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ABSTRACT
The automatic generation of RTL code (e.g., Verilog) using natu-
ral language instructions and large language models (LLMs) has
attracted significant research interest recently. However, most exist-
ing approaches heavily rely on commercial LLMs such as ChatGPT,
while open-source LLMs tailored for this specific design gener-
ation task exhibit notably inferior performance. The absence of
high-quality open-source solutions restricts the flexibility and data
privacy of this emerging technique. In this study, we present a new
customized LLM solution with a modest parameter count of only
7B, achieving better performance than GPT-3.5 on all representative
benchmarks for RTL code generation. Especially, it outperforms
GPT-4 in VerilogEval Machine benchmark. This remarkable balance
between accuracy and efficiency is made possible by leveraging
our new RTL code dataset and a customized LLM algorithm, both
of which will be made fully open-source. Furthermore, we have
successfully quantized our LLM to 4-bit with a total size of 4GB,
enabling it to function on a single laptop with only slight perfor-
mance degradation. This efficiency allows the RTL generator to
serve as a local assistant for engineers, ensuring all design privacy
concerns are addressed.

1 INTRODUCTION
In recent years, large languagemodels (LLMs) such as GPT [19] have
demonstrated remarkable performance in natural language process-
ing (NLP). Inspired by this progress, researchers have also started
exploring the adoption of LLMs in agile hardware design. Many new
LLM-based techniques emerge and attract wide attention in 2023.
For example, LLM-based solutions are proposed to generate design
flow scripts to control EDA tools [8, 13], design AI accelerator ar-
chitectures [6, 28], design quantum architectures [12], hardware
security assertion generation [10], fix security bugs [1], and even
directly generate the target design RTL [3, 4, 13, 14, 16, 17, 25, 26].

Among the above explorations, a promising direction that per-
haps attracts the most attention is automatically generating design
RTL based on natural language instructions [3, 4, 13, 14, 16, 17, 25,
26]. Specifically, given design functionality descriptions in natural
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Works New Training New LLM Outperform
Dataset Model GPT-3.5

Prompt Engineering N/A N/A N/A
[3, 4, 16, 17, 26]
Thakur et al. [25]

Open-Source Open-Source No
from NYU

VerilogEval [14] &
Closed-Source Closed-Source ComparableChipNeMo [13]

from NVIDIA
RTLCoder

Open-Source Open-Source Yes
from HKUST

Table 1: LLM-based works on automatic design RTL (e.g.,
Verilog) generation based on natural language instructions.

language, LLM can directly generate corresponding hardware de-
scription language (HDL) code1 such as Verilog, VHDL, and Chisel
from scratch. Compared with well-explored predictive machine
learning (ML)-based solutions in EDA [20], such generative meth-
ods benefit the hardware design and optimization process more
directly. This LLM-based design generation technique can poten-
tially revolutionize the existing HDL-based VLSI design process,
relieving designers from the tedious HDL coding tasks.

Table 1 summarizes existingworks in LLM-based design RTL gen-
eration. Some works [3, 4, 16, 17, 26] focus on prompt engineering
methods based on commercial LLMs like GPT, without proposing
new datasets or models for RTL code generation. As we will discuss
later, reliance on commercial LLM tools limits in-depth research
exploration and incurs serious privacy concerns in industrial IC
design scenarios. Thakur et al. [25] generate a large unsupervised
training2 dataset by collecting Verilog-based projects from online
resources like GitHub, then fine-tuning its own model. However,
this unsupervised dataset is quite unorganized with a mixture of
code and text. Evaluations on a third-party benchmark [16] show
that the performance of its fine-tuned model is still inferior to com-
mercial tools like GPT-3.5. The VerilogEval [14] from the NVIDIA
research team proposes its own labeled training dataset and bench-
mark, then fine-tunes its own new model. This may be the first

1Most existing works focus on generating design RTL in Verilog code. In this work,
we also choose Verilog, while the method should be general and applicable to other
HDL types like VHDL. We will use terms RTL code and Verilog code interchangeably.
2Most customized LLM solutions (including RTLCoder) are developed by fine-tuning
pre-trained LLMs based on a training dataset about the specific task. In this paper, we
use the terms training and fine-tuning interchangeably.
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non-commercial model that claims comparable performance with
GPT-3.5, but according to their authors, neither the training dataset
nor fine-tuned LLM model will be released to the public in the near
future [14]. Besides these customized RTL-generation solutions,
according to our study, all other software code (e.g., Python) gener-
ation models like CodeGen2 [18], StarCoder [11], and Mistral [9]
are significantly inferior to GPT-3.5 in this RTL generation task.

Compared with solutions based on closed-source commercial
LLM tools like GPT, the open-source LLM solution is vitally im-
portant from both research and application perspectives: 1) For
research purposes, obviously, closed-source commercial tools pre-
vent most in-depth studies and customizations of this emerging
technique. 2) For realistic applications, users of commercial LLM
tools unavoidably have data privacy concerns, since all instructions
have to be uploaded to LLM providers like OpenAI. The privacy
concern is especially critical in the VLSI design industry, where
information leakage of intellectual property (IP) or key technical
innovations can seriously hurt the competitive advantage of users’
companies. In comparison, each user’s own local LLM developed
based on an open-source solution can eliminate all privacy concerns
and also ensure a reliable service.

However, as mentioned, high-performance open-source RTL gen-
eration models are currently unavailable. According to our study,
a major challenge is the unavailability of high-quality circuit de-
sign data for training: 1) Organized design data is mostly owned
by semiconductor companies, who are almost always unwilling to
share design data. 2) Design data directly collected online is messy
and unorganized, either leading to inferior model performance or
requiring prohibitive human efforts to clean the dataset.

In this work, we finally fill this gap with our new open-source
LLM solution named RTLCoder3. To the best of our knowledge, it
is the first non-commercial LLM method that clearly outperforms
GPT-3.5 in design RTL code generation. We validate this on two
representative benchmarks [14, 16] and observe consistent trends.
To build this RTLCoder, we first propose an automated data gener-
ation flow and have generated a high-quality labeled dataset with
over 27,000 samples for the RTL generation task.

RTLCoder obviously achieves state-of-the-art trade-offs between
performance and efficiency. Besides demonstrating unprecedented
RTL generation correctness in non-commercial solutions, it only has
7 billion (B) parameters and can be trained with only 4 consumer-
level GPU cards. After further quantizing the parameters to 4 bits,
the RTLCoder-4bit takes only 4GB of memory and can work on a
laptop with limited accuracy loss. As a result, our open-source light-
weight RTLCoder solution is accessible to almost every research
group. The contributions of RTLCoder can be summarized below:

• Targeting Verilog code generation, we propose an automated
flow to generate a large labeled dataset with over 27,000
diverse Verilog design problems and answers. It addresses the
serious data availability challenge in IC design-related tasks,
and its potential applications are not limited to LLMs. The
LLM directly trained on it can already achieve comparable
accuracy with GPT-3.5.

3It is open-sourced in https://github.com/hkust-zhiyao/RTL-Coder

• We introduce a new LLM training scheme based on code
quality feedback. It further boosts the ultimate model perfor-
mance to outperform GPT-3.5, being comparable with GPT-4.
We further revised the training process from an algorithm
perspective to reduce its GPU memory consumption. The
training process only requires 4 commercial-level GPU cards.

• We designed RTLCoder to be a lightweight solution with
only 7B parameters. After quantizating its parameters into 4
bits, it takes only 4GB of memory, allowing it to serve as a
local assistant for engineers without privacy concerns.

• RTLCoder will ultimately be fully open-sourced, including
our data generation flow, complete generated dataset, LLM
training algorithm, and the fine-tuned model. Considering
RTLCoder’s lightweight property and low hardware barrier,
it allows anyone to easily replicate and further improve based
on our existing solution.

2 AUTOMATIC DATESET GENERATION
In this work, we first propose a new automated training dataset
generation flow. Based on this flow, we have generated over 27
thousand training samples, with each sample being a pair of design
description instruction (i.e., model input) and the corresponding
reference RTL code (i.e., expected model output). The instruction
can be viewed as the input question for LLMs, describing the desired
circuit functionality in natural language. The reference code is the
expected answer from LLMs, implementing the circuit functionality
in Verilog code. We observe that these generated training samples
exhibit high diversity and complexity in the RTL-generation do-
main, encompassing a diverse spectrum of difficulty levels.

We build this automated generation flow by taking full advantage
of the powerful general text generation ability of the commercial
tool GPT. Please notice that GPT is only used for dataset generation
in this work, and we adopt GPT-3.5 in this data generation task.
The automated dataset generation flow is illustrated in Figure 1,
which includes three stages: 1) RTL domain keywords preparation,
2) instruction generation, and 3) reference code generation. We de-
signed several general prompt templates to control GPT generating
the desired outputs in each stage.

2.1 Stage 1: Keywords Preparation
The first stage of our data generation flow targets preparing RTL
domain keywords for subsequent stages. At process 1 shown in
Figure 1, we request GPT to generate keywords related to digital
IC design (i.e., commonly used logic components) based on a set of
prompts 𝑃𝑘𝑒𝑦 . We obtain a keyword pool L𝑘𝑒𝑦 with hundreds of
digital design keywords.

Specifically, in this process 1 , to collect a comprehensive range
of RTL design task topics, we utilize a tree-like structure with
multiple branches to issue queries to GPT. We first prompt GPT at
the root node to provide categories and examples of frequently used
block keywords in RTL design as Figure 2 illustrated. The response
from GPT has a tree structure that consists of some subfields as
Figure 3 shows. With the response, we could use the categories and
examples as branches to continue prompting GPT for more design
keywords within each topic. For example, we can use scripts to
ask GPT about more types of the block "multiplier", it will return
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Figure 1: Our proposed automated training dataset generation flow.

Prompt:
Please act as a professional Verilog designer. List the categories and 
examples of blocks that are frequently used in Verilog coding tasks.

Figure 2: An example of Prompt 𝑃𝑘𝑒𝑦 in 1 4

Response:
1. Combinational Logic Blocks: Arithmetic blocks (adders, 
subtractors, multipliers, dividers)...
2. Sequential Logic Blocks: Shift Registers (serial-in/serial-out, 
serial-in/parallel-out, parallel-in/serial-out, parallel-in/parallel-out), 
Sequence detectors...
3. Finite State Machines (FSMs): Mealy FSM, Moore FSM, One-
hot FSM, Gray-code FSM...
4. Digital Signal Processing (DSP) Blocks: Filters (FIR, IIR), Fast 
Fourier Transform (FFT)...
5. Communication Protocol Blocks
...

Figure 3: A GPT response example to Prompt 𝑃𝑘𝑒𝑦 in 1

more specific design names such as "Booth multiplier, Wallace tree
multiplier, etc.". After this process, we obtain hundreds of keywords
related to RTL design in the Keywords pool L𝑘𝑒𝑦 .

2.2 Stage 2: Instruction Generation
The second stage targets generating sufficient instructions based
on the initial keywords and Verilog source code. At process 2 , we
extend existing keywords from L𝑘𝑒𝑦 to complete design instruc-
tions. Specifically, we randomly sample one or two keywords from
L𝑘𝑒𝑦 each time, combined with prompts 𝑃𝑒𝑥𝑡 , and feed them into
GPT. The output is a complete RTL design instruction.

In addition to keyword-based instruction generation in process
2 , we also propose to generate instructions based on existing source
code collected by us, as shown in process 3 . This is partially in-
spired by the work of [27]. By providing GPT with either part or a
complete Verilog code L𝑐𝑜𝑑𝑒 collected by [25], we can inspire it to
create a related Verilog design problem. By adopting this new 3
together with 2 , we further enhance the diversity of our dataset
by utilizing a vast and varied collection of source code.

Process 2 and 3 help generate the initial design instruction pool
L𝑖𝑛𝑠 based on our customized prompt 𝑃𝑒𝑥𝑡 . Two types of prompt
𝑃𝑒𝑥𝑡 are proposed for processing L𝑘𝑒𝑦 and L𝑐𝑜𝑑𝑒 , denoted as 𝑃

𝑘𝑒𝑦
𝑒𝑥𝑡

and 𝑃𝑐𝑜𝑑𝑒𝑒𝑥𝑡 , respectively. As shown in Figure 4, our prompt 𝑃𝑘𝑒𝑦𝑒𝑥𝑡 in
process 2 adopts the few-shot prompting technique, which means
we provide an example of the question (i.e., keyword) and answer

4We use red text boundary to denote GPT input examples, and green text boundary to
denote GPT output examples in this work. Please notice that some green GPT output
in this data generation flow are instructions, which will be the input of LLMs.

You should create a task that only requires one Verilog module 
related to the given topic. 
Here is an example for you.
 

[Given Topic]
UART transmitter
[Instruction]
Create a Verilog module for a UART transmitter that can send data at 
a baud rate of 9600. The module should have a single input for the 
data to be transmitted (8 bits) and ...
module uart_transmitter(
    input clk, // system clock
    input reset_n, // active low asynchronous reset
    input [7:0] data_in, // data to be transmitted
    output reg tx, // UART transmit pin
    output reg tx_busy // UART transmit busy signal
);

Figure 4: An example of Prompt 𝑃𝑘𝑒𝑦𝑒𝑥𝑡 in 2

(i.e., instruction) in the input prompt. Figure 5 shows an example
of GPT’s corresponding response. As for the prompt 𝑃𝑐𝑜𝑑𝑒𝑒𝑥𝑡 used
in process 3 , an example of prompt and the response of GPT are
provided in Figure 6 and Figure 7. The prompt 𝑃𝑐𝑜𝑑𝑒𝑒𝑥𝑡 asks GPT
to convert the given Verilog code snippet to the corresponding
description instruction.

After generating the initial instruction pool L𝑖𝑛𝑠 with hundreds
of initial instructions, we will iteratively use mutation methods
to significantly augment the scale and complexity of this pool. At
4 , we use 𝑃𝑚𝑢𝑡 to apply two types of mutation operations on
instructions sampled from the design instruction library L𝑖𝑛𝑠 . The
process 4 would check every new design instruction using a set
of rules and only passed valid instructions are added to L𝑖𝑛𝑠 . We
cover more details of this iterative process below.

For the mutation operation in 4 , we propose two types of
prompts 𝑃𝑠𝑚𝑢𝑡 and 𝑃𝑐𝑚𝑢𝑡 , performing single circuit variation and
circuits combination, respectively.

• The 𝑃𝑠𝑚𝑢𝑡 focuses on changing the single circuit module by
requiring different functionalities while keeping the same
hardware type, or implementing the same functionality but
using different hardware. Figure 8 is an example of 𝑃𝑠𝑚𝑢𝑡 and
Figure 9 is a GPT’s response example with given instructions.

• The 𝑃𝑐𝑚𝑢𝑡 focuses on combining two circuit designs together.
They are combined by either adding control logic to select
using one of the two functionalities (i.e., parallel combina-
tion) or feeding one output into the other’s input (i.e., serial
combination). Figure 10 gives a sample of prompt 𝑃𝑐𝑚𝑢𝑡 and
Figure 11 is a GPT’s response example with given instruc-
tions.

3



[Instruction]
Please act as a professional Verilog designer. Your task is to create a 
Verilog module that implements a pulse width modulator (PWM). 
You need to design a PWM module that takes a clock signal, a reset 
signal, and a user-defined duty cycle value as inputs, and outputs a 
PWM signal. The duty cycle value should be an integer ranging 
from 0 to 100, representing the percentage of the PWM signal being 
high during each cycle.
Your module should meet the following requirements:
• The PWM signal should have a fixed frequency, determined by a 

parameter called PWM_FREQUENCY. You can assume that the 
input clock frequency is 100 MHz.

• The duty cycle of the PWM signal should be adjustable by 
changing the duty_cycle input value.

• When the rst input is high, the PWM output should be reset to 
low, and the duty cycle should start from the beginning of the 
next cycle when the reset signal goes low.

• The PWM output should transition from low to high at the 
beginning of each cycle and should stay high for a duration 
proportional to the duty_cycle input value.

• You can assume that the input clock signal is a perfect square 
wave with a 50% duty cycle, and the reset signal is synchronous 
to the input clock. The solution should be synthesizable and 
follow good coding practices.

module PWM(
    input clk,
    input rst,
    input [7:0] duty_cycle, // 8-bit duty cycle 
value (0-100)
    output pwm_out
);

[Given Topic]
Pulse width modulator (PWM). 

Figure 5: A GPT response example (green) to Prompt 𝑃𝑘𝑒𝑦𝑒𝑥𝑡

when given topic: Pulse width modulators (PWM) (red) in 2

Prompt:
Please gain inspiration from the following random code snippet to 
create a high-quality Verilog coding problem. 
Verilog code snippet  for inspiration: 
 
if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG 
== 32'h00000008)) begin reg [C_DATA_WIDTH-1:0] 
m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer… 
has_valid_storage_i = 1'b1; // Clear the value if 
it's set and Master side completes the transaction 
but we don't have a new slave side.

The Verilog coding problem should be completely self-contained, 
providing all the contextual information one needs to understand and 
write code to implement this module. Assume common 
programming knowledge, but ensure that any specific context, 
variables, or code snippets pertinent to this description are explicitly 
included. You should describe the behavior of the circuit in detail. 

Figure 6: An example of Prompt 𝑃𝑐𝑜𝑑𝑒𝑒𝑥𝑡 in 3

In addition, we will further request GPT to generate its reasoning
steps (i.e., how it analyzes the generation task step-by-step). These
reasoning steps further enhance the detailed information of our
instruction pool.

For the instruction checking in 5 , we automatically check the
correctness and diversity of each new instruction generated in the

Response:
This Verilog module implements a configurable slave interface with 
three different modes of operation. The module has the following 
inputs and outputs…The module has three modes of operation, 
selected by the value of C_REG_CONFIG: Mode 1 
(C_REG_CONFIG == 32'h00000001 or C_REG_CONFIG == 
32'h00000008): This mode is a pass-through mode where the slave 
interface forwards data from the master interface to the slave 
interface and vice versa…
module configurable_slave_interface (

 input ACLK,
 input ARESET,
 input [31:0] C_REG_CONFIG,
 input C_DATA_WIDTH = 32,
 input S_VALID…)

Figure 7: A GPT response example to Prompt 𝑃𝑐𝑜𝑑𝑒𝑒𝑥𝑡 in 3 .

The rewritten task should achieve different circuit functionality but 

require similar methods or components in the given instruction. Here 

is one example for you.

[Given Instruction]

Please act as a professional Verilog coder. Create a module that 

implements a finite state machine (FSM), used for 5-bit sequence 

detection.

[New Instruction]

Please act as a professional Verilog designer. Create a module that 

implements a finite state machine (FSM), used for 5-bit sequence 

detection, but with a twist. The module should detect two different 5-

bit sequences, "01010" and "10101", and output a signal indicating 

which sequence was detected. The output signal should be '0' for 

"01010" and '1' for "10101". The FSM should transition to the initial 

state whenever a reset signal is asserted. Implement the FSM using a 

Mealy machine, where the output is a function of both the current 

state and the input.

Figure 8: An example of Prompt 𝑃𝑠𝑚𝑢𝑡 in 4

Response:
[New Instruction] 
Build a 16-bit binary counter that counts from 0 through 15, 
inclusive, with a period of 16... Additionally, include a count_down 
input to control the direction of the counter (count up or down)... 

[Given Instruction] 
Build a decade counter that counts from 0 through 9, inclusive, with 
a period of 10. The reset input is synchronous, and should reset the 
counter to 0. We want to be able to pause the counter rather than 
always incrementing every clock cycle, so the slowena input 
indicates when the counter should increment...

Figure 9: A GPT response example (green) to Prompt 𝑃𝑠𝑚𝑢𝑡
with Given Instruction (red) in 4

mutation process, based on a series of rules. The rules include 1)
invalid-word checking, and 2) similarity measurement with exist-
ing L𝑖𝑛𝑠 . For example, in invalid-word checking, if words such as
"image" and "text" are detected, it indicates that GPT has likely pro-
vided a problem that cannot be implemented solely with RTL code.
As for similarity rate checking, we calculate the similarity between
the new instruction and existing L𝑖𝑛𝑠 . The new instruction is dis-
carded if the similarity is above a certain threshold since it can’t add
enough new information to L𝑖𝑛𝑠 . Such checking of instructions in

4



You should create a new task based on the two given instructions. 
The output of one module could be the input of the other. Here is an 
example for you.

[Given instructions]
1. Create a module that implements a binary counter...
2. Create a module that implements a comparator...
[New instruction]
Create a module that implements a binary counter that counts from 
0 to 15, ..., Additionally, include a comparator that compares the 
value of the counter to a given value, and outputs a signal indicating 
whether the counter value is greater than or equal to the given value.

Figure 10: An example of Prompt 𝑃𝑐𝑚𝑢𝑡 in 4

[Given Instruction] 
1. Please act as a professional Verilog coder. Create a module that 
implements a finite state machine (FSM), used for 5-bit sequence 
detection...
2. You are tasked with designing a 4-bit binary to BCD (Binary 
Coded Decimal) converter using Verilog. The binary input should 
be in two's complement notation, and the output should be in BCD 
format.  

Response:
[New Instruction] 
Create a module that combines a 5-bit sequence detection finite 
state machine (FSM) and a 4-bit binary to BCD converter. The 
FSM module should detect a specific 5-bit sequence in the input data 
stream. When the sequence is detected, the FSM should output a 
'match' signal. The binary to BCD converter should accept a 4-bit 
two's complement binary input and convert it to BCD format. The 
BCD conversion should only be performed when the 'match' signal 
from the FSM is high.

Figure 11: A GPT response example (green) to Prompt 𝑃𝑐𝑚𝑢𝑡
with Given Instruction (red) in 4

5 is imperfect, but it is fully automated and accurate enough to
generate a high-quality ultimate instruction pool L𝑖𝑛𝑠 , including
over 50,000 instructions.

2.3 Stage 3: Reference Code Generation
The third stage targets generating the reference code. In the third
stage, as shown in 6 , we feed each instruction from L𝑖𝑛𝑠 into GPT,
generating the corresponding reference design code as the solution.
Specifically, we will ask GPT to provide at least five answers. After
that, in 7 , we will evaluate these answers using a code checker.
In this work, we adopt an automated syntax checker to verify the
correctness of RTL code syntax. Only syntax-correct design code
can be kept. If all five answers fail the syntax checking, this instruc-
tion will be discarded. Finally, only valid instruction-code pairs are
saved as our dataset. Ideally, process 7 should also check whether
the functionality of the generated RTL code is consistent with the
instruction, but currently generating testbenches for functionality
verification cannot be automated. Similar to the checker in stage 2,
this imperfect automated checking can already filter out the most
serious mistakes in the dataset.

After going through all three proposed stages, we generate the
ultimate training dataset with more than 27,000 data samples. An

interesting observation is that, although we generate our train-
ing dataset based on GPT-3.5, RTLCoder turns out to outperform
the GPT-3.5 baseline on representative benchmarks [14, 16]. One
important reason is that, for each instruction, we have employed
a syntax checker to evaluate the reference code generated based
on GPT-3.5. Therefore, among all correct and incorrect code from
GPT-3.5, we filter out the obviously incorrect ones and retain the
largely correct ones for training RTLCoder. This process can be
viewed as a refinement of GPT-3.5’s Verilog generation capabilities.

3 NEW TRAINING SCHEME INCORPORATING
CODE QUALITY FEEDBACK

Besides the new training dataset, we propose a new LLM training
scheme that incorporates code quality scoring. It significantly im-
proves the RTLCoder’s performance on the RTL generation task.
Also, we revised the training process from the algorithm perspec-
tive to reduce the GPU memory consumption of this new training
method, allowing implementation with limited hardware resources.

3.1 Existing Supervised Training on LLMs
This part will first introduce the existing supervised trainingmethod
for LLMs. Then we will further discuss its limitations in RTL gen-
eration tasks. Suppose we have a training data dateset {𝑥𝑖 , 𝑦𝑖 } for
𝑖 = 1, ..., 𝑁 , where 𝑥𝑖 represents an design instruction, 𝑦𝑖 represents
the corresponding correct reference code. Each sample of data will
be split into a sequence of tokens by certain rules during the pre-
processing process. In this paper, we use 𝑥𝑖 =

{
𝑥𝑡
𝑖

}
and 𝑦𝑖 =

{
𝑦𝑡
𝑖

}
for 𝑡 = 1, 2, ...,𝑇 to represent the tokenized sequence.

LLMs generate a sequence by continuously predicting the next
token based on the already generated previous ones. For a decoder-
only language model, which is the mainstream LLM architecture,
the probability of producing the next token depends only on the
previous output tokens and the input instruction. We denote the
probability of generating the 𝑡-th token 𝑟𝑡 (𝑟𝑡 can be any single
token in the vocabulary) as 𝑃𝜋

(
𝑟𝑡 | 𝑥𝑖 , 𝑦<𝑡𝑖

)
where 𝜋 represents the

model parameters and 𝑦<𝑡
𝑖

denotes the already generated previous
tokens

{
𝑦1
𝑖
, .., 𝑦𝑡−1

𝑖

}
. Then the log probability of generating the

whole sequence can be written as:
∑𝑇
𝑡=1 log 𝑃𝜋

(
𝑦𝑡
𝑖
| 𝑥𝑖,, 𝑦<𝑡𝑖

)
.

In the existing trainingmethod, Maximum Likelihood Estimation
(MLE) is commonly used to find the best parameters 𝜋 that maxi-
mize the log probability. The training flow is shown in Figure 12(a).
The loss is usually defined as below:

𝑙𝑜𝑠𝑠𝑚𝑙𝑒 = −
𝑇∑︁
𝑡=1

log 𝑃𝜋
(
𝑦𝑡𝑖 | 𝑥𝑖,, 𝑦<𝑡𝑖

)
However, there exists a phenomenon named exposure bias [2, 15].
Since the above sequence generation is autoregressive, whichmeans
themodel always predicts the next token based on its own generated
previous ones 𝑟<𝑡

𝑖
rather than the reference tokens 𝑦<𝑡

𝑖
. Therefore,

even though the probability of producing 𝑦𝑡
𝑖
is high when given

𝑦<𝑡
𝑖

in the training, it can still result in a huge deviation from the
reference code in the generation process.

We have also observed this phenomenon in our experiments.
After the supervised training, the qualities of multiple generated
code candidates for the same instruction may diverse greatly in
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(a) Existing MLE training flow (b) Our training scheme based on quality score

Figure 12: Comparison between (a) existing MLE-based LLM training flow and (b) our proposed LLM training flow.

Algorithm 1 Training scheme using gradients splitting
Input: The single data sample

{
𝑥𝑖 , y𝑖 , z𝑖

}
. Model forward function

𝑠𝑖,𝑘 = 𝑓𝜋 (𝑥𝑖 , 𝑦𝑖,𝑘 , 𝑧𝑖,𝑘 ) . Loss calculation function 𝐿𝜋 (s𝑖 , z𝑖 ) . GPU
affordable batch size 𝐽 . Model parameters 𝑤.
Output: The derivative of the loss with respect to model parameters: 𝑔𝑖 .
1: Group the sample

{
𝑥𝑖 , 𝑦𝑖,𝑘

}
for 𝑘 = 1, 2, ..., 𝐾 into 𝑄 parts based on

batch size 𝐽 .
2: initialize empty vector list 𝑡𝑒𝑚𝑝 . Initialize the gradients 𝑔𝑖 = 0.
3: for 𝑞 ∈ 𝑄 do
4: Calculate 𝑠𝑖,𝑘 = 𝑓𝜋 (𝑥𝑖 , 𝑦𝑖,𝑘 , 𝑧𝑖,𝑘 ) , for 𝑘 ∈ 𝑞.
5: Empty the computation graph
6: Calculate 𝑙𝑜𝑠𝑠 = 𝐿𝜋 (s𝑖 , z𝑖 ) //s𝑖 =

{
𝑠𝑖,𝑘

}
for 𝑘 = 1, .., 𝐾

7: Backward process: 𝑡𝑒𝑚𝑝𝑘 = 𝜕 loss/𝜕𝑠𝑖,𝑘 , for 𝑘 = 1, ..., 𝐾
8: for 𝑞 ∈ 𝑄 do
9: Calculate 𝑠𝑖,𝑘 = 𝑓𝜋 (𝑥𝑖 , 𝑦𝑖,𝑘 , 𝑧𝑖,𝑘 ) , for 𝑘 ∈ 𝑞
10: Backward process: 𝑔𝑖 = 𝑔𝑖 +

∑
𝑘∈𝑞 𝑡𝑒𝑚𝑝𝑘𝜕𝑠𝑖,𝑘/𝜕𝑤

11: Empty the computation graph
12: Return 𝑔𝑖

the performance aspect. They can include correct code while at the
same time including many low-quality answers. Some candidates
exhibit serious nonsense duplication5.

To alleviate the exposure bias phenomenon, we suggest that in
addition to the reference code 𝑦𝑖 , the model’s generation should
also be considered in the training process. Since the generation may
be different from the reference code, it is necessary to introduce a
scoring mechanism to judge the quality of generated candidates.
We will give our detailed solution in Section 3.2.

3.2 Our Proposed Training Method
Our proposed training scheme is illustrated in Figure 12(b). For
each instruction, we will now collect multiple code candidates
generated by the initial pre-trained model. Then, we pack these
candidates and the original reference code𝑦𝑖 together as y𝑖 =

{
𝑦𝑖,𝑘

}
,

𝑘 = 1, 2, .., 𝐾 , where 𝐾 represents the number of generated code
for one instruction. Next, all these candidates will be scored by
the scoring mechanism 𝑅(𝑥𝑖 , 𝑦𝑖,𝑘 ) which could be a syntax checker
or unit test for functionality check. We will then obtain a set of
score z𝑖 =

{
𝑧𝑖,𝑘

}
, 𝑘 = 1, 2, .., 𝐾 , denoting the quality for the code

sample {𝑦𝑖,𝑘 }. In the training process, we aim to make the model
learn to assign relatively higher generation probabilities to answers
with higher scores. In this way, the model not only learns from the
reference code, but also from the new information introduced by
the quality score feedback.

5We notice that this duplication couldn’t be simply dealt with by adding repetition
penalty to the decoding process like other works in natural text generation. Because
some correct RTL design code also contain similarly repetitive expressions.

The conditional log probability (length-normalized) of generat-
ing the entire code 𝑦𝑖,𝑘 is commonly written as:

𝑝𝑖,𝑘 =

∑
𝑡 log 𝑃𝜋

(
𝑦𝑡
𝑖,𝑘

| 𝑥𝑖 , 𝑦<𝑡𝑖,𝑘
)

𝑦𝑖,𝑘



We calculate 𝑝𝑖,𝑘 for all code candidates y𝑖 =
{
𝑦𝑖,𝑘

}
, 𝑘 = 1, 2, .., 𝐾 ,

then we normalize these 𝑝𝑖,𝑘 values using a 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function,
defining the probability of each code being selected as:

𝑠𝑖,𝑘 =
𝑒𝑝𝑖,𝑘∑𝐾
𝜏=1 𝑒

𝑝𝑖,𝜏

This 𝑠𝑖,𝑘 reflects the model’s tendency to output the 𝑘th code candi-
date, with higher probabilities indicating a greater likelihood that
the model will generate it.

To encourage the model to assign higher probability scores to
high-quality code, we can define a new loss function term as:

𝑙𝑜𝑠𝑠𝑐𝑜𝑚𝑝𝑎𝑟𝑒 =
∑︁

𝑧𝑖,𝑘<𝑧𝑖,𝜏

𝑚𝑎𝑥
(
𝑠𝑖,𝑘 − 𝑠𝑖,𝜏 + 𝜆, 0

)
where 𝜆 is a threshold value.

To provide an intuitive explanation of this loss function term,
we provide a simple example. Suppose we have the 𝑖th instruction
and only two code candidates with initial selection probability 𝑠𝑖,1
and 𝑠𝑖,2 with 𝑠𝑖,1 + 𝑠𝑖,2 = 1 and 𝑠𝑖,1 > 𝑠𝑖,2. But the first candidate has
a lower quality score, i.e., 𝑧𝑖,1 < 𝑧𝑖,2. Then the positive loss would
drive model parameters to update until the model assigns a new
set of 𝑠∗

𝑖,1 and 𝑠
∗
𝑖,2 so that 𝑠∗

𝑖,2 − 𝑠
∗
𝑖,1 ≥ 𝜆 is satisfied.

It is worth noting that this loss only depends on the relative
scores among multiple code candidates, so it can still be used when
answer quality cannot be precisely quantified. Finally, We define
the total loss as:

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑙𝑜𝑠𝑠𝑚𝑙𝑒

3.3 Reduced Memory by Splitting Gradients
Directly calculating our new 𝑙𝑜𝑠𝑠 function even with 1 batch size
would still require forwarding all code candidates in a sample at
once to maintain all the activation values. This will lead to the
𝑂 (𝐾) space complexity and make the GPU memory consumption
prohibitively high in many large language model training scenarios.

We propose a gradient-splitting approach for model training
based on quality score from an algorithm perspective. It can achieve
a𝑂 (1) space complexity as illustrated in Algorithm 1. The gradients
of 𝑙𝑜𝑠𝑠 with respect to𝑤 can be computed as below:

𝜕 loss
𝜕𝑤

=
∑︁
𝑘

𝜕 loss
𝜕𝑠𝑖,𝑘

𝜕𝑠𝑖,𝑘

𝜕𝑤

The property of the chain rule indicates that we can decompose
the gradient updates into several parts. Assume 𝐽 is the maximum
allowable batch size for GPU consumption. We divide the 𝐾 can-
didates into 𝑄 groups based on the batch size 𝐽 . Firstly, we pass
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these groups through the forward function separately and collect
the obtained s𝑖 values as lines 1-5 illustrate. In the second step,
we calculate the loss function and compute the derivative of the
loss with respect to s𝑖 in lines 6-7, storing the temporary results in
vector 𝑡𝑒𝑚𝑝 . In the third step, we perform the forward operation
on the original 𝑄 groups again and for each forward operation, the
obtained 𝑠𝑖,𝑘 is multiplied by 𝑡𝑒𝑚𝑝𝑘 in a dot product, followed by a
backward pass to accumulate the gradient in lines 9-12.

4 EXPERIMENTAL RESULTS
4.1 Evaluation Benchmark and Metric
To evaluate the performance of Verilog code generation, there are
two representative benchmarks VerilogEval [14] and RTLLM [16].

The VerilogEval [14] benchmark consists of two parts, EvalMa-
chine and EvalHuman, each including more than 100 RTL design
tasks. We follow the original paper [14] and use the widely-adopted
𝑝𝑎𝑠𝑠@𝑘 metric in code generation tasks:

pass@k = 𝐸𝑖

(
1 −

𝐶𝑘𝑛−𝑐𝑖
𝐶𝑘𝑛

)
where𝑛 is the total number of trials for each instruction and 𝑐𝑖 is the
number of correct code generations for task 𝑖 . We set 𝑛 = 20 in this
experiment. If any code in the 𝑘 trials could pass the test, then this
task is considered to be addressed and the 𝑝𝑎𝑠𝑠@𝑘 metric reflects
the estimated proportion of design tasks that could be solved.

The updated version of RTLLM V1.1 [16] benchmark contains 29
RTL design tasks at a larger design scale. It has fixed some problems
in the original RTLLM V1.0. We mostly follow the testing method in
the original paper [16], but further proposes two slightly different
metrics for evaluating syntax correctness, using either Synopsys
VCS [23] or Design Compiler [22]. They are denoted as Syn-VCS
and Syn-DC, respectively. 1) For the Syn-VCS metric, VCS not only
requires the design to comply with the Verilog syntax rules, but
also requires that the interface of the design correspond to the
testbench, so that the circuit can be simulated. 2) For the Syn-DC
metric, DC requires the design to be physically synthesizable. The
functionality result is obtained by VCS simulation. We calculate
the scores of the design syntax part and design functionality part
separately. In both parts, following the original benchmark [16],
each task is counted as success as long as any of 5 trials passes
the test. This can be interpreted as pass@5 metric. The experiment
result of the older version RTLLM V1.0 is also provided only for
reference. We suggest our readers only use the result of RTLLM
V1.1 instead of V1.0 for comparison.

In the generation process, we set 𝑡𝑜𝑝𝑝 = 0.95 and 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 =
{0.2, 0.5, 0.8}. For all tested models (i.e., baselines, RTLCoder, and
ablation studies), we evaluate all 3 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 conditions and
report the best performance for each model.

4.2 Examine Training Set for Fair Evaluation
To ensure a fair evaluation of our proposed RTLCoder, before
training, we explicitly examined the similarity between samples
in our proposed training dataset and those test cases in bench-
marks [14, 16], then we get rid of our training samples that are
similar to test cases during the training process.

Figure 13: Training dataset analysis. (a) Tokens number dis-
tribution of instruction and code part. (b) Similarity measure-
ment between training dataset and two benchmarks based
on Rouge-L metric.

To measure the similarity between two text sequences, we em-
ployed the Rouge-L metric, which is a widely-used similarity cal-
culation scheme in the LLM domain such as by OpenAI [19]. The
Rouge-L score ∈ [0, 1], with values closer to 1 indicating higher
similarity between the two sequences. For each instruction-code
concatenated sample in the training dataset, we computed its Rouge-
L value with all test cases in the benchmarks. In addition, we also
separately analyzed the distribution of token counts for instructions
and code in the dataset. The resulting statistic is in Figure 13.

From Figure 13 (a), we can see that a sample that consists of one
instruction and one code candidate is generally within 2048 token
length. So we can set 2048 as the max length in our finetuning. In
Figure 13 (b), we observed that the majority of training samples
in the dataset have a low overlap compared with the benchmark,
with Rouge-L scores < 0.3. However, there are still a small number
of samples with higher similarity. To ensure fair evaluation of the
RTLCoder, we get rid of training samples with Rouge-L values > 0.5
during training.

4.3 Model Training
Based on our generated dataset with 27K instruction-code pairs, we
choose the latest Mistral-7B-v0.1 [9] and DeepSeek-Coder-6.7b [7]
as the basic pre-trained model for finetuning. In all experiments,
we opted for the Adam optimizer with 𝛽1 = 0.9, 𝛽2 = 0.999, and
learning rate 𝛾 = 1e-5, while abstaining from the use of weight
decay. Concurrently, we established a context length of 2048 and a
global batch size of 256. We trained the model on only 4 consumer-
level RTX 4090 GPUs (24GB each), each of which could only afford
2 × 2048 context length using DeepSpeed stage-2 [21]. Under the
hardware constraint, the training is impossible without the pro-
posed gradient-splitting method.

To implement our proposed training scheme, we first generated
3 code candidates for each instruction using the pre-trained model
with the Beam search method. Then we use Pyverilog [24] as the
syntax checker to score the code candidates. Specifically, we as-
signed a full score (i.e., 1) for the reference code from the dataset
and those candidates who can pass the syntax check. For those who
failed syntax checks, we used the Rouge-L metric to assign the code
similarity between the candidate and reference code as its score.

In addition, considering GPU memory consumption is a crucial
factor that limits the applicability of LLMs, based on quantization
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Model Type Evaluated Model
Num of

VerilogEval Benchmark [14] RTLLM V1.0 [16] RTLLM V1.1 [16]⊛

Params
(using pass@k metric) (using pass@5 metric) (using pass@5 metric)

Eval-Machine (%) Eval-Human (%) Syntax (%) Func (%) Syntax-VCS(%) Func (%)
k=1 k=5 k=10 k=1 k=5 k=10

Closed-Source GPT-3.5 N/A 46.7 69.1 74.1 26.7 45.8 51.7 63.0 33.0 89.7 37.9

Baseline GPT4 N/A 60.0 70.6 73.5 43.5 55.8 58.9 87.0 50.0 100 65.5
ChipNeMo★ [13] 13B 43.4 N/A N/A 22.4 N/A N/A N/A N/A N/A N/A
VerilogEval★ [14] 16B 46.2 67.3 73.7 28.8 45.9 52.3 N/A N/A N/A N/A

Open-Source Codegen2 [18] 16B 5.00 9.00 13.9 0.90 4.10 7.25 46.7 5.77 72.4 6.90

Baseline Starcoder [11] 15B 46.8 54.5 59.6 18.1 26.1 30.4 30.0 16.7 93.1 27.6
Thakur et al. [25] 16B 44.0 52.6 59.2 30.3 43.9 49.6 40.0 16.7 86.2 24.1

Base Model
Mistral-7B-v0.1 [9] 7B 36.9 48.8 57.4 4.49 12.6 18.6 76.7 10.0 72.4 20.7

DeepSeek-Coder-6.7b [7] 6.7B 54.1 63.8 67.5 30.2 42.2 46.2 72.4 13.8 89.6 34.5

Less Training Data RTLCoder-Mistral-10k 7B 56.5 66.6 69.4 31.7 42.2 46.5 83.3 36.7 86.2 34.5
(10K Samples) RTLCoder-DeepSeek-10k 6.7B 55.3 70.4 76.2 36.7 47.0 50.4 80.0 30.0 79.3 37.9

Direct Training
RTLCoder-Mistral-Direct 7B 58.9 70.0 74.1 34.4 42.3 45.1 86.7 33.3 89.7 41.4

RTLCoder-DeepSeek-Direct 6.7B 59.8 73.6 77.2 39.1 48.3 51.3 86.7 36.7 86.2 44.8

RTLCoder

RTLCoder-Mistral-4bit 7B * 4bit 59.5 72.2 76.9 33.8 42.3 47.1 90.0 33.3 86.2 41.4
RTLCoder-DeepSeek-4bit 6.7B * 4bit 56.5 73.2 78.4 37.5 50.5 55.5 86.7 26.7 93.1 37.9

RTLCoder-Mistral 7B 62.5 72.2 76.6 36.7 45.5 49.2 90.0 40.0 96.6 48.3
RTLCoder-DeepSeek 6.7B 61.2 76.5 81.8 41.6 50.1 53.4 86.7 40.0 93.1 48.3

★We cannot evaluate VerilogEval [14] and ChipNeMo [13] on RTLLM Benchmark [16] due to the unavailability of closed-source models. We fully understand and respect the
authors’ privacy concerns. The accuracy values of VerilogEval [14], ChipNeMo [13], GPT-3.5, and GPT-4 on the VerilogEval Benchmark [14] are directly cited from the original
publication [14]. Please also notice that the authors [14] revised their reported GPT-4 accuracy on Dec 10th, 2023, fixing prior measurement errors. We used their latest values.
⊛ In this table, we report Syn-VCS as the syntax metric of RTLLM V1.1. As for the previous RTLLM V1.0, the syntax metric was not precisely defined. We suggest our readers
only use the measurement result of RTLLM V1.1 instead of V1.0 for comparison. Therefore, top results for RTLLM V1.0 is not annotated in color.

Table 2: Performance comparison of RTL code generators on VerilogEval Benchmark [14] and RTLLM Benchmark [16].
The top scores ranked 1st, 2nd, and 3rd in each column are marked in Green , Blue , and Red , respectively. RTLCoder
outperforms GPT-4 on EvalMachine of [14]. It is only second to GPT-4 on the other benchmarks, including EvalHuman of [14]
and RTLLM [16], outperforming GPT-3.5 and all others.

Figure 14: Visualization of key accuracy comparisons from
Table 2, selecting pass@1metric on EvalMachine and EvalHu-
man of [14]. RTLCoder includes both RTLCoder-Mistral and
RTLCoder-DeepSeek. The baseline models include Thakur
et al. [25], ChipNeMo [13] and VerilogEval [14].

methodologies [5], we further quantize the parameters of the ob-
tained RTLCoder into 4 bits, generating RTLCoder-DeepSeek-4bit
and RTLCoder-Mistral-4bit, consuming only 4GB memory.

4.4 Experiment Results Overview
Table 2 summarizes the comparison of all relevant RTL genera-
tion solutions, including commercial models GPT3.5/GPT4, models
customized for Verilog generation [14, 25], software code gener-
ators [9, 11, 18], our proposed RTLCoder and quantized version
RTLCoder-4bit, and ablation studies of RTLCoder. In addition, we
further visualize key results on VerilogEval benchmark in Figure 14.

In the VerilogEval benchmark [14], for both EvalHuman and
EvalMachine categories, RTLCoder-DeepSeek scores 61.2 and 41.6
respectively. It clearly outperforms GPT-3.5 and is only inferior to
GPT-4 among all the models in EvalHuman. Specifically, in the Eval-
Machine part, RTLCoder-DeepSeek and RTLCoder-Mistral even
outperforms GPT4 by an absolute value of 1.2% and 2.5%. A sim-
ilar trend can be observed in the RTLLM benchmark V1.1 [16].
RTLCoder is also second only to GPT-4. In summary, RTLCoder
outperforms GPT-3.5 and all non-commercial baseline models in all
metrics on both benchmarks. It is surprising that the lightweight
RTLCoder with only 7 billion parameters could achieve such im-
pressive accuracy despite its smaller size.

Furthermore, we validate the effectiveness of our proposed dataset
and algorithm through an ablation study. The RTLCoder-Mistral-
Direct and RTLCoder-DeepSeek-Direct are directly trained with
the existing method mentioned in Figure 12(a). Using our training
dataset, they can already significantly outperform the base model
and even GPT-3.5 on part of these indexes. Then the RTLCoders
trained with our proposed training scheme further outperform
those using Direct training method on all benchmarks, indicat-
ing that our training method greatly further improves the model
performance.

In addition, although the quantized model RTLCoder-DeepSeek-
4bit shows a slight performance degradation compared to the origi-
nal model, it is still superior to GPT-3.5 on the VerilogEval bench-
mark and comparable to it on RTLLM V1.1 with only 4GB size. Such
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Table 3: Detailed Syntax and Functionality Evaluation Results using sampling generation method in RTLLM V1.1 [16]

Design GPT-3.5 GPT-4 Thakur et al. [25] StarCoder[11] RTLCoder-4bit RTLCoder
Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func

accu 2 2 ✔ 5 5 ✔ 4 4 ✘ 3 4 ✘ 5 5 ✘ 4 4 ✘

adder_8bit 3 3 ✔ 4 4 ✔ 3 3 ✔ 2 4 ✘ 5 5 ✔ 5 5 ✔

adder_16bit 1 0 ✘ 3 3 ✔ 3 4 ✘ 2 3 ✘ 0 0 - 3 3 ✘

adder_32b 0 0 - 2 2 ✔ 1 0 ✘ 1 3 ✘ 1 0 ✘ 1 0 ✘

adder_pipe_64b 5 5 ✘ 5 5 ✔ 0 0 - 0 0 - 1 1 ✘ 3 2 ✘

multi_booth_8b 5 2 ✘ 5 5 ✘ 3 3 ✘ 4 3 ✘ 5 5 ✔ 5 5 ✔

multi_16b 5 0 ✔ 5 5 ✔ 3 3 ✘ 3 4 ✘ 4 2 ✘ 5 5 ✔

multi_pipe_4b 0 0 - 2 2 ✘ 1 0 ✘ 3 1 ✘ 4 1 ✘ 2 0 ✘

multi_pipe_8b 2 0 ✘ 5 5 ✘ 3 1 ✘ 2 3 ✘ 0 0 - 2 0 ✘

div_8bit 3 1 ✘ 5 1 ✘ 0 1 - 3 0 ✘ 3 1 ✘ 4 1 ✘

div_16bit 4 0 ✘ 5 4 ✔ 1 2 ✘ 1 1 ✘ 0 0 - 0 0 -

JC_counter 5 5 ✘ 5 5 ✘ 3 3 ✘ 4 5 ✘ 5 5 ✔ 5 4 ✔

right_shifter 4 4 ✔ 5 5 ✔ 0 2 - 3 3 ✔ 5 5 ✔ 5 5 ✔

synchronizer 5 5 ✔ 4 4 ✔ 4 4 ✔ 5 5 ✔ 4 4 ✔ 5 5 ✔

counter_12 5 5 ✔ 5 5 ✔ 2 4 ✔ 2 4 ✔ 5 5 ✔ 5 5 ✔

freq_div 5 5 ✔ 5 5 ✔ 4 4 ✔ 4 4 ✘ 5 5 ✔ 5 3 ✔

signal_gen 5 5 ✔ 5 5 ✔ 4 5 ✘ 4 4 ✘ 5 5 ✘ 5 5 ✘

serial2parallel 4 4 ✘ 5 5 ✔ 4 4 ✘ 4 4 ✘ 5 3 ✘ 5 3 ✘

parallel2serial 2 2 ✘ 5 5 ✘ 1 2 ✘ 3 4 ✔ 3 3 ✘ 3 2 ✔

pulse_detect 4 4 ✘ 5 3 ✘ 4 3 ✘ 3 3 ✘ 5 5 ✘ 2 2 ✘

edge_detect 5 5 ✔ 5 5 ✔ 4 5 ✔ 3 4 ✔ 4 2 ✔ 5 4 ✔

FSM 5 4 ✘ 5 2 ✘ 4 4 ✘ 5 5 ✘ 4 4 ✘ 5 5 ✘

width_8to16 4 3 ✔ 5 5 ✔ 4 1 ✔ 3 4 ✘ 5 5 ✔ 5 4 ✔

traffic_light 4 0 ✘ 4 3 ✔ 5 2 ✘ 5 3 ✘ 4 0 ✔ 4 3 ✔

calendar 5 5 ✘ 5 5 ✔ 2 1 ✘ 5 4 ✔ 1 0 ✘ 5 5 ✘

RAM 4 0 ✔ 5 2 ✔ 5 5 ✔ 2 0 ✔ 3 0 ✔ 3 0 ✔

asyn_fifo 0 0 - 3 2 ✘ 0 0 - 0 0 - 0 2 - 1 3 ✘

ALU 2 0 - 5 4 - 2 2 ✘ 1 0 ✘ 2 1 ✘ 1 0 ✘

PE 5 5 ✔ 5 5 ✔ 3 3 ✘ 3 5 ✔ 1 1 ✔ 5 5 ✔

Success rate 89.7% 65.5% 11/29 100% 100% 19/29 86.2% 86.2% 7/29 93.1% 82.8% 8/29 86.2% 75.9% 12/29 96.6% 79.3% 14/29

(a) EvalMachine syntax (b) EvalMachine functionality

(c) EvalHuman syntax (d) EvalHuman functionality

Figure 15: Detailed syntax and functionality results of
RTLCoder-Mistral on VerilogEval Benchmark [14], reporting
EvalMachine and EvalHuman separately. Each sub-figure has
8 columns, and thus cell at (𝑖, 𝑗) represents the (( 𝑗−1)×8+𝑖)th
task. The color of each cell indicates the count of correct cases
among 20 trials. EvalMachine contains 143 tasks, so the last
1 cell is empty. EvalHuman contains 156 tasks, so the last 4
cells are empty.

RTLCoder-4bit can work on a simple laptop, allowing it to serve as
a local assistant for engineers, addressing privacy concerns.

Compared with the old version RTLCoders trained on a 10K
training samples, new version RTLCoders trained on a 27K dataset
are clearly superior on all metrics. Increasing the size of the training
dataset and enhancing its diversity clearly further improve the
model performance.

Finally, we can see that the choice of the pretrained model also
has a significant impact on the performance of the finetuned model.
On one hand, RTLCoder-DeepSeek slightly outperforms RTLCoder-
Mistral in accuracy on most benchmarks. This trend is consistent
with the base model’s relative accuracy (i.e., DeepSeek outperforms
Mistral in most benchmarks). On the other hand, the inference
speed of RTLCoder-Mistral is considerably faster than RTLCoder-
DeepSeek, largely because of the Grouped Query Attention and
Rolling Buffer KV Cache techniques used in Mistral.

4.5 Experiment Results in Detail
To further examine the performance in detail, for both bench-
marks [14, 16], we report RTLCoder’s performance on each in-
dividual design case in both syntax and functionality correctness.

We list the test results of RTLCoder-Mistral and available base-
line models on the RTLLM V1.1 benchmark for each design task in
Table 3. Given 5 trials of generation, here we counted the number
of passed cases in terms of Syn-VCS, Syn-DC, and Functionality. As
introduced, for both syntax and functionality, we count one success
if any of the 5 trials pass the test. Generally, Syn-VCS is easier to
pass than Syn-DC.

We further inspect the wrong answers in Table 3. We observed
that the overall code structures of wrong answers from GPT-3.5,
GPT-4, and RTLCoder-Mistral exhibit no obvious mistakes, despite
the functionality incorrectness. In comparison, the code gener-
ated by other open-source baselines occasionally contains obvi-
ously redundant content or deviates considerably from the given
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Table 4: Ablation study of different decoding methods in
RTLLM V1.1 Benchmark [16]. The result of the sampling
decoding method is adopted and reported in the Table 2.

Model
Sampling decoding Beam search decoding
[used in experiment] [for ablation study]

Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func
Thakur et al. [25] 86.2 86.2 24.1 69.0 51.7 17.2
StarCoder[11] 93.1 82.8 27.6 58.6 58.6 17.2

RTLCoder-Mistral-4bit 86.2 75.9 41.4 75.9 65.5 31.0
RTLCoder-Mistral 96.6 79.3 48.3 75.9 72.4 37.9

description. In terms of syntax, we observed that both GPT and
RTLCoder-Mistral frequently assign 0 directly to two-dimensional
arrays, resulting in syntax errors. Regarding functionality, we no-
ticed that for more complex combinational logic circuits such as
multi_pipe_4bit and multi_pipe_8bit, and sequential logic circuits
like pulse_detect and FSM, some of the logical behaviors described
in the instructions are not adequately captured by all LLM solutions,
leading to functional errors.

The RTLCoder-Mistral’s results on VerilogEval Benchmark are
reported in Figure 15. Each cell in the image represents one design
case, with color indicating the number of successful ones among
all 20 trails. There are 8 columns in each image. The location of cell
(𝑖, 𝑗) represents the (( 𝑗 − 1) × 8 + 𝑖)th design case in the provided
description file. So we used white cells to fill the cells in the last
row (18th row for EvalMachine and 20th row in the EvalHuman)
that do not correspond to a design task.

During the process of generating text sequences, the model con-
tinuously repeats the behavior of predicting the next token. For all
models in our experiment, we adopt the sampling method, which
randomly selects the next token from the vocabulary dictionary
based on the probability distribution. Here we further add an ab-
lation study based on the beam search method. A beam of the top
"beam size" sub-sequences with the highest generation probabili-
ties is maintained and updated during the generation process. We
conduct experiments using beam search method with a beam size
5 on RTLLM V1.1 for RTLCoder-Mistral and open source baselines.
The results are shown in Table 4. The accuracies of all methods
drop after adopting beam search. RTLCoder-Mistral is still superior
to all the open-source baselines with beam search.

5 CONCLUSION
This work proposes a new LLM solution named RTLCoder for RTL
code generation, achieving state-of-the-art performance in non-
commercial solutions and outperforming GPT-3.5. We contribute
a new data generation flow and a complete dataset with over 27
thousand labeled samples, addressing the serious data availability
problem in hardware-design-related tasks. Also, we contribute a
new training scheme based on design quality scoring. It greatly
boosts the model performance. Importantly, RTLCoder will be fully
open-sourced. RTLCoder’s lightweight property and low hardware
barrier allow anyone to easily replicate and further improve based
on our existing solution. We expect more brilliant LLM-based solu-
tions in this agile hardware design direction.
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