
PROPHET: Predictive On-Chip Power Meter in
Hardware Accelerator for DNN

Jian Peng
Hong Kong University of
Science and Technology
jpengai@connect.ust.hk

Tingyuan Liang
Hong Kong University of
Science and Technology
tliang@connect.ust.hk

Zhiyao Xie
Hong Kong University of
Science and Technology

eezhiyao@ust.hk

Wei Zhang
Hong Kong University of
Science and Technology

wei.zhang@ust.hk

Abstract—On-chip power meters play a critical role in power
management by generating timely and accurate power traces at
runtime. However, both performance-counter-based and existing
RTL-based on-chip power meters have difficulty in providing
sufficient response time for fast power and voltage management
scenarios. Additionally, they can be costly to implement for
large-scale DNN accelerators with many homogeneous pro-
cess elements. To address these limitations, this paper pro-
poses PROPHET, a data-pattern-based predictive on-chip power
meter targeting multiply-accumulate-based DNN accelerators.
By sampling pre-defined data patterns during memory access,
PROPHET can predict power consumption before it actually hap-
pens. In our experiments, PROPHET predicts power consump-
tion dozens of clock cycles in advance, with a temporal resolution
of 4 clock cycles and NMAE < 7% and area overhead < 2%
for various systolic-array-based DNN accelerators. PROPHET
has the potential to enable fine-grained power management and
optimization for large-scale DNN accelerators, improving their
energy efficiency.

Index Terms—pattern-based, power prediction, on-chip power
meter, DNN accelerator

I. INTRODUCTION

Efficient power management is indispensable for attaining
high energy efficiency and guaranteeing the system stability
of modern hardware design. In power management, on-chip
power meters (OPMs) play a critical role by providing accurate
and timely power traces. However, the specific requirements
for OPMs may vary, depending on the intended application.
For example, dynamic voltage and frequency scaling (DVFS),
which is managed by the system firmware and/or operating
system (OS), only requires coarse-grained temporal resolution
in power tracing. In contrast, techniques for fast power man-
agement, voltage boosting, and voltage drop mitigation require
fine-grained temporal resolution and short response time. For
example, dynamic LdI/dt voltage noise effects can develop
within 20 nanoseconds in modern computing architectures [1].

Previous studies have presented power models using per-
formance counters for coarse-grained power tracing, target-
ing DVFS and temperature-suitability management. Recently,
some automatic frameworks have been proposed to construct
RTL-based OPMs with low overhead and fine-grained tempo-
ral resolution. For instance, the PowerProbe proposed in [2]
can achieve temporal resolution at the level of tens of cycles.
Simmani [3] and APOLLO [1] can further achieve per-cycle
resolution for microprocessors. However, these RTL-based
OPMs can be costly to implement on DNN accelerators, as

they will select proxies from all the homogeneous processing
elements, some of which are repeated.

Moreover, even with per-cycle temporal resolution, OPMs
may still not leave sufficient response time for timely power
management in some scenarios. For example, for voltage
emergency mitigation in single-core CPUs, unsuppressed volt-
age emergencies dramatically increase when the feedback loop
delay is greater than one cycle [4]. Therefore, proactive voltage
management based on architectural events has been proposed
for voltage noise smoothing and voltage emergency mitigation
[4], [5]. However, these prediction models can only predict
whether an emergency will occur, rather than providing an
accurate power trace that enables more detailed guidance to
proactive management strategies.

To bridge this gap, this paper proposes a novel data-
pattern-based OPM for float-point DNN accelerators named
PROPHET. We identified some patterns with strong corre-
lation with power consumption. By sampling them during
memory access, we successfully predict upcoming power
consumption dozens of clock cycles in advance. Compared
with previous works that select proxies from RTL signals or
performance counters, our proposed power model can achieve
accurate power prediction with low overhead. Experiments on
systolic-array-based DNN accelerators have demonstrated our
model’s accuracy and fine-grained prediction capabilities. Our
contributions are summarized below.

• We propose PROPHET, a fine-grained predictive power
model for DNN accelerators that enables improved power
management and increased energy efficiency. To our
best knowledge, PROPHET is the first predictive power
model for DNN accelerators. PROPHET achieves power
prediction in advance by sampling target data patterns
during memory access.

• The target data patterns captured by PROPHET can
accurately reflect the power consumption of multiply-
accumulate-based DNN accelerators. This observation
also applies to other DNN accelerators with a regular
PE array and the multiply-accumulate (MAC) structure.

• PROPHET achieves low-overhead and high-performance
at the same time. The area and power overhead of
PROPHET are lower than 2% in our experiments, and
the temporal resolution can achieve 4 clock cycles with
MAE < 7%.

L1 Buffer Data
Reshape

WEI Buffer

N x M x K
PE arry

OUT
Buffer

IF Buffer

Sliding Window and Accumulation

Trained Power
Model

Predict Power in
Advance

Signal State as Patterns

......

Logic Tree for Sampling

=0?

Row 0

=0?

=0?

Row 0

=0?

=0?

Row 0

=0?

Fig. 1: PROPHET predicts the runtime power in DNN ac-
celerators. The red block is PROPHET on write ports of the
input-feature (IF) buffer. And the blue block is PROPHET on
read ports. Both power models have the same structure.

II. RELATED WORKS

A. On-chip Power Meters

Prior research has investigated the use of performance
counters to estimate the power consumption during runtime
for both CPU and GPU architectures [6]–[9]. In these studies,
micro-architecture events such as cache misses and the number
of retired instructions are counted within each power measure-
ment window, which typically spans several thousand cycles.
A regression model is then trained to estimate the average
power consumption within each measurement window based
on the event count. Nonetheless, these models are typically
utilized in coarse-grained management scenarios and lack
flexibility due to limited access to certain event counters.

In recent years, some RTL-based runtime power models
have been proposed for fast power managements by achieving
high temporal resolution [1]–[3], [10]–[12]. They select the
most power-correlated RTL signals, named power proxies, as
the power model input. Notably, PowerProbe [2] can construct
the on-chip power meters with a temporal resolution of 100-1K
clock cycles, while maintaining the resource overhead of less
than 8%. Simmani [3] achieves per-cycle temporal resolution
for the Rocket RISC-V microprocessor but utilizes over 500
proxies, resulting in significant overhead. State-of-the-art solu-
tions like APOLLO [1] can construct the OPM with per-cycle
temporal resolution and less than 1% overhead. However, these
methods are primarily designed for architectures with complex
control flow and may not be suitable for data-streaming-based
DNN accelerators. Moreover, their response time may still be
insufficient for advanced power management techniques.

B. Voltage Management

Over the past two decades, many techniques have been
proposed for managing supply voltage to maintain the system
stability, including voltage emergency mitigation [4], [13] and
voltage noise smoothing [5], [14]. There is a strong connection
between power fluctuations and inductive voltage fluctuations.
The works of [4], [15] proposed to predict the voltage emer-
gency based on the micro-architecture events and take actions

DNN
Accelerator
 RTL Design

Synthesis and
Layout

Gate-level
Simulation

Power
Simulation

Power Trace

Arch Info

Extract
Patterns

Define Patterns

Dataset

Linear
Regression

DNN Data

Trained Power
Model

On-chip Power
Meter

Fig. 2: The overall development framework of PROPHET.

proactively. The works of [5], [14] applied a fine-grained OPM
to monitor the power fluctuation to smooth the voltage noise.
However, due to the processing delay of OPM and feedback
loop delay from OPM to the power management unit, the
insufficient responding time left for the voltage management
is still the bottleneck to be addressed.

To provide accurate and timely power trace for fast power
management, we propose PROPHET, the first predictive and
fine-grained on-chip power meter for DNN accelerators. As
Fig. 1 shows, PROPHET can be implemented either on the
feature buffers’ write ports or read ports, where the sampling
logic trees consisting of comparators and AND gates can
extract pre-defined data patterns during memory access. These
data patterns are then accumulated using a small sliding power
measurement window to construct the input vector, enabling
high temporal resolution. Finally, the power consumption
value can be calculated using the off-line trained parameters
and the sampled input vector. Since these sampling and
calculation processes require only a few clock cycles, predict-
ing power consumption in advance is possible by observing
memory access patterns. Table I summarizes recent power
modeling methods. Compared to previous power modeling
methods, PROPHET can predict the power waveform dozens
of clock cycles before it happens in an accurate, fine-grained,
and low-cost way.

Method Type Resolution Cost Predictive
[6]–[9] event counters ≥ 1K cycles low %

[2], [10], [11]
signal proxies

≥ 100 cycles 5 ∼ 15%
%[3] per-cycle > 100%

[1], [12] per-cycle < 1%

PROTHET data patterns ≥ 4 cycles 1 ∼ 2% ✓

TABLE I: Comparison among various power models

III. METHODOLOGY

A. Overall Framework of PROPHET

Fig. 2 shows the PROPHET development framework. It first
conducts accurate power simulations with input data of DNN
model to gather ground-truth power traces. Simultaneously,
our proposed data patterns are extracted from these input
data. These patterns have a strong correlation with the power

Symbol Description
N Rows of PE array(feature input)
M Columns of PE array(weight input)
K Input (feature, weight) pairs in each PE
L Length of local PE pipeline
G The number of combinational logics in multiplier or adder
W Number of cycles in sliding window
Nsw The number of sub-windows in sliding window
R Temporal resolution of power model

TABLE II: Description of frequently used symbols.

consumption of the specific systolic array architecture. The
details of our data pattern definitions will be presented in
Subsection III-B. Next, the extracted data patterns are com-
bined with the power traces to create the dataset for the
subsequent stage of power model training. The details of this
dataset extraction and sampling procedure will be discussed in
Subsection III-C. Finally, since our on-chip power meter uses
data patterns as input, it can be implemented at the write ports
of the input buffer to predict the power consumption of the
DNN accelerator dozens of cycles in advance. Alternatively,
the power meter at the read ports of the input buffer can
estimate the run-time power. The difference between the two
designs is discussed in detail in Subsection III-D.

B. Define Data Patterns

Data patterns refer to the various combinations of input
data into logic gates that result in different dynamic power
consumption. In DNN algorithms, the activation functions,
particularly the commonly-used ReLU function, tend to intro-
duce sparse data into the feature map of intermediate layers by
generating zero outputs. We have discovered that the zeros in
the PE arrays’ inputs significantly impact the entire system’s
dynamic power consumption. The work of [16] has demon-
strated that the sparsity of input feature maps can be a pattern
to predict the workload for several milliseconds. However,
such sparsity level can only reflect the power consumption
in coarse-grained temporal resolution. Therefore, it is still
necessary to identify more data patterns for fine-grained power
modeling to construct the power model for timely voltage
management.

As illustrated in Fig. 3, systolic array-based DNN accel-
erators comprise an N × M × K array with homogeneous
PEs. In each PE, K multipliers and K adders can perform
multiple-accumulate operations for matrix multiplications. The
arithmetic units in the PE can be abstracted as a combination
of combinational logic gates G and registers. The dynamic
power consumption of the entire DNN accelerator during the
time window T can be represented by Eq. 1. Pdyn m and
Pdyn a are the dynamic power of multipliers and adders,
respectively. Pother is the power consumption generated by
other components, such as memory, register, and local control
logic, which are less affected by the input data. Thus, Pother

can be approximated as a constant. The two input data
of adders/multipliers are denoted as a and b. The average
dynamic power consumption of multipliers and adders over
the time window T can be formulated as Eq. 2 and Eq. 3,
respectively. Here, αg(a, b) represents the toggle rate of the

... ...

Weight (M)

...

PE

K

Internal structure

...

a b

logic gates

logic gates

...

In
pu

t F
ea

tu
re

(N
)

...

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

...

...

...

PE array

...

...

Fig. 3: The hierarchical structure of a typical PE array.

combinational logic g with respect to the input data (a, b) of
the multiplier or adder, and Cg denotes the average capacitance
of the combinational logic g. The toggle rate αg(a, b) follows
a certain distribution αg(a, b) ∈ Dg(a, b).

Pdyn = Pdyn m + Pdyn a + Pother (1)

Pdyn m ∝
T∑

(

N∑ M∑ K∑ G1∑
g1

1

2
V 2αg1(a, b)Cg1)/T (2)

Pdyn a ∝
T∑

(

N∑ M∑ K∑ G2∑
g2

1

2
V 2αg2(a, b)Cg2)/T (3)

Premises: Since zero values in input have a deterministic
impact on power consumption, we can categorize the data
patterns for multipliers and adders as below. For multipliers,
1) When both a ̸= 0 and b ̸= 0, the toggle rate will be high,
Dg(a, b) = Dm high, resulting in high power consumption. 2)
When either a or b equals zero, the toggle rate will be low, and
Dg(a, b) = Dm low. For adders, similarly, 1) When both a ̸= 0
and b ̸= 0, the toggle rate will be high, Dg(a, b) = Da high.
2) When either a or b equals zero, αg(a, b) will follow the
other distribution Da medium with a medium toggle rate, and
the power consumption will be medium. 3) When both a and b
equal zero, the average toggle rate will be low, and the power
consumption will be low, Dg(a, b) = Da low.

Applying the law of large numbers in statistics, if the
T × N × M × K is sufficiently large, the average toggle
rates of all combinational gates with the same structure in the
PE array will converge to the expectations of the distribution.
Therefore, the total dynamic power consumption of multipliers
and adders in PE array with different input situations can be
approximated as constants. For multipliers, we can statistically
record two different input situations: a, b ̸= 0 and any one of
a or b is equal to zero, denoted as m11 and m01, respectively.
Similarly, for adders in the PE array, we can record the
following three input situations: a, b ̸= 0, any one of a or b is
equal to zero, and both a and b are zero, denoted as a11, a10,
and a00, respectively. In this way, we can formulate the data-
driven power model as Eq. 4, where the learnable power model
parameter I is the average dynamic power corresponding to
each input data situation, and α is the ratio of different input
under the time window and can sample during memory access.

We can construct the power model based on these data patterns
and employ a regression model to fit these parameters in Eq. 4.

Pdyn = Pother +

N∑ M∑ K∑
(αm11Im11 + αm01Im01)+

N∑ M∑ K∑
(αa11Ia11 + αa01Ia01 + αa00Ia00)

(4)

C. Extraction and Sampling Data Patterns

We have discussed the data patterns related to zeros in
input data of adders/multipliers a and b. For the multipliers,
as shown in Fig. 3, their two inputs a and b correspond
to input features and weights, respectively. Currently, due to
the irregular memory access enabled for DNN algorithms
after weight pruning, dense DNN algorithms are still the
predominant workload for most general DNN accelerators.
Executing a dense DNN algorithm on an accelerator generates
a considerable amount of dynamic power consumption com-
pared to the sparse DNN algorithm since the sparsity of weight
data in sparse DNN can be more than 80% [17]. Therefore,
our data-pattern-based power modeling focuses on the DNN
accelerator when running dense DNN applications. Based on
this, our data patterns can be extracted directly from the feature
data (i.e., input a of multipliers), and all weights (i.e., input
b of multipliers) are assumed to be non-zero by default. To
achieve fine-grained power prediction in advance, we need to
construct the dataset for power model training based on our
predefined data patterns.

For DNN accelerators, the PE typically comprises multiple
multipliers and adders. As Fig. 4 shows, since different zeros
in a and b serve as data patterns for multipliers and adders,
we can directly count these patterns on the PE input through
the logic tree. The logic tree is constructed by abstracting the
multiplier as a comparator and the adder as an AND gate. The
states of signals S ∈ {S0, S1, . . . , S2k−2} in the logic tree can
reflect the data patterns of multipliers and adders. Therefore,
we can record the states of signals in the logic tree as the
data patterns of PEs to construct the input vector of the power
model.

Another crucial factor is the pipeline length, which includes
the arithmetic unit’s pipeline within a PE and the pipeline
between PEs in the PE array. As long as the valid input data
remains in the pipeline structure, it will continue to affect
the total power consumption. Thus, a sliding window that can
record all data patterns during a certain period is necessary
for fine-grained temporal resolution. Considering that the input
feature data can transfer along the column dimension M of
the PE array, the number of clock cycles in the sliding window
W depends on the average pipeline length of the PE internal
pipeline L and data transfer pipeline M , as shown in Eq. 5.

Regarding the on-chip power meter, considering the tem-
poral resolution R as the stride of the sliding window, when
R < W , there will be multiple sub-windows to record the
patterns from each sampling. The number of sub-windows

 Logic Tree

0.150.1 S0

S1

S2

S4

S6

S7

S5

S3

1

=0?

=0?

=0?

=0?

0.20

0123

0.100.20

0.150.100

0.2000

0.25 0.5 0.5 0

0.5 0 0.75 0.25

0.5 0.75 0.5 1

0.75 0.25 0.5 0.5

0.25 0 0.5 0

0.5 0.25 0.25 0.5

0.25 0 0.25 0

cycle

S0

S1

S2
S3

S4

S5
S6

Sliding Window

3210

average

0.3125

0.375

0.6875

0.5

0.1875

0.375

0.125

Input VectorInput Feature Data

sub-window X

Fig. 4: The example of input vector generation for input feature
data is when K = 4, Nsw = 4 and R = 4 (S7 can be pruned as
it is same as S6). The logic tree corresponds to the PE structure
in Fig. 3, with comparators and AND gates corresponding to
multipliers and adders, respectively. When assuming weights
are non-zero, compactors only need to check input features.

Nsw in the sliding window can be calculated as shown in
Eq. 6.

W = L+ [
M − 1

2
] (5)

Nsw = [W/R] (6)

Assuming an 8 × 8 × 4 systolic array, feature data is
transferred between PEs along the M dimension and the
multiply-accumulate (MAC) pipeline length structure in each
PE is 12. Therefore, based on Eq. 5, the sliding window size
W is 16. Fig. 4 shows an example of input vector generation
when K = 4, Nsw = 4, and R = 4. The sampling logic tree
consists of 4 comparators and 4 AND gates corresponding to
4 multipliers and 4 adders in the PE. The signal states (s) in
the logic tree are recorded. Every cycle, four input feature data
are input to the PE array. After 4 cycles, the sliding window
shifts, and the signal states S during the latest 4 cycles are
updated to sub-window 0 in Fig. 4. The values in the sliding
window are then averaged to generate the new input vector.

To train the power model, we can construct a dataset based
on the defined data patterns, sliding window, and stimulated
power traces. The per-cycle pattern trace can be obtained by
extracting the stimulation data using the equivalent logic tree.
For power model training, a linear regression model can be
employed. As shown in Eq. 7, the input vector X, which
corresponds to each S ∈ {S0, S1, . . . , S2k−2}, is constructed
according to the resolution R, and P is the power consumption
obtained from gate-level power simulation. After constructing
the dataset, the data-pattern-based power model can be trained
with a regression model. The trained parameter W and bias
item b can then be implemented into the hardware system.

P =

2K−2∑
i=0

(Xi × wi) + b (7)

D. Hardware Implementation and Power Prediction

Since the proposed power model is based on the data pat-
terns of input feature data, after the hardware implementation,
it samples data patterns during memory access. Fig. 1 has
shown the general architecture of DNN accelerators, which
comprises multi-level memories. The L1 buffer typically has a
large capacity to store uniform data. The data reshape module

SA1 SA2
symbols value symbols value

M 8 M 4
N 4 N 4
K 4 K 8
L 22 L 28
W 32 W 32

TABLE III: Hardware Architecture Info

can convert the operations in convolution layers and fully
connected layers into the general matrix multiplication format.
The weight and feature data are stored in the weight (WEI)
buffer and input-feature (IF) buffer, respectively, for PE array
computing. For fine-grained tracing of power consumption,
the sampling of data patterns should ensure the same order
of input data flow as in the PE array. Therefore, the feasible
locations for integrating our proposed power meter are at the
write or read ports of the feature buffer.

1) Power Estimation on Read Ports: The power meter at
the read ports of the feature buffer can estimate the run-
time power of the DNN accelerators since the data input
flow sampled by the power meter is the same flow as that
to the DNN accelerators. Data pattern samplers will monitor
the signals’ state in the sampling logic tree every clock cycle
and then construct the input vector of the power model. The
power consumption will be calculated based on the trained
model. However, the power meter at the read ports of the
feature buffer can only achieve run-time estimation because
the response time left will be too short for any proactive power
mitigation. Still, it will not be influenced by the control flow
of the system.

2) Power Prediction on Write Ports: The power meter at
the write ports of the feature buffer can predict the power
consumption for a batch of data written in the buffer. The
number of clock cycles predicted in advance is the time
interval between the read and write operations of this batch of
data. Unlike the samplers on the read ports, the controller can
affect the data flow of the DNN accelerators. In our current
experiments, we assume that the sampled data still follow the
same flow as the read data, and these data will be read out
to the accelerator without interruption. To further take a more
complex control flow into consideration, our solution could be
extended to address this impact by developing an additional
sub-model for the controller, which will be studied in our
future work.

IV. EXPERIMENT AND DISCUSSION

A. Experiment Setup

The simulation platform for experiments is implemented
according to Fig. 1. The L1 buffer and data reshape modules
are implemented in software for flexible simulation, while the
rest of the modules are synthesized, placed, and routed with
TSMC 40nm process. The ground-truth power simulation is
performed with Synopsys PTPX. The DNN accelerators are
implemented based on the widely-adopted output-stationary
systolic array (SA) with various shapes and PE structures, as
summarized in Table III. The data type used is floating-point
numbers, which generate a large amount of dynamic power.

(a) NMAE (b) R2 score

Fig. 5: Accuracy vs. temporal resolution for SA1.(sliding
window W : 32 cycles)

(a) NMAE (b) R2 score

Fig. 6: Accuracy vs. temporal resolution for SA2. (Sliding
window W : 32 cycles)

Two systolic array accelerators are constructed using the same
multiplier, adder, and accumulator, with pipeline lengths of 6,
6, and 4, respectively. The sliding window size is fixed to
32 clock cycles, which enables the shift operation to replace
the divider and reduce overhead. The power modeling dataset
comprises a 100,000-cycle power waveform obtained from
gate-level power simulation. The stimuli are data from 10
convolution layers in VGG and ResNet.

We evaluate the performance of the proposed data-pattern-
based power model with two different DNN accelerators in
Table III. The per-cycle pattern trace is generated by analyzing
the input feature data based on the defined data patterns.
Power and data patterns with different temporal resolutions
and sliding window sizes are then constructed by averaging
the per-cycle waveform during a time window for experiments
with different resolutions. We evaluate our power model using
the normalized mean absolute error (NMAE), coefficient of
determination R2, and the overhead of power and area. We
compare our model with two baselines: the one using sparsity
as the data pattern [16] and minimax concave penalty (MCP)
regression [1]. The method in [16] uses sparsity as the common
data pattern for workload prediction for DNN accelerators.
Meanwhile, the MCP technique adopted in APOLLO [1] is
considered one of the most advanced methods for selecting the
minimum proxies from the RTL signals to construct accurate,
per-cycle, and low-cost OPM.

B. Evaluate Data-Pattern-Based Power Model

We evaluated the accuracy, temporal resolution, and over-
head of the three models. The MCP baseline selected about
200 proxies from RTL signals to construct the power model
for SA1 and SA2, respectively. Fig. 5 and Fig. 6 show the
R2 score and the NMAE of power models under different
temporal resolutions. Our data-pattern-based power model can

SA1 SA2
SPA MCP OURS SPA MCP OURS

Area (%) 0.21 1.15 0.96 0.31 1.17 1.96
Power (%) 0.18 0.90 0.91 0.33 0.96 1.96

TABLE IV: Hardware overhead of our power model. (SPA:
only sparsity of input data as model input)

compete with the state-of-the-art MCP-based power model
when the resolution is more than 4 clock cycles, while
providing several additional benefits. First, PROPHET can
predict power waveform dozens of clock cycles in advance
during memory access. Second, PROPHET only requires 7
and 15 input patterns in the power model, while the MCP-
based OPM requries 100-200 input proxies. For the MCP-
based OPM, transitions of each proxy should be collected
every clock cycle from various locations of the entire chip,
which may increase the difficulty of layout for large-scale
systems. Instead, PROPHET samples data patterns only on
the input buffers, and the layout of the power model is more
concentrated, reducing the overhead of the power meter.

In our experiment, we implemented four samplers for four
input columns of the PE array, and the bit-width of parameters
in the power model is 16 bits. Table IV shows the area and
power overhead. For SA1 and SA2, the overhead of PROPHET
is lower than 2%. And for the MCP-based model, the overhead
is only around 1% beacuse multi-bit multipliers are replaced
with AND gates. However, as the size of the DNN accelerator
increases in M , N , and K dimensions, the area and power
overhead of PROPHET will be lower than 1%, since the
overhead and power are only linear with M and K. Although
MCP and SPA can achieve lower overhead than our method,
as seen in Fig. 5 and Fig. 6, SPA incurs a much larger power
estimation error. As for MCP, since it is based on runtime
counting of the signal switching activities inside the SA, it
cannot be used for predictive power prediction.

C. Predict Power in Advance

PROPHET at the write ports of the input feature buffer
is implemented to demonstrate the feasibility of the power
prediction. The input buffer is a ping-pong FIFO that enables
one batch of data to be written into the buffer first and then
starts the computing pipeline. The depth of the ping-pong
FIFO is 64, leading to a 64-cycle time interval between write
and read. When the input feature buffer is full, the DNN
accelerator will start reading data for computing, and the next
batch of data will be put into the input buffer at the same
time. Fig. 7 illustrates the predictive and ground-truth power
waveform when the DNN accelerator is working. PROPHET
can achieve power prediction of 56 clock cycles in advance
for this buffer setting.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed PROPHET, a fine-grained predic-
tive on-chip power meter for DNN accelerators that can predict
the power waveform dozens of cycles in advance. Our analysis
and experimental results showed that PROPHET can achieve
a temporal resolution of 4 clock cycles with R2 > 0.92 and
NMAE < 7% within 2% area/power overhead for two different

Fig. 7: PROPHET predicts the power waveform.

systolic array accelerators. Moreover, we demonstrated that
PROPHET can predict the power waveform 56 cycles in
advance when the input buffer is a 64-depth ping-pong FIFO.

Our future research will focus on two directions. First,
we will conduct a comprehensive evaluation and exploration
of our data patterns using different architectures and data
types. Second, we will explore high-performance fast power
management techniques based on our power prediction model.

VI. ACKNOWLEDGMENTS

This work is partially funded by Hong Kong RGC GRF
16213521 and Huawei Hong Kong Research Center (HKRC).
We thank Chun Hang Lee and Jingbo Jiang in HKRC for their
excellent critique and feedback.

REFERENCES

[1] Z. Xie et al., “APOLLO: An automated power modeling framework for
runtime power introspection in high-volume commercial microproces-
sors,” in MICRO, 2021.

[2] D. Zoni et al., “Powerprobe: Run-time power modeling through auto-
matic rtl instrumentation,” in DATE. IEEE, 2018.

[3] D. Kim et al., “Simmani: Runtime power modeling for arbitrary rtl with
automatic signal selection,” in MICRO, 2019.

[4] V. J. Reddi et al., “Voltage emergency prediction: Using signatures to
reduce operating margins,” in HPCA. IEEE, 2009.

[5] V. K. Kalyanam et al., “A proactive voltage-droop-mitigation system in
a 7nm hexagon™ processor,” in VLSI. IEEE, 2020.

[6] C. Gilberto et al., “Power prediction for intel xscale processors using
performance monitoring unit events power prediction for intel xscale
processors using performance monitoring unit events,” in ISLPED, 2005.

[7] F. Oboril et al., “High-resolution online power monitoring for modern
microprocessors,” in DATE. IEEE, 2015.

[8] Y. Zhang et al., “On-the-fly power-aware rendering,” in Computer
Graphics Forum. Wiley Online Library, 2018.

[9] M. Sagi et al., “A lightweight nonlinear methodology to accurately
model multicore processor power,” TCAD, 2020.

[10] M. Najem et al., “A design-time method for building cost-effective run-
time power monitoring,” TCAD, 2016.

[11] D. J. Pagliari et al., “All-digital embedded meters for on-line power
estimation,” in DATE. IEEE, 2018.

[12] Z. Xie et al., “DEEP: Developing extremely efficient runtime on-chip
power meters,” in ICCAD, 2022.

[13] M. S. Gupta et al., “Understanding voltage variations in chip multipro-
cessors using a distributed power-delivery network,” in DATE. IEEE,
2007.

[14] J. Leng et al., “GPU voltage noise: Characterization and hierarchical
smoothing of spatial and temporal voltage noise interference in gpu
architectures,” in HPCA. IEEE, 2015.

[15] G. Papadimitriou et al., “Harnessing voltage margins for energy effi-
ciency in multicore cpus,” in MICRO, 2017.

[16] S. Liu et al., “Dynamic voltage and frequency scaling to improve energy-
efficiency of hardware accelerators,” in HiPC. IEEE, 2021.

[17] S. Han et al., “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, 2016.

