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Abstract—Differentiable Neural Architecture Search (NAS) relies on
aggressive weight-sharing to reduce its search cost. This leads to GPU-
memory bottlenecks that hamper the algorithm’s scalability. To resolve
these bottlenecks, we propose a perturbations-based evolutionary ap-
proach that significantly reduces the memory cost while largely maintain-
ing the efficiency benefits of weight-sharing. Our approach makes minute
changes to compact neural architectures and measures their impact
on performance. In this way, it extracts high-quality motifs from the
search space. We utilize these perturbations to perform NAS in compact
models evolving over time to traverse the search space. Our method
disentangles GPU-memory consumption from search space size, offering
exceptional scalability to large search spaces. Results show competitive
accuracy on multiple benchmarks, including CIFAR10, ImageNet2012,
and NASBench-301. Specifically, our approach improves accuracy on
ImageNet and NASBench-301 by 0.3% and 0.87%, respectively. Further-
more, the memory consumption of search is reduced by roughly 80%
against state-of-the-art weight-shared differentiable NAS works while
achieving a search time of only 6 GPU hours.

I. INTRODUCTION

Neural Architecture Search (NAS) is paving the way for efficient
and automated architecture designs that offer better accuracy/FLOPs
tradeoffs compared to handcrafted models [1]. Complex convolutional
models consist of a number of control knobs – including architecture
depth, operation choices, kernel sizes, and topologies – that govern
their accuracy and computational/memory complexity. Tuning these
control knobs by hand is a tedious process. NAS aims to automate
this tuning process to achieve parameter-efficient models. However,
the applicability of many NAS methods is limited by computation
resources for two major reasons: 1) Model evaluation is costly [1]–
[3]. Training all individual models in the search space is prohibitively
time-consuming and resource-demanding. 2) Search spaces are lim-
ited by hardware resources. To reduce the exorbitant computational
cost of NAS methods, experts often have to severely restrict the search
space [4], [5], leading to serious inductive biases and sub-optimal
solutions. These two reasons make NAS research fairly expensive
and seriously limit the scalability of existing solutions.

Some NAS methods perform an exhaustive evaluation using search
schemes like reinforcement learning (RL). They first train a large
number of models sampled from the search space. Then the perfor-
mance and architectures of these models are used to train a surrogate
RL controller; usually an RNN, to further sample better architectures
over time. Given the insurmountable number of model evaluations
required to train the RL controller, RL-based methods require a huge
amount of computation resources [2]. Take the MobileNetV3 [1] as an
example. Although these models remain unbeatable in terms of their
parameter efficiency (accuracy/FLOPs), their RL-based searching
process requires thousands of GPUs/TPUs over several days to weeks
to be searched. Hence, these methods cannot be replicated within
reasonable cost when applied to new datasets or tasks.

To mitigate such high demand on computation resources, differen-
tiable architecture search approaches [5]–[7] adopt aggressive weight-
sharing [8] between models in the search space. It allows evaluation
of the search space components in a single-shot fashion, offering
search costs as low as only a few GPU hours. However, the search

space scalability of these methods is seriously limited due to the
single-shot evaluation, which requires training models with sizes pro-
portional to the search space size. It leads to prohibitive GPU memory
consumption, which becomes one major bottleneck in the hardware
constraints [9], [10]. To ensure a good result from a limited search
space, experts carefully design these search spaces using knowledge
obtained from high-quality manual neural architecture designs [11],
[12]. This inevitably adds significant inductive bias to the search
process [4]. Furthermore, the effectiveness of the differentiable search
methods has been questioned repeatedly [7], [13], whereby random
search has outperformed differentiable search approaches [13]. Their
weight-sharing technique [8] has been shown to suffer from a rank
miscorrelation problem whereby weight-shared models are known to
serve as poor surrogates for full model training [11], [14], [15].

In this work, we propose an evolutionary search scheme that uti-
lizes architectural ‘perturbations’ as an evaluation metric to identify
high-quality components of the search space. This search scheme
evaluates and evolves compact models over time to explore the search
space. It circumvents the severe memory limit faced by one-shot
NAS methods. During searching, we apply small changes to neural
architectures, called perturbations, and measure their impact on the
model performance. This helps to identify high-quality motifs from
search spaces. We demonstrate that perturbations offer more efficient,
scalable, and verifiable operation strength evaluation over black-box
differentiable approaches.

The contributions of this work are as follows:
1) We explore architectural perturbations as an operation strength

evaluation metric for NAS. We are the first to explore per-
turbations as the basis to perform NAS without using over-
parametrized models, addressing their memory bottlenecks.

2) We propose a perturbations-based evolutionary approach that
relies only partially on weight-sharing and serves as a fast,
accurate, and scalable search method. Our method achieves a
search cost of only 6 GPU-hours with peak memory consump-
tion of only 20% that of differentiable approaches. Further-
more, experimentation on ImageNet and NASBench-301 show
an improvement of 0.3% and 0.87% in accuracy, respectively,
against state-of-the-art in differentiable NAS.

3) The memory consumption of PertNAS does not depend on
search space size. It is similar to training a single compact
model sampled from the search space. In comparison, existing
differentiable search works [5], [6] all require GPU memory
that scales linearly with search space size. Disentangling the
size from memory-cost paves the way for scaling up the search
space, which proves to produce better models [1].

II. PRELIMINARIES

A. Background

Search Spaces. Search spaces represent the control knobs that
require tuning. Most one-shot NAS approaches, such as DARTS [5]
and its variants [6], [7] employ a repeating cell-based search space.
This alleviates the search cost to that of searching for cells instead
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Fig. 1. (a) Differentiable architecture search [5] performs a bi-level opti-
mization on a weight-shared supernet to jointly optimize architecture α and
weights w, (b) Expansion of an edge involves placing all operations in O
on that edge, (c) Perturb valuation of an operation strength is performed by
masking that operation when measuring the output of mixed operation ōm,e

(masked operations represented by blurred lines in inset).

of an entire neural network. A cell is represented by a directed
acyclic graph (DAG) where nodes represent feature maps while
edges represent operations. The DARTS cells utilize two input nodes,
four intermediate nodes, and one output node. The two input nodes
are the outputs of the two previous cells, while each successive
intermediate node takes its input from all previous nodes. The feature
map representing an intermediate node is calculated by applying the
operations on each of its incoming edges to their respective input
nodes. The output of the k-th cell, ck, is obtained by concatenating
the feature maps represented by the intermediate nodes along the
channel dimension. Fig. 1 (a) top shows a cell with one input, one
output, and two intermediate nodes – in green, yellow, and blue
colors, respectively. DARTS and its variants employ two types of
cells: normal cells with stride one operations and reduction cells with
stride two operations to reduce the spatial resolution. Cells resulting
from the search phase are replicated as part of a larger model for
evaluation. For example, an evaluation model for CIFAR10 utilizes
18 normal and two reduction cells. Since reduction cells serve only to
reduce spatial resolution, we utilize the same architecture for normal
and reduction cells but with stride two operations in reduction cells.

The DARTS search space consists of 8 operations which include
a skip connect, two pooling, two separable and two dilated convo-
lutions. This work considers the baseline DARTS search space OD

along with two compact variants listed in Table I. The variants allow
exhaustive evaluation and ablation studies to be performed, given
that the baseline DARTS search space is too large to be evaluated
exhaustively with ∼ 1025 models.

Search Progression. The goal of the search is to find high-quality
operations and connections within the cells. Specifically, DARTS-
like works aim to find top-2 incoming edges per intermediate node
(topology search) and the best operation per edge (operation search).

We follow a 3-step approach in our search progression: 1) Coarse-
grained operation search for eliminating low-quality operations from
search space in an approximate fashion with little search cost, 2) Fine-
grained operation search for selecting the best operation on each edge
(discretization of each edge) with high accuracy, and 3) Topology
search for finding top-2 incoming edges for each intermediate node
(discretization of each node) as per the goal of DARTS [5]. Dividing
the search into these three steps reduces search cost significantly by
performing the search at different scales; approximate and low-cost
in the early stages, accurate and high-cost in later stages.

B. Related Works

Differentiable NAS. In recent years, differentiable one-shot ap-
proaches have gained traction due to their ability to jointly optimize
a weight-shared supernet architecture and its network weights for

TABLE I
SEARCH SPACES CONSIDERED IN THIS WORK.

Search Candidate Operations, O |O| |E| TopologySpace
OD DARTS [5] 8 14 Flexible

O1
{skip connect, max pool 3x3, 4 8 Shallow (d=1)sep conv 3x3, sep conv 5x5}

O2 Best ops for each edge in O1 1 14 Flexible

efficient search [5], [10], [16]. DARTS [5] represents the search
space by relaxing the categorical choice of a candidate operation
to a softmax over all possible operations in the form of an over-
parametrized ‘supernet’ (Fig. 1 (a), Top, Different colors on edges
represent different operations in the candidate operation set). A
supernet is a DAG representation of the search space that consists
of all possible operations and topology connections that can be
constructed from it. Each edge of the DAG consists of all candidate
operations, represented by O. The output of an edge, called a mixed
operation, is the weighted sum of operations on that edge applied to
the input. The weights associated with the candidate operations are
parametrized by a vector α which represents the relative strength of
their corresponding operations. The output of a mixed operation on
edge e ∈ E , where E is the list of all edges, is given as

ōe(x) =
∑
o∈O

exp (αe
o)∑

o′∈O exp (αe
o′)

o(x) (1)

Where O represents the candidate operations in the search space and
o(x) represents an operation o to be applied to the input feature map
x. A bi-level optimization is utilized to jointly learn both architecture
α as well as the network weights w (Fig. 1 (a), Center, Opacity
represents operation value/strength, α).

min
α

Lval(w
∗(α), α)

s.t. w∗(α) = argminw Ltrain(w,α)
(2)

The final architecture is obtained by choosing the operations corre-
sponding to the highest α (Fig. 1 (a), Bottom, Only branches with
highest opacity on each edge remain).

Memory-Efficient NAS. DARTS [5] is known to suffer from
memory bottleneck issues [9], [10]. The DARTS supernet consumes
roughly |O|× the GPU memory of a single model in the search space.
Hence, DARTS-like approaches impose search space size limits due
to the memory limits of the hardware. ProxylessNAS [9] proposed
a solution in the form of binarized architecture paths. During the
training of the supernet, only one of the |O| paths is activated using
stochastically sampled binary gates, leading to a memory cost roughly
the same as that of training a single compact model. However, search
cost of over 8 GPU-days and model sizes ∼ 70% greater than
DARTS, combined with only a modest improvement in accuracy,
makes the approach less appealing. PC-DARTS [10] proposed another
solution to the memory bottlenecks by sampling partial channel
connections of the supernet during the search. This approach relies
on performing the operation search using only a subset of feature
map channels. However, the reproduced results of PC-DARTS [10]
show unremarkable improvements over existing works in accuracy.

Perturbation methods. The success of deep learning comes from
exploiting infinitesimal perturbations at an enormous scale. Stochastic
gradient descent applies minuscule perturbations to the weights of a
model so that, over time, the model weights satisfy the objective
function better. Hence, it is natural to ask whether perturbations can
also be exploited at an architectural level. DARTS+PT [6] showed
that perturbing DARTS-optimized supernets can help evaluate and
remove weak operations and connections from the search space.
Our work is closely related to DARTS+PT but explores architectural
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Fig. 2. Flowchart of our perturbations-based search. Supernet-based search
relies on training a large supernet (light gray) while evolutionary approach
relies on performing operation valuation from within n discrete models (dark
gray) using expansion followed by perturb valuation.

perturbations as the basis to perform NAS without using gradient-
based optimization utilized by DARTS-like works.

III. SEARCH METHOD

A. Perturbations-based Evaluation

Approach. We explore a perturbations-based approach to identify
high-quality components of the search space. Perturbations to an
operation o on edge e refer to the removal of the operation from that
edge. This is implemented by masking the corresponding operation
as shown in Fig. 1 (c). The output of the masked mixed operation
ōm,e, which denotes operation m masked on edge e is given by

ōm,e(x) =
∑
o∈O

1o ̸=m · o(x) (3)

Where the mask vector 1 is the indicator function. Comparing the
output of the mixed operation of our approach in Eq. 3 with that of
differentiable approaches in Eq. 1, we note that we do not utilize
α to represent operation strength. Instead, in our approach, the
value/strength of the operation o on edge e, denoted by ∆Vo,e, is
defined as the change in accuracy resulting from the perturbation of
o on edge e.

∆Vo,e = Vo,e − V ∗ (4)

Where V ∗ is the validation accuracy of the unperturbed model,
and Vo,e is the accuracy when a perturbation is applied to o on
e. The meaning of ∆Vo,e is reasonably intuitive to interpret: it
is the degradation in accuracy of the model when operation o is
removed from edge e, signifying the contribution of {o, e} towards
the accuracy of the model.

Approximation of Accuracy of Perturbed Models. For mea-
suring operation strength, or valuation (Eq. 4), V ∗ can be obtained
trivially by training the unperturbed model to convergence. However,
since perturbed and unperturbed models have different architectures,
obtaining Vo,e is non-trivial since it needs to be obtained from the
perturbed model with {o, e} pair removed/masked. Let s∗θ(x) and
s
(o,e)

θ′ (x) be the unperturbed model with parameters θ and perturbed
model with parameters θ′, respectively. It follows that θ′ ̸= θ given
s(o,e)(x) ̸= s∗(x). Training s

(o,e)

θ′ (x) from scratch to convergence
is computationally impractical, given that this needs to be performed
for each o, e pair. For a sufficiently small perturbation to the model
such that the base and perturbed model architectures are fairly similar
(i.e., s∗(x) ∼ s(o,e)(x)), θ′ can be approximated from θ by sharing

the weights of the base model with those of perturbed model and
finetuning the perturbed model. This allows Vo,e to be estimated from
s
(o,e)

θ′ (x) using θ′ ∼ θ as the parameter initialization for the perturbed
model in a computationally tractable manner.

B. Search Flow using Supernets

Figure 2 shows a flowchart of our approach detailing the three-
stage search progression highlighted in Sec. II-A. Please note that
cells depicted in Fig. 2 are simplified variants of the real cells used
in experiments for ease of visualization. The actual cells utilize two
input and four intermediate nodes as per the cell template utilized by
DARTS [5] and its variants [5], [10], [16] for fair comparison.

Operation search is divided into two stages of different granular-
ities; coarse- and fine-grained search. Coarse-grained search elimi-
nates weak operations in a low-cost fashion. In contrast, fine-grained
search caters to the operation search goal by discretizing edges of
the DAG in succession and with high confidence. In coarse-grained
operation search, we utilize perturbations to obtain valuations of all
operations in the search space. We utilize two approaches to perform
this valuation. The first approach, supernet-based search, shown in
light gray in Fig. 2 top, utilizes perturbations on a supernet to obtain
the valuation of all operations on each edge of the DAG. Specifically,
we construct a supernet cell by placing all search space operations
O onto each edge of the DAG. Eight cells are connected sequentially
to form the search network, whereby cell k takes its input from the
two previous cells, k−1 and k−2. After training the search network
s∗θ(x) to convergence and obtaining V ∗, we perform the valuation
of search space using the perturbations-based approach. To measure
strength of operation o on an edge e, we mask o on e to construct
s
(o,e)

θ′ (x). We then initialize θ′ with θ, i.e., s(o,e)θ′=θ(x), and finetune
this perturbed model so s(o,e)(x) reaches convergence. The validation
accuracy of this perturbed model Vo,e is used to calculate ∆Vo,e. The
process of o, e valuation is repeated for all o ∈ O and e ∈ E to obtain
the valuation matrix V ∈ R|E|×|O|, which represents the strength of
each operation on each edge. For the DARTS search space, OD , this
corresponds to |O| = 8 and |E| = 14. Valuation matrix V is utilized
to select top-2 operations for each edge, i.e., the operations that cause
the most degradation of accuracy when perturbed.

Fine-grained op search (Fig. 2 center) starts by training a model
constructed by sequentially connecting eight cells containing only
the top-2 operations per edge. We then select and perturb-value
operations on a random edge e. We discretize e by selecting the best
operation for e using the valuation, and construct and train the new
model with e discretized. We repeat this process until all edges in
E have been discretized. The generated model is sparse and consists
only of the best operation for each edge. Topology search (Fig. 2
bottom) follows the same process as fine-grained operation search
but discretizes nodes instead of edges. This entails selecting top-2
incoming edges for each of the intermediate nodes.

Existing works have highlighted the memory bottlenecks presented
by supernets [9], [10]. Specifically, a supernet consumes roughly
|O|× the memory of a single model in the search space. This places
restrictions on search space sizes owing to hardware limitations. In
the following subsection, we demonstrate how GPU memory required
for search can be disentangled from the search space size.

C. Disentangling Mem Consumption from Search Space Size

Supernets have enjoyed much of their success owing to weight-
sharing; each sub-network can inherit its weights from the supernet,
bypassing the need for exhaustively training each sub-network inde-
pendently. However, numerous works have exposed the rank miscor-
relation problem in weight sharing, whereby weight-shared discrete
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Fig. 3. Heatmaps of valuations and rankings obtained using (a)-(b) averaging
architecture accuracies, and (c)-(d) obtaining accuracy of best model. They
indicate that the rankings obtained by averaging model accuracies are fairly
similar to rankings when best accuracy is selected for each operation choice.

architectures serve as poor surrogates for full model training [11],
[14], [15]. Furthermore, high memory consumption of supernets
imposes restrictions on search space size [9], [10]. We show that
the performance of operations is not necessarily tied to the edge
they are located in relative to the other edges. This would mean that
operations on each edge can be valued independently without sharing
weights between operations on the remaining edges.

We obtain the accuracies of all |O||E| = 48 ∼ 65k models in the
O1 search space on NASBench-301 [12]. We compute the average
accuracy of all possible discrete models (i.e., a model with one op per
edge) that can be constructed from making each op selection on each
edge (e.g., if we discretize edge 0 to the skip connect operation, we
can construct a total of 47 ∼ 16.4k different architectures). Similarly,
we also obtain the accuracies of the best discrete model that can be
constructed by discretizing each operation on each edge. Fig. 3 shows
heatmaps and operation importance rankings of the average and best
accuracies of the remaining discrete architectures in the search space
when each operation is discretized on each edge. We make two
observations from these rankings: 1) Average rankings of operations
are fairly consistent across all edges, i.e., some operations are almost
always better than others, and 2) Top operations based on average and
best rankings are fairly similar, i.e., the fact that sep conv 5x5 and
3x3 are the best operations for almost all edges is consistent between
the two rankings. Since averaging the performance of models gives a
good indicator of operation importance, we conclude that operations
on edges can be valued independently.

D. From Supernets to Evolutionary Search

Based on the idea that each edge can be valued in isolation while
the remaining edges need not be overparametrized, we propose an
evolutionary approach that does not rely on supernets. Figure 2
(dark gray) shows the coarse-grained operation search phase using
this evolutionary technique. We randomly sample a population of
n discrete models from the search space and train each model to
convergence. A discrete model refers to a model with only one
operation per edge. For each model, we then expand an edge, finetune
the model with the expanded edge, and apply perturb-valuation on
this edge according to the approach detailed in Sec. III-A. Expanding
an edge refers to loading all candidate operations to that edge, as
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Fig. 4. Best cells obtained using (a) supernet and (b) evolutionary approach
with CIFAR10 error rates of 2.65% and 2.49%, respectively.

shown in Fig. 1 (b). After obtaining the valuation of operations on
this edge, we discretize this edge according to the valuation, expand
the next edge and repeat the valuation. Starting from the random
selection of operations on all edges, the model evolves over time
since each discretization step improves the operation selected for
an edge. After every edge is valued using this successive expansion
followed by the valuation technique, each discrete model i gives a
valuation matrix V(i), which corresponds to the values of search
space operations within that discrete model. The valuation matrices
from the n models are averaged to obtain the average valuation of the
operations. We only utilize this evolutionary approach in the coarse-
grained op search phase since this stage forms the memory bottleneck
due to the expensive supernet training.

IV. EXPERIMENTS AND ABLATION STUDIES

This section studies the experiments and results of our approach
on CIFAR10, NASBench-301, and ImageNet2012. We highlight the
importance of search space scalability and, correspondingly, the
memory consumption of search. We also perform ablation studies to
validate perturbations as an accurate operation evaluation technique.

A. CIFAR10 – Full Search

This section details experiments for cell search on CIFAR10. We
perform search using both the supernet-based and the evolutionary
approach (Fig. 2) to show the difference in accuracy and memory
consumption of the two approaches.

Experimental Setup. Most of our hyperparameter settings are
similar to those utilized by [5] and [6] to allow fair comparison of
results. We perform our experiments on the DARTS search space OD .
We found the search results of the evolutionary approach to exceed
that of the supernet-based approach using only n = 4 models in
the initial population. The search follows the progression detailed in
Sec. II-A and Fig. 2, whereby a coarse-grained operation search
phase selects top-2 operations for each edge, followed by a fine
grained operation search, and then the topology search. We repeat
the search process with different random seeds four times to ensure
consistency in evaluating results compared to previous works.

Evaluation. Evaluation follows the same settings as most existing
DARTS-like works for consistency of comparison. We utilize 20
cells, with reduction cells at 1/3 and 2/3 of the depths of the model,
where reduction cells have the same architecture as normal cells but
with stride-2 operations. We train the models for 600 epochs with
stochastic gradient descent, 36 initial channels, auxiliary towers with
weight 0.4, and cutout with length 16. We report and compare the
average and best accuracy of the four runs in Table. II. All works
below the double horizontal line in Table. II utilize the DARTS search
space. Architectures of the best searched cells of the four runs from
the supernet-based and evolutionary approach are shown in Fig. 4.
ProxylessNAS [9] achieves 0.41% and 0.03% better accuracy on
CIFAR10 and ImageNet, respectively than the best cell found using
our approach. However, the search cost of 8.3 GPU days, combined
with model sizes roughly 1.4× that of our results, makes the approach
less appealing. Furthermore, ProxylessNAS has not been applied to
DARTS-like search spaces, which makes the comparison inequitable.



TABLE II
PERFORMANCE COMPARISON AGAINST THE STATE-OF-THE-ART ON CIFAR10 AND IMAGENET2012.

Work Error Params Error ImageNet Params Search Time Peak GPU
CIFAR10 (%) CIFAR (M) Top 1 Top 5 ImgNet (M) CIFAR (GPU days) Mem (GB) ‡

NASNet-A [4] 2.65 3.3 26.0 8.4 5.3 1800 -
AmoebaNet-B [17] 2.55 ± 0.05 2.8 26.0 8.5 5.3 3150 -
ENAS [8] 2.89 4.6 - - - 0.5 -
PNAS [18] 3.41 ± 0.09 3.2 25.8 8.1 5.1 225 -
ProxylessNAS [9] 2.08 5.7 24.9 7.5 - 8.3 -
SNAS [16] 2.85 ± 0.02 2.8 27.3 9.2 4.3 1.5 33.1
PC-DARTS [10] (Reproduced) 2.84†± 0.09 3.6 25.1 7.8 5.3 0.1 11.8
R-DARTS [7] 2.95 ± 0.21 - - - - 1.6 32.6
SGAS [19] 2.66 ± 0.24 3.7 26.0 8.5 5.3 0.3 32.6
DARTS [5] 3.00 ± 0.14 3.3 26.7 8.7 4.7 0.4 32.6
DARTS+PT (avg) [6] 2.61 ± 0.08 3.0 - - - 0.8 32.6
DARTS+PT (best) [6] 2.48 3.3 25.5 8.0 4.6 0.8 32.6
PertNAS (Supernet) (avg) 2.69 ± 0.04 3.9 - - - 0.2 17.8
PertNAS (Supernet) (best) 2.65 4.1 - - - 0.2 17.8
PertNAS (Evolutionary) (avg) 2.58 ± 0.08 4.1 - - - 0.2 6.2
PertNAS (Evolutionary) (best) 2.49 4.0 25.2 7.8 5.6 0.3 6.2
† Authors’ reported accuracy: 2.57%, Reproduced accuracy using authors’ official implementation: 2.84%
‡ Measured using an A100 GPU, PyTorch 1.12 + CUDA 11.3 @ batch size 256

TABLE III
PERFORMANCE COMPARISON ON NASBENCH-301, AND THE
GPU-MEMORY CONSUMPTION FOR SEARCH ON CIFAR10.

Work Accuracy Params Peak GPU
(%) (M) Mem (GB)

SNAS [16] 94.22 2.8 33.1
PC-DARTS [10] 94.03 3.6 11.8
SGAS [19] 94.31 3.8 32.6
DARTS [5] 93.68 3.3 32.6
DARTS+PT [6] 93.84 3.3 32.6
PertNAS (Supernet) 94.58 4.1 17.8
PertNAS (Evolutionary) 94.71 4.0 6.2

Our evolutionary scheme exceeds the average accuracy achieved
by PC-DARTS [10] by 0.26% and requires only around 0.5× the
memory. Against DARTS+PT, we achieve comparable accuracy with
almost 1/4 the search time while utilizing less than 1/5 the memory.

B. NASBench-301

We compare the performance of the best-generated cells under both
search schemes against SoTA DARTS-like works on NASBench-
301 [12]. NASBench-301 is a surrogate benchmark that allows
comparing the performance of NAS works without expensive model
training. We utilize the two best cells obtained as a result of search
on CIFAR10 (Sec. IV-A, Fig. 4) to perform the evaluation on
NASBench. Table. III shows that the best cells generated using the
evolutionary approach exceed DARTS [5] by 1.03%, PC-DARTS [10]
by 0.68%, and DARTS+PT [6] by 0.87%. The corresponding cells,
shown in Fig. 4, are rich in learnable parameters as they contain
many convolutions, leading to large model sizes. Existing works
have shown that searched model accuracies are proportional to their
sizes [11], [12] as will also be shown in Sec. IV-E and Fig. 6 (a).
Furthermore, high quality models utilize separable as opposed to
dilated convolutions [12], and shallow as opposed to deep cells, as
exhibited by our searched cells in Fig. 4.

C. Transferability Evaluation on ImageNet

We test the transferability of cells found on CIFAR10 to the
ImageNet dataset. This test follows the mobile setting for evaluation
whereby the number of multiply-add operations in the model is
restricted to be less than 600M, with an input size of 224x224.
The remaining hyperparameters also follow the configuration utilized
by previous works for fair comparison [5], [6]. Comparison of top-
1 and top-5 accuracy achieved on ImageNet under transferability
evaluation of cells found on CIFAR10 against some state-of-the-art

works is shown in Table. II. We achieve 0.3% better top-1 accuracy
compared to DARTS+PT owing to the parameter-rich cells resultant
from our approach. Against ProxylessNAS, we achieve 0.3% worse
top-1 accuracy but with a search time of only 0.3 GPU-days. Against
PC-DARTS, we achieve 0.1% worse top-1 accuracy. However, PC-
DARTS performs search directly on each dataset, with a search
on ImageNet costing 3.8 GPU-days, roughly 13× our search time.
Hence, our approach produces results comparable to the SoTA with
minimal search cost in both time and memory.

D. Importance of Search-Space and Memory Scalability

The evolutionary approach allows the evaluation of the search
space from within discrete models. Hence, the peak memory con-
sumption of our evolutionary approach is similar to that of training
a compact model sampled from the search space. We evaluate the
peak memory allocated to search at different search space sizes using
supernet-based and evolutionary techniques. We also showcase the
importance of scaling up the search space by analyzing its impact
on the quality of searchable architectures. Starting from O={none,
skip connect, max pool 3x3, avg pool 3x3}, i.e., the subset of the
DARTS search space with |O| = 4, we scale up the search space
by adding convolution operations with different kernel sizes into the
search space, e.g., to make |O| = 5, we add a sep conv 3x3 into O.

At each |O|, we obtain the average accuracy of up to 10k randomly
sampled models from the search space on NASBench-301, whereby
fixed shallow search space topology, similar to O1 in Table. I, is
utilized. This average accuracy denotes the quality of searchable
models in the search space; higher average accuracy implies that
search methods can potentially generate high-quality models from
the search space. However, we can only obtain average accuracies for
search space sizes up to |O| = 7 due to limitations on the operations
available in NASBench-301. We also measure the peak reserved
memory for search, composed of memory allocated to tensors, cached
memory, and CUDA context. The results in Fig. 5 show that while the
GPU memory requirement for supernet-based search (e.g., DARTS-
like approaches that rely on supernets) increases almost linearly
with search space size, the memory requirement of the evolutionary
approach stays almost constant. Hence, our approach offers possi-
bilities for scaling the search space significantly, sidestepping the
hardware limits imposed by supernet-based approaches like DARTS.
This scalability is essential since larger search spaces hold more high-
quality models, as depicted by the increasing average accuracy of
models with increasing search space sizes |O|.



4 5
+s3

6
+d3

7
+s5

8
+d5

9
+s7

10
+d7

Search Space Size, | |

0

5

10

15

20

Pe
ak

 M
em

 R
es

er
ve

d 
(G

B)

Mem Evol Mem Supernet
91.0

91.5

92.0

92.5

93.0

93.5

94.0

Se
ar

ch
 S

pa
ce

 A
vg

 A
cc

 (%
)Avg Acc

Fig. 5. Bar chart of GPU-memory consumption for search on search spaces of
different sizes. Also shown average accuracy of 10k randomly chosen models
in the search spaces (s3=sep conv 3x3, d3=dil conv 3x3). +s3 denotes search
space size is increased by adding a sep conv 3x3 op to the preceding O.

E. Ablation 1 – Fidelity of Perturbations for Operation Search
This ablation study explores the validity of perturbations-based

operation search. We utilize search space O1 with NASBench-301
for this study due to its fixed topology and the availability of ground
truth valuation of operations in the search space. To perform search
using the perturbations-based approach, we randomly sample a total
of n = 8 discrete models from the search space. We train each
of the discrete models to convergence, expand and value each edge
using perturbations, average the valuation matrices obtained from
each of the 8 models, and select the top o, e pair from the cell and
discretize e to o. We repeat this process for the remaining edges
until the best operation for each edge is selected. To compare the
results of operation search on O1 against previous works, we perform
similar searches using DARTS [5] and DARTS+PT [6]. Figure 6 (a)
shows the accuracy of all ∼ 65k models in the search space and
compares the accuracy of models obtained using the three different
approaches: DARTS, DARTS+PT, and PertNAS. The cells resultant
from our approach consist of 7 sep conv operations, leading to higher
accuracy and model size compared to DARTS+PT and DARTS.

F. Ablation 2 – Fidelity of Perturbations for Topology Search
For evaluation of perturbations for topology search, we utilize the

search space of O2 whereby we enumerate all possible topologies
that can be constructed from the best operation choices in O1. This
corresponds to a total of only 180 topologies, with their accuracies on
NASBench-301 [12], and cell depths shown in Fig. 6 (b). Shallower
DARTS cells perform better, as also validated by [12]. We construct
a supernet consisting of all 14 possible edges in each cell, with each
edge consisting only of top operation from O1. We apply topology
search on this supernet using perturb-valuation of all edges and
selecting top-2 incoming edges for each intermediate node. Results in
Fig. 6 (b) show that the topology obtained using this valuation scheme
is among the top 5 topologies in this search space and achieves 0.16%
better accuracy at the same model size as DARTS+PT [6].

V. CONCLUSION

This paper proposed a perturbations-based approach to evaluating
search space components in NAS. We showed how perturbations can
be applied to discrete models in an evolutionary search scheme to
allow the valuation of search space in a memory-efficient fashion. The
evolutionary approach disentangles memory consumption from search
space size, overcoming the constraints imposed by hardware limits
on search spaces. Experiments using CIFAR10, NASBench-301, and
ImageNet show a competitive performance of perturbations-based
search relative to differentiable approaches, at roughly only 20% of
their memory costs. Our approach is fast, accurate, and scalable to
larger search spaces. It generates architectures that conform to our
understanding of high-quality architectures in the search space, such
as shallow and parameter-rich cells.
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Fig. 6. Comparison of result of operation and topology search on CIFAR-
10 on NASBench-301 against DARTS [5] and DARTS+PT [6] (a) Operation
Search Space O1 with 65.5k models, and (b) Topology Search Space O2

with only 180 models plotted against cell depth. Hue represents train time.
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