fundamental while effective attack targeting
scenario S1. Based on this, attackers may further reduce the
number of queries, in order to save the cost. For example, they
can choose to select and only query the most representative
unlabeled samples, based on ideas from active learning or
semi-supervised learning.

C. Experiment on Model Competitiveness Attack

We demonstrate the effectiveness of our proposed funda-
mental model extraction attack in the routability experiment on
constructing congestion models. Following the aforementioned
scenario, we divide all of our existing data into four partitions
without any overlap: 1) 40% of labeled data used to train
the original victim model. 2) 10% labeled data used for
testing model accuracy. 3) 40% of unlabeled data prepared
by attackers. 4) 10% labeled data prepared by attackers,
in order to build a baseline. Figure 3 illustrates the data
partitioning in this setup. Notice that the 40% unlabeled data
from attackers are different from the 40% labeled training data
of the victim model. This is very close to a realistic scenario,
where attackers use different data from model developers.

Based on the data partition, an attack baseline is first trained
with 10% labeled data. Then an attack model 1 is trained on
40% unlabeled data with pseudo labels from victim model F'.
No actual label is provided by the attacker for this model. An
attack model 2 is trained on both 40% unlabeled data and the
10% labeled data.

Table II shows performance comparisons between the orig-
inal victim model F, attack model baseline, and two attack
models F,. For attack model 1, without any labeled data,
it achieves an accuracy of AUC=0.796, which is close to
the victim model. For attack model 2, with a small portion

. Accuracy
Model Training data (AUC)
MLaaS-provided victim 40% labeled data 0.806
Attack baseline 10% labeled data 0.765
Attack model 1 40% unlabeled data 0.796
40% unlabeled data
Attack model 2 + 10% labeled data 0.811

TABLE II: Attack on model competitiveness. The MLaaS-
provided (victim) model and attackers use different data.

(10%) of extra labeled data, it achieves even higher accuracy
(AUC=0.811) than the victim model. These results demon-
strate the effectiveness of model extraction attack with such a
simple pseudo-labeling method.

According to the result in Table II, attackers can train even
more accurate models with a very small portion of labeled
data by querying the victim model. This attack proves to be
efficient and profitable. It poses a threat to the competitiveness
and business value of provided models in ML for EDA.

V. ATTACKS AGAINST ML PERFORMANCE
A. ML Performance Attack Overview

Besides aforementioned attacks targeting data privacy or
model competitiveness, another main type of malicious attacks
may happen in ML for EDA targets affecting the performance
of existing ML models. Compared with the previous two
types of attacks, which are less explored by ML for EDA
community, some prior works [6], [7], [8] studied the attack on
the performance of CNN-based lithography hotspot detectors.

There exist multiple types of malicious attacks on the
performance of ML models. A well-studied type is adversarial
attack, where attackers modify the model input by very small
but deliberate alterations, named adversarial perturbation. In
this way, attackers introduce their desired misleading ML
inference result, without being noticed by potential victims.
Such adversarial perturbation makes use of the inherent sus-
ceptibility of deep neural networks. However, in practice, it
may not be feasible for outside attackers to easily modify the
input in an ML-integrated circuit design flow.

The work of [6] presents a realistic scenario of adversarial
attacks on ML models targeting lithography hotspot detection.
Currently, using a CNN-based hotspot detector, the designer
can quickly ascertain if a layout with third-party macros is
printable as-is. To pass off sub-par designs as high quality,
malicious third-party vendors may selectively modify their
layouts to steer the detector to misclassify hotspot regions
as non-hotspot. That is, attackers can hide hotspots in their
low-quality macros by introducing adversarial perturbations.

Besides adversarial attacks, a stealthy poisoning attack is
also threatening. It targets inserting backdoor in ML models
during the training stage. Instead of requiring control over
the model training process, this is achieved by poisoning
the training data. A common poisoning mechanism is to
insert a secret trigger to the features and coax ML models



to unknowingly learn the secret trigger as a pattern of the
attacker’s target label. The work of [7] demonstrates poisoning
attacks on lithography problems.

B. Attack Method on Model Performance

Adversarial attacks are based on the generation of adversar-
ial samples. The most fundamental attack method is fast gra-
dient sign attack (FGSM) [73]. For attacks without a specific
target, it perturbs the input features X towards the direction
that maximizes the error J between prediction F'(X|w) and
the correct label y. This gradient ascent process is similar to
the gradient descent operation on input in Equation 1, but
optimizes input X towards the opposite direction. To avoid
the attack being perceptual to victims, the perturbation is
often constrained with a maximum perturbation amount e. For
FGSM attack, the constraint € is defined with an [, norm. The
generation process of perturbed input X,, is shown below.

X, < clip(X + e sign(Vx J(F(X|w),y)))

Besides the fundamental FGSM, there are other adversarial
attack methods like projected gradient descent (PGD) [74],
which is a more effective, multi-step variant of FGSM.

These attack methods with FGSM or PGD are based on
constraints limiting pixel-wise perturbation amplitude, viewing
input as ordinary images. In ML for EDA, the scenario
can be quite different, depending on the actual EDA ap-
plication. When targeting lithography hotspot detectors [6],
instead of perturbing every pixel, the perturbation in this
case is to insert the shape of artificial sub-resolution assist
features (SRAFs) to layouts. Potential attackers are low-quality
IP/macros providers who wish to hide lithography deficiencies
in their design or maliciously sabotage the downstream man-
ufacturing process.

In ML for EDA, adversarial attacks are more threatening
to ML models targeting lithography problems, where design
layouts as inputs can easily come from malicious third-party
providers. In comparison, for models supposed to be deeply
incorporated and coupled with existing design flows, like
routability models, it will be more difficult for attackers to
insert their perturbations to model inputs.

In addition, although we introduce adversarial attacks by
assuming attackers have access to white-box model F' with
weights w, actually they can also be applied to black-box
scenarios. In this case, the adversarial samples can be gen-
erated based on certain surrogate models with similar func-
tionality. These samples are still effective after transferring
to the black-box target model F'. This successful black-box
attack attributes to the extraction of non-robust features by
both surrogate model and target model F'. Such non-robust
features are features that are highly predictive, yet brittle
and incomprehensible to humans [75]. Allowing black-box
scenarios further lowers the bar for adversarial attacks on ML
model performance.

Besides adversarial attacks, poisoning attacks target ML
performance at the model training stage. Take the same lithog-
raphy problem as an example, to hide lithography deficiencies,

malicious insiders can stealthily introduce a backdoor into
lithography detectors by providing poisoned training data with
backdoor ‘triggers’. The detector is thus trained to link the trig-
ger with non-hotspot. If this detector is adopted and deployed,
any attackers knowing the backdoor can pass off a low-quality
design as ‘hotspot-free’ by inserting the trigger in their own
layouts [7]. Recent studies [9] show that this poisoning attack
on lithography can be defended by diluting the intentional bias
from triggers with data augmentation strategies.

C. Defense Method on Model Performance

To cope with potential adversarial attacks in ML for EDA,
we propose to build more robust models by adopting de-
fense algorithms like curvature regularization (CURE) [76].
This work studies the relation between model curvature and
robustness against adversarial attacks. It first calculates the
Hessian matrix on loss function with respect to input features,
then proves that ML models with a smaller curvature (i.e.
smaller eigenvalues of the Hessian matrix) demonstrate higher
robustness [76]. Intuitively, smaller eigenvalues of Hessian
indicate a smaller curvature around input, implying a ‘locally
linear’ behavior in the neighbor of input.

Therefore, to build more robust models, a solution is to
penalize large eigenvalues of the aforementioned Hessian
matrix with respect to the input. It is achieved by imposing
gradient regularity (i.e., small curvature) along the direction
of gradient descent. This new regularizer R with respect to
original input X is shown below, and is added to the original
loss function L with a controllable weight a.

R=||VxL(X + hz) = VxL(X)||?
Loss =L+ aR 3

where the vector z o sign(VxL(X)), h is a sufficiently
small value controlling the step size. This new regularizer
R penalizes an approximation of the second-order derivative,
which represents curvature with respect to input X.

In this paper, we studied adversarial attacks on different ML
for EDA tasks. More importantly, we apply the CURE method
to construct more robust models with very limited accuracy
loss in tasks like lithography hotspot detection. It can better
defend the adversarial attack [6] on hotspot detectors.

D. Experiment on Model Performance Attack

We first verify the effectiveness of the widely-adopted
adversarial attack algorithm like PGD [74] on routability
models. These traditional adversarial attacks turn out to work
well in ML for EDA tasks. Experimental results are shown in
Figure 4. Figure 4(a) shows the original feature of the clock
tree together with all flip-flops in the layout, and Figure 4(b)
shows the corresponding feature with perturbations. Their
difference in major patterns is not obvious. Figure 4(c) shows
the congestion label. The normal prediction based on original
features in Figure 4(d) is close to ground truth in Figure 4(c).
However, the prediction based on features with perturbations
in Figure 4(e) is almost meaningless. The distinction between
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Fig. 4: Adversarial attack example on routability prediction. (a) Original feature on the distribution of clock tree. (b) The clock
tree feature after adversarial attack. The perturbation is small. (c) The congestion label. (d) The prediction based on original
features in a. (e) The prediction based on adversarial attacked features in b. The attack makes predictions meaningless.

prediction results in Figure 4(d) and Figure 4(e) clearly
indicates the effectiveness of the traditional attacks like PGD
in ML for EDA tasks, as demonstrated on this routability
problem. Similar results are also observed for the FGSM attack
in our experiment.

However, the difference between Figure 4(a) and 4(b) is
still perceptual to humans, indicating inferior attack quality
compared with attacks on general images. There are at least
two reasons. First, the model performs binary classification on
each grid instead of multi-class classification, leaving fewer
inter-class decision boundaries. Second, the input feature is
also close to binary, indicating the existence of the clock tree
elements. The simple feature also makes perturbations more
uniform and obvious.

As mentioned, adversarial attacks in ML for EDA are more
threatening in a few special tasks, like for lithography prob-
lems. The corresponding adversarial attack constraint is also
different. To study this task, we first replicate the adversarial
attack in the work of [6] on the same dataset. It attacks
lithography hotspot detectors by inserting artificial SRAFs as
perturbations. The accuracy of this model and attack success
rate on it are shown in the ‘vanilla model’ of Table III. After
that, we apply the CURE regularizer in Equation 3 to construct
a more robust model. As the comparison in Table III shows,
the attack success rate drops from 0.171 to 0.146 on our
robust model, while the accuracy slightly degrades from 0.895
to 0.885. It indicates the CURE-based robust model is less
vulnerable to adversarial attacks in this specific task with very
limited accuracy loss. In the future, we will further explore
more robust models by customizing the CURE method to the
constraint in SRAF shapes for this task.

Model Accuracy Attack
(AUC) (Success / Total)

Vanilla Model 0.895 0.171

Robust Model 0.885 0.146

TABLE III: Adversarial attack and defense on lithography
hotspot detectors. The attack is performed by inserting SRAFs
on inputs. The robust model based on CURE regularizer
reduces the attack success rate with limited accuracy loss.

VI. UNRELIABILITY IN ML PERFORMANCE
A. Model Unreliability Overview

We have discussed three major types of security concerns
in ML for EDA, targeting data privacy, ML model competitive
advantage, ML model performance, respectively. They are all
malicious attacks. Since we have defined the ‘security’ to
include all measures related to unforeseen consequences, we
emphasize one additional security concern, which is model
unreliability. It is reflected by observations that model accu-
racy may seriously degrade on some testing samples. It is
not caused by any malicious attackers, but can be especially
serious in ML for EDA, because of several special properties.

First, as mentioned in Subsection II-C, huge heterogeneity
may exist between training and testing data samples, resulting
from the large difference among circuits due to functionality,
micro-architecture, and technology node. We further illustrate
this concept in Figure 5, which shows a possible distribution of
training and testing samples in a simplified input feature space.
A few testing samples can be largely different from existing
training samples, inevitably leading to accuracy degradation
in these samples. In this example with only two features, the
difference between samples seems obvious and easy to mea-
sure. But in practice, such ‘difference’ and the corresponding
impact on testing accuracy are very difficult to know.

Second, it is very difficult for engineers to be aware of
unexpected accuracy degradation on a few testing samples in
practice. Accurate detection of accuracy degradation requires
ground-truth labels to be collected, which is highly time-
consuming and inherently against the purpose of adopting ML
models. Undetected accuracy degradation can lead to much
less optimized design solution or even chip failure, causing
serious income loss for users from design companies.
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Fig. 5: Distribution of training and testing samples.



Third, as mentioned in Subsection II-C, high complexity
exists in both input data and the pattern for ML models to
learn. These complexities exacerbate the difficulty in the study
of input sample similarity or the detection of possible accuracy
degradation.

In practice, the unreliability problem can be reflected by
concerns like: ‘Does the ML model work on 7nm technology
or memory/GPU/certain IPs? To what extent may the accuracy
degrade? Is transfer learning on new data necessary?’ Cur-
rently this is mostly speculated based on model developers’
confidence and intuition. To the best of our knowledge, there
is no systematic study on this topic. As a result, users cannot
safely trust any ML model in EDA before they have a
deep understanding of the potential unreliability in model
performance. It affects all four scenarios we mentioned in
Table I and may become a major obstacle that prevents a wide
application of ML in EDA in the future.

B. Model Unreliability Analysis

For each ML model in EDA, understanding ‘unreliability’
requires detecting accuracy loss without knowing the label,
or quantitatively determining the appropriate scope of testing
samples. This solution is not straightforward. One direction
we can think of is to define a new metric to measure the
similarity between training data and each testing sample. As
Figure 5 indicates, the performance unreliability (degradation)
is mostly caused by the sparse distribution of data samples in
the feature space. If the similarity between one testing sample
and the model training data is lower than a certain threshold,
the ML model should either reject inference on this testing
sample or at least raise a warning. Another direction is to
adopt ML models with prediction confidence incorporated in
their prediction outputs. Low confidence generally indicates
uncertainty and possible accuracy degradation on the testing
sample. The confidence is available as probability values for
many classifiers, especially multi-class classifiers, but less
obvious in common regression tasks in ML for EDA.

Understanding ‘unreliability’ in ML models not only helps
to avoid unexpected accuracy drop, but also provides guidance
during model construction. If we can detect testing accuracy
or define the appropriate scope of testing samples, then given a
dataset, it is possible for developers to construct multiple ML
models, each trained with part of training data and applied to
a specific scope of testing samples. For example, in Figure 5,
developers may train one ML model based on each benchmark,
instead of training one general model with all samples in
the training dataset. By applying different models to different
testing samples, better overall results can be achieved.

C. Experiment on Unreliability and Data Similarity

We first demonstrate the accuracy degradation when ap-
plying models on largely different designs, and present our
preliminary study in understanding the design similarity and
model performance.

Accuracy degradation on specific testing samples is very
common during the development of ML models. For example,
while a carefully designed routability model on congestion
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Fig. 6: Visualization of designs/layouts by dimension re-
duction. Each point represents one layout and same color
indicates the same design. Similarities can be observed for
designs/layouts from the same benchmark.

prediction achieves an average performance of 0.83, its per-
formance can be lower than 0.70 for a few testing designs.

To demonstrate the idea of measuring ‘similarities’ between
design and samples, we try to visualize multiple layouts from
various designs in different benchmarks in the routability
experiment. We adopt simple principle component analysis
(PCA) [77]-based dimension reduction techniques. The visual-
ization is shown in Figure 6. Each point in this figure indicates
one layout solution and same color indicate layouts from the
same design. Different benchmark names are annotated on the
figure. To provide more information, the tiny text annotated
on some points is in the format of design name plus the size
(’small’, mid’, ’large’) of design. For example, the tiny text
‘pci_mid’ at bottom purple points of Figure 6 indicates design
name ‘pci’ with middle-level layout size.

We can observe very interesting and reasonable clustering
of layouts and designs in Figure 6. First, layouts from the
same design with the same color are very closely clustered.
Second, intuitively similar designs, like designs from the same
benchmark, are obviously closer to each other. For example, all
designs from the ISPD benchmark distribute on the upper left
corner of Figure 6. More importantly, the designs with macros
are clearly closer to the corner, showing a larger difference
with most designs without macros. Similarly, designs from
ITC 99 and small designs from ISCAS’89 reflect clear intra-
benchmark similarities. Studies like this can provide guidance
in quantitative measurements of design similarity and under-
standing of model unreliability. A straightforward example is,
models trained with small design layouts (in the center of
Figure 6) may not perform well on large designs with macros
(in the upper left corner).

As mentioned, such design similarity also provides guid-
ance in model construction. We provide an experiment on
developing DRV detection models with different training data
in Table IV. Notice that this preliminary experiment targets



Training on
Test on . . Small + Middle
Middle | Small + Middle + Large (All)
Small 70.6 72.4 71.5
Middle 75.6 754 71.3
Large 71.3 64.9 71.0

TABLE IV: Testing accuracy of DRV detection models. Three
models are trained with different partitions of data.

DRY, thus overall accuracy tends to be lower than congestion
detection in previous experiments. In this experiment, all
training and testing designs are classified into three types:
small, middle, large, according to their layout size. Then we try
to train models either on all training data or on part of training
data. As Table IV shows, the model trained on all designs
does not perform the best. Instead, the model trained only on
middle designs performs better on middle and large testing
designs. This preliminary result supports our speculation that
based on design similarity, constructing multiple ML models
for different testing scopes can achieve better accuracy.

VII. POTENTIAL CONCERNS IN THE FUTURE

We have presented four major types of security concerns
in ML for EDA. At the end of this study, we try to further
anticipate a few other potential concerns or impacts that
may arise in the future, when ML for EDA becomes more
ubiquitous.

A. Security in Decentralized Setting

The effectiveness of ML for EDA largely hinges on the
availability of a large amount of high-quality training data.
In reality, developers have very limited access to the latest
design data, which is owned by design companies and mostly
confidential. Such data availability problem is becoming the
limiting constraint on the future growth of ML for EDA and
chip design. Considering the decentralized distribution of high-
quality circuit data, we have witnessed explorations [59] based
on federated learning (FL), as Figure 7 illustrates. Developers
collaboratively train one ML model based on the private local
data from K data providers. In each round, data providers
send locally trained models to the central server, then the
server aggregates and distributes the updated model back to
all providers. This may become a major trend in constructing
and deploying ML models in the future.

However, collaboratively constructing ML models in a de-
centralized setting incurs many new security concerns. For
example, if one of the data providers is an attacker, it leads to
serious security threats. First, the attacker can directly get full
access to the trained ML model during the collaborative train-
ing process. Second, the attacker can easily insert malicious
backdoor attacks into the ML model, by including poisoning
samples in its local training dataset. Third, it is possible for the
attacker to recover the private data of other data providers. This
can be achieved based on the idea of generative adversarial
networks (GAN). The attacker can use the trained model as
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Fig. 7: The visualization of the decentralized training.

a discriminator, and train an additional generator to recover
input samples of a specific class [78]. But this requires the
model to be a multi-class classifier, which is not common in
ML for EDA tasks.

B. Label Generation with ML Models

As mentioned in Subsection IV-B, label generation is one
of the most costly steps in model development. In the future
when ML models for EDA achieve higher accuracy and
become ubiquitous, it is possible to directly apply existing
models to generate training labels for the development of new
ML models. While this greatly reduces label generation cost,
accuracy degradation is unavoidable.

The accuracy degradation can already be observed in the
model extraction experiment in Subsection IV-C. As Table II
shows, the attack model trained on 40% unlabeled data is less
accurate than the original victim model trained on 40% labeled
data. Model developers should be aware of such accuracy loss
and avoid overuse of pseudo-labels.

C. Impact on EDA Tools

In the future, models learning the functionality of EDA tools
may be applied to partially or even entirely replace these EDA
tools in circuit design flow. This is a quite special impact.
Different from most ML applications where models replace
human efforts, ML for EDA methods have been applied to
accomplish the tasks of both human designers and EDA tools.

To avoid emerging competition with their own tools, in
the future EDA vendors may hope to revise existing user
license agreements and prevent unauthorized use of their tools
to develop ML models with similar functionalities. However,
disabling model training based on a specific software is
technically very difficult, and violations of this rule cannot
be easily detected by the vendor.

VIII. CONCLUSION

In this paper, we provide a comprehensive and impartial
summary of all safety concerns we observe in ML for EDA
tasks. According to our study, some concerns like model
extraction, attacks on model performance, and inherent model
unreliability are highly threatening, while potential design pri-
vacy attack turns out to be less practical. In the future, we will
explore more customized attack and defense methodologies
with more in-depth experiments in ML for EDA.
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