
Accel-NASBench: Sustainable Benchmarking for
Accelerator-Aware NAS

Afzal Ahmad
afzal.ahmad@connect.ust.hk
The Hong Kong University
of Science and Technology

Hong Kong

Linfeng Du
linfeng.du@connect.ust.hk
The Hong Kong University
of Science and Technology

Hong Kong

Zhiyao Xie
eezhiyao@ust.hk

The Hong Kong University
of Science and Technology

Hong Kong

Wei Zhang∗
eeweiz@ust.hk

The Hong Kong University
of Science and Technology

Hong Kong

ABSTRACT
One of the primary challenges impeding the progress of Neural
Architecture Search (NAS) is its extensive reliance on exorbitant
computational resources. NAS benchmarks aim to simulate runs
of NAS experiments at zero cost, remediating the need for exten-
sive compute. However, existing NAS benchmarks use synthetic
datasets and model proxies that make simplified assumptions about
the characteristics of these datasets and models, leading to unre-
alistic evaluations. We present a technique that allows searching
for training proxies that reduce the cost of benchmark construction
by significant margins, making it possible to construct realistic
NAS benchmarks for large-scale datasets. Using this technique,
we construct an open-source bi-objective NAS benchmark for the
ImageNet2012 dataset combined with the on-device performance
of accelerators, including GPUs, TPUs, and FPGAs. Through exten-
sive experimentation with various NAS optimizers and hardware
platforms, we show that the benchmark is accurate and allows
searching for state-of-the-art hardware-aware models at zero cost.

1 INTRODUCTION
The proliferation of research in Neural Architecture Search (NAS),
combined with the prohibitive costs of NAS evaluation, have high-
lighted the need for benchmarks and reproducibility [10]. NAS
benchmarks sidestep the expensive evaluation phase of NAS, which
requires model training, by predicting accuracy using the archi-
tectural properties of the model, such as layer operations, filter
sizes, and connectivity patterns. Since these benchmarks remove
expensive model training from the evaluation phase of NAS, they
are termed zero-cost. Zero-cost NAS benchmarks using surrogate
predictors have paved the way for cheap NAS evaluation while en-
suring complete coverage of large search spaces at a minimal cost of
benchmark construction [14]. These benchmarks are constructed by
evaluating a small but representative portion of the search space ex-
haustively and using these evaluations to train black-box surrogate
models/predictors that can be utilized to obtain robust estimates
of performance of unseen regions of the search space. However,
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06
https://doi.org/10.1145/3649329.3657391

currently available zero-cost NAS benchmarks only apply to small
datasets such as CIFAR10/100 [8], or cheap, synthetic variants of
large datasets such as ImageNet16-120 [2].

Numerous works have pointed out the parameter-inefficiency
and low quality of results obtained using proxy datasets for search [1].
Specifically, the process of searching on proxy datasets completely
disregards the target dataset during the optimization process. Since
the proxy and target datasets often have a massive disparity in
complexity, the searched models exhibit a low parameter-efficiency.
On the other hand, a few high-quality works that perform direct
searches on large datasets have shown that a direct search yields
models that exhibit higher parameter-efficiency [1, 16]. However,
the high search cost of these methods, often in tens of thousands
of GPU/TPU-hours [17], prohibits reproducibility.

On another front, the proliferation of high-performance hard-
ware accelerators, combined with a drive for fast model serving, has
given rise to accelerator-aware neural network design, intending
to optimize multiple performance metrics, including accuracy and
on-device throughput/latency. However, numerous research works
have pointed out the inability of conventional model-specific com-
plexity metrics, such as FLOPs and model size, to serve as accurate
proxies for themodel’s on-device performance [5, 9]. This is because
performance is influenced by a range of device-specific factors such
as memory bandwidth, data reuse, and the frequency/regularity
of off-chip memory accesses. The device specificity of these fac-
tors makes the optimal choice of models targeting these devices
contingent on the characteristics of the hardware being used.

In this work, we tackle the aforementioned challenges of un-
realistic NAS evaluation by proposing a method that allows the
construction of realistic NAS benchmarks at a fraction of the cost of
existing methods. Using the proposed technique, we construct the
first NAS benchmark for the ImageNet2012 dataset. Furthermore,
for evaluation of multi-objective NAS methods, we also explore
performance benchmarks for high-performance hardware accelera-
tors, including GPUs, TPUs, and FPGAs. The contributions of this
work are listed as follows1

• We propose a method to search for training proxies that
reduce the cost of model training for construction of NAS
benchmarks for large-scale datasets by significant margins.

• Using the proposed technique, we construct the first NAS
benchmark for the ImageNet2012 dataset, the de-facto large-
scale dataset for visual recognition, while analyzing the im-
pact of the training proxies on evaluation accuracy.

Project partially funded by AI Chip Center for Emerging Smart Systems (ACCESS)
and Hong Kong General Research Fund Grant Number GRF16213422. The authors also
acknowledge Cloud TPU Support by Google TPU Research Cloud (TRC) program.
1Project open-source at https://github.com/afzalxo/Accel-NASBench

https://orcid.org/0000-0003-4491-5440
https://orcid.org/0000-0002-3007-4890
https://orcid.org/0000-0002-4442-592X
https://orcid.org/0000-0002-7622-6714
https://doi.org/10.1145/3649329.3657391
https://github.com/afzalxo/Accel-NASBench

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Ahmad et al.

NAS Optimizer
(e.g., RS [10], RE [13],

REINFORCE [19])

Accuracy / Device Performance

Sample
Architecutre

Search Space

Dataset
(e.g., CIFAR-10,

ImageNet16-120)

Evaluator

Model
Trainer

Target Device
(e.g., TPU, FPGA)

NAS Benchmark

Model
Accuracy
Surrogate

(e.g., XGB,

SVR)

Device 1
Perf Surrogate

Device 2
Perf Surrogate

Figure 1: NAS flow consists of an optimizer sampling archi-
tectures from a search space, followed by evaluation in terms
of accuracy and on-device performance. A NAS benchmark
sidesteps the expensive evaluation phase by using surrogate
predictors that offer zero-cost evaluation.

• We also offer inference performance benchmarks for hard-
ware accelerators, including Cloud TPUv2 and TPUv3, A100
and RTX-3090 GPUs, and Xilinx Zynq Ultrascale+ ZCU102
and Versal AI Core VCK190 FPGAs.

• Through extensive experiments in both uni- and bi-objective
search settings using various NAS optimizers and hardware
platforms, we show that the constructed benchmark not only
accurately simulates the real performance of models but also
allows searching for state-of-the-art models at zero cost.

2 PRELIMINARIES
2.1 Background
NAS algorithms traverse a massive space of deep neural network
models, called the search space, by evaluating selected models
and using their performance and architecture specifications to
guide the search towards better-performing solutions. NAS al-
gorithms/optimizers decide the model to select and evaluate for
traversing the search space in an efficient manner such that fewer
evaluations can be performed to reach a good solution. The quality
of solutions is often measured in terms of the model’s accuracy on
a dataset for uni-objective, and accuracy-latency/throughput (on-
device performance) pair for bi-objective problems. Given that NAS
algorithms search over massive spaces, ranging between 1010 - 1030
unique models, reaching an acceptable solution requires training
and evaluation of thousands of models. This is an extremely com-
putationally demanding process, with cost of running an optimizer
per experiment ranging from GPU-hours to GPU-months.

In recent years, NAS benchmarks have been proposed to allow
zero-cost evaluation of optimizers, remediating the need for ex-
tensive compute resources and lowering the barrier of entry for
researchers to evaluate new techniques. Fig. 1 shows the NAS flow
consisting of an expensive evaluation step that is circumvented by
the NAS benchmark. Themost popular NAS benchmarks, called sur-
rogate benchmarks, use predictive models to estimate architecture
accuracy/performance using their specifications, such as operation
types, filter sizes, layer specifications, and connectivity patterns.
These benchmarks are constructed by training and evaluating a
small number of models from the NAS search space and using these

evaluations to train surrogate predictors that can predict the ac-
curacy/performance of unseen models in that space within a few
milliseconds without model training and on-device measurements
(hence zero-cost). The predictive models to use in benchmark con-
struction are chosen based on their expressivity on the search space.
Examples include gradient boosting such as XGB and LGB, support
vector regression (SVR), and random forests.

2.2 Challenges and Related Works
While NAS benchmarks alleviate the computational burden of
search by offering zero-cost evaluation, constructing NAS bench-
marks is a computationally demanding process that requires thou-
sands of model evaluations. The problem is exacerbated by increas-
ing dataset and model sizes, for which training even a few hundred
models is infeasible. In the following subsections, we highlight a
few limitations of existing NAS benchmarks:

2.2.1 Dataset Proxies and Sustainability. Most NAS works utilize
small datasets as proxies for large-scale target datasets for search
owing to the substantially lower search cost. A small number of re-
search works that perform direct search on large-scale datasets have
yielded models that beat state-of-the-art in parameter efficiency
(e.g., [6, 16] use reinforcement learning, [1] used gradient-based
search, while [13] utilized regularized evolution directly on Im-
ageNet2012). However, the construction of NAS benchmarks for
large-scale datasets has remained elusive owing to the computa-
tional intractability of the evaluation of models on these datasets. As
an example, NASBench-101 [18] utilized a staggering 100 TPU-years
of compute to build a benchmark for CIFAR-10, largely considered
to be a toy dataset. The benchmark covers a search space of only
423k models. Hence, while the utility of NAS benchmarks as an in-
dispensable tool for democratizing NAS research cannot be ignored,
the tremendous amount of compute for benchmark construction,
combined with the limited coverage of search space and the use of
the CIFAR-10 dataset, calls into question the sustainability and im-
pact of NAS benchmarks [14]. Recent NAS benchmarks use a down-
sampled variant of ImageNet2012, namely ImageNet16-120 [2], as a
proxy for ImageNet2012 [3]. However, given the disparity in input
size (16 × 16 vs. 469 × 387 resolution), number of classes (120 vs.
1000), and number of samples in the dataset (0.15M vs. 12.4M im-
ages), ImageNet16-120 does not serve as a representative proxy for
ImageNet2012. Our work aims to address this limitation by offering
a technique for constructing benchmarks for large-scale datasets
such as ImageNet2012 without using any dataset proxies.

2.2.2 On-Accelerator Performance. The rise of high-performance
hardware accelerators has substantiated calls for accelerator-aware
model search, aiming to optimize both model-specific metrics, such
as accuracy, and device-specific metrics, such as throughput [5].
HW-NAS-Bench [9] was the first NAS benchmark that offered per-
formance results for hardware platforms on NASBench-201 [3] and
FBNet spaces; however, the benchmark suffers from unrealistic eval-
uation owing to the use of proxy datasets combined with analytical
hardware performance results. The benchmark uses an unrealistic
approximation of summing up the performance of unique blocks of
the model rather than end-to-end performance measurements, lead-
ing to inaccurate results. Similarly, BRP-NAS [4] offered latency

Accel-NASBench: Sustainable Benchmarking for Accelerator-Aware NAS DAC ’24, June 23–27, 2024, San Francisco, CA, USA

measurements on the NASBench-201 space; however, the small
size of the search space (only 16k models) combined with proxy
datasets yield unreliable evaluation results. We use ImageNet2012,
the de-facto large-scale dataset for visual recognition problems,
combined with end-to-end throughput/latency measurements on
various high-performance accelerators to offer results that are real-
istic and the resulting models deployable in real-world scenarios.

3 METHODOLOGY
In this section, we formulate our problem, aiming to reduce the
benchmark construction costs for large-scale datasets. We then
utilize our proposed technique to collect datasets for training and
validating the surrogate predictors in an efficient manner.

3.1 Search Space and Dataset
To demonstrate our proposed techniques, we use a popular search
space utilized byworks that perform direct NAS using ImageNet2012,
the MnasNet search space [15]. We do this to show that the bench-
mark allows zero-cost discovery of high-quality models that exceed
models like EfficientNet-B0 in accuracy and on-device performance,
a state-of-the-art model in this space. The lower bound on the true
cost of search on this search space using the ImageNet2012 dataset
is estimated to be over 91k GPU-hours (see [17]).

The MnasNet search space is a hierarchical block-based search
space consisting of seven sequentially connected blocks/stages,
each block hosting a certain number of mobile inverted bottleneck
layers. Each block has a searchable kernel size 𝑘 and the number
of layers 𝐿 in the stage. Squeeze-excitation 𝑠𝑒 is also searchable
for each block. Expansion factor 𝑒 can take values in {1, 4, 6} while
kernel size 𝑘 can take values in {3, 5} for each block. The number of
layers 𝐿 in each block can take values in {1, 2, 3}. The search space
holds roughly 1011 unique models. We utilize ImageNet2012 owing
to its size and complexity, which yields generalizable models that
can be deployed in real-world scenarios.

For experiments with additional search spaces and datasets for
generalizability studies, please see our GitHub repository.

3.2 Search for Training Proxies
The basis of our work is the fact that during the search phase of
NAS, the optimizer aims to obtain architectures that are highly
ranked in terms of their performance rather than obtaining their
true performance. Hence, approximations that lead to a reduction in
the compute cost of evaluation are acceptable as long as they do not
significantly impact the rankings of architectures relative to their
true ranks. One such approximation is training proxies, utilized in
hyperparameter optimization (HPO) for estimating model perfor-
mance. A training proxy is a set of training hyperparameters that
estimates the true training process while being computationally
efficient. Examples of methods that use training proxies include suc-
cessive halving and hyperband as they use the model’s early-stage
performance as a proxy for true performance.

Given the aforementioned observation, we formulate our prob-
lem as an architecture rank-correlation maximization problem. We
aim to maximize the rank-correlation between true evaluation (i.e.,
using a reference, high-fidelity training scheme) and proxified eval-
uation (i.e., using a training scheme that uses approximations and

Uniform Sampler

Hyperparameter Space
b = {256, 384, 512, 768, 1024}

et = {10, 16, 24, 32, 40}
...

Optimizer
(Grid Search)

Sample n models

#
 p

ar
am

s

FLOPs

x x x x

x x x x

Random
Sampler

Ap, tp
Trainer

Scheme p

Ar
Trainer

Scheme r

Trainer
Scheme p*

 TPU

 GPU

 FPGA

Collected Datasets

Arch Acc
(%)

TPUv3
Thr

ZCU
Thr

62 1112 232

71 1213 246

67 1314 254

sample
p = {512, 24, ...}

Search Space

Search for proxified scheme

Dataset Collection for Accel-NASBench

Accuracy / On-Device Perf

Figure 2: (Top) Proposedmethod to search for proxified train-
ing scheme and (bottom) using the searched scheme (𝑝∗) and
hardware accelerators to collect datasets for construction of
Accel-NASBench.

sacrifices accuracy in favor of faster convergence), subject to a min-
imization constraint of training time under the proxified scheme:

max 𝜏 (A𝑝 ,A𝑟)
s.t. 𝑡𝑝 ≤ 𝑡spec

(1)

Where 𝜏 refers to Kendall’s tau rank correlation metric, A𝑝 and
A𝑟 are the vectors of top-1 accuracies of models in the search space
under training schemes 𝑝 and 𝑟 , the proxified and reference train-
ing schemes, respectively. 𝑡𝑝 is the average training time of the
models under evaluation using proxified training scheme 𝑝 , and
𝑡spec is a desirable upper limit on average training time. The vectors
A𝑝 and A𝑟 are of length 𝑛, which is the number of models un-
der evaluation, and contain the accuracy of corresponding models
using the two training schemes. For search, we utilize a uniform
grid of 𝑛 = 20 models selected based on FLOPs and # parameters,
sampled uniformly from the search space. This grid of models is
a representation of the search space owing to an even spread of
FLOPs and model size across the search space and encourages the
search to find generalizable solutions. A finer grid could be used,
but would increase the search cost. We use 𝑡𝑠𝑝𝑒𝑐 = 3 GPU-hours
based on available compute.

The search process is shown in Fig. 2 (top). The goal of the search
is to find a proxified training scheme 𝑝 = 𝑝∗ that satisfies Eq. 1.
The reference training scheme 𝑟 is an ‘ideal’ training scheme com-
monly employed for training models on the dataset being utilized
but cannot be used for benchmark construction due to its computa-
tional intractability2. It is fixed throughout the experiments hence
the vector A𝑟 is constant during search. 𝑝 , however, is the proxi-
fied training scheme that we optimize for and is parameterized by
training hyperparameters {𝑏, 𝑒𝑡 , 𝑒𝑠 , 𝑒𝑓 , 𝑟𝑒𝑠𝑠 , 𝑟𝑒𝑠𝑓 }. These hyperpa-
rameters pertain to 𝑏 batch size, 𝑒𝑡 total number of training epochs,
2We use a scheme from https://github.com/huggingface/pytorch-image-models

https://github.com/huggingface/pytorch-image-models

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Ahmad et al.

60 65 70
Top-1 Acc, reference r

50

55

60

65

To
p-

1
Ac

c,
 p

ro
xi

fie
d

p* KL div. = 8.09e 05
Kendall's Tau = 0.926
Spearman's Rank = 0.991
Mean Proxified = 2.56e 03
Mean Few-Proxy = 1.41e 03

0 2500
Train Cost (GPU-hours)

p*
r

~5.6x

Cost Comparison

Figure 3: Validation of 𝑝∗ using 120 random unseen mod-
els, trained using both 𝑝∗ and 𝑟 . Architecture rankings are
strongly correlated between the two schemes 𝜏 = 0.926.

𝑒𝑠 and 𝑒𝑓 start and finish epoch number for progressive resizing [7],
and 𝑟𝑒𝑠𝑠 and 𝑟𝑒𝑠𝑓 for start and finish input image resolution for
progressive resizing. All six training hyperparameters to optimize
are categorical hyperparameters with pre-specified values, and of-
fer a trade-off between convergence speed and accuracy. At every
search step, the optimizer selects a 𝑝 by sampling a value for each
of the six hyperparameters. The optimizer then obtains A𝑝 and 𝑡𝑝
by training each of the 𝑛 models using 𝑝 , and computes the rank
correlation 𝜏 . The resulting 𝜏 and 𝑡𝑝 can be used by the optimizer
to select better 𝑝 in future iterations.

Any viable optimizer can be used to perform this search and is not
the focus of this work. We chose to use a fairly trivial grid search
owing to the high degree of parallelism that it offers combined
with the low dimensionality of the hyperparameter space. Grid
search allows the evaluation of multiple proxy configuration 𝑝 to
be performed concurrently, with early stopping when the desired 𝜏
and 𝑡𝑝 are achieved. Hence, the search can be massively parallelized
over multiple GPU nodes.

This search results in a training scheme named 𝑝∗ that reduces
the training cost by roughly 5.6× (i.e., 𝑡𝑟

𝑡𝑝∗
≈ 5.6), while yielding

𝜏 = 0.94. We validate the resulting 𝑝∗ by evaluating 120 randomly
chosen, previously unseen models from the search space using
both 𝑝∗ and 𝑟 by training and validating each model three times
using different seeds. The results in Fig. 3 show the mean proxified
accuracies of these 120 models,A𝑝∗ , on the vertical axis against the
mean reference accuracies A𝑟 , on the horizontal axis, also plotted
are the error bars of the three runs. The validation 𝜏 = 0.926 shows a
strong architecture rank correlation between 𝑝∗ and 𝑟 , showcasing
the ability of the resulting training proxy 𝑝∗ to emulate the true
architecture ranks while being 5.6× cheaper.

3.3 Constructing Accel-NASBench
Having found proxy configuration 𝑝∗ that achieves a strong archi-
tecture rank correlation with the reference scheme while being
roughly 5.6× cheaper, we collect the datasets for training the surro-
gate models. Fig. 2 (bottom) shows the dataset collection pipeline.

3.3.1 Dataset Collection – Accuracy. We collect a dataset of {archi-
tecture, accuracy} pairs for roughly 5.2k randomly sampled archi-
tectures on the ImageNet2012 dataset using the proxy scheme 𝑝∗.
We used random sampling as existing works, such as NASBench-
301, have shown that unbiased surrogates (i.e., those trained using

only randomly sampled data) serve as strong predictors of model
performance. We utilized a compute cluster of 6 nodes, each with
4× RTX 3090 GPUs to collect this dataset. This incurs a cost of only
17k GPU-hours. The collected accuracy dataset is named ANB-Acc.

3.3.2 Dataset Collection – Throughput/Latency. For training the
performance surrogates, we perform on-device measurements of in-
ference throughputs of the 5.2k randomly sampled architectures on
6 accelerator platforms: Google Cloud TPUv2 and TPUv3, NVIDIA
RTX 3090 and A100 GPUs, and Xilinx Ultrascale+ ZCU102 and
Versal AI Core VCK190 FPGAs. We also performed latency mea-
surements on the FPGA platforms.

On cloud TPUs, we measure the inference throughput using
Torch/XLA after discarding the TPU warmup phase, which involves
XLA graph compilations and caching. We take throughput mea-
surement four times and use the average as the measured value.
Similarly, on GPU platforms, we discard warmup throughput mea-
surements and use the mean of two inference runs as the final
throughput value of the model. On FPGA platforms, the infer-
ence throughput and latency measurements are performed using
the Xilinx Vitis AI Deep-Learning Processing Unit (DPU) blocks,
which are pre-compiled hardware IPs offered to make the design
of FPGA inference accelerators easier. We performed 8-bit post-
training quantization of weights for the 5.2k models, followed by
cross-compilation for the target DPUs and the platforms.

The collected accelerator performance datasets on the 5.2k archi-
tectures are termed ANB-{device}-{metric}, where throughput
(Thr) metric is supported by all devices while latency (Lat) is sup-
ported only by FPGAs.

3.3.3 Surrogate Fitting – Accel-NASBench. Having the architecture,
accuracy, and on-device performance datasets in hand, we train
and compare the predictive performance of a variety of candidate
surrogates, including XGBoost, LGBoost, Random Forests, and SVR.

Table 1: Surrogate test
performance on ANB-Acc.
Model 𝑅2 KT 𝜏 MAE
XGB 0.984 0.922 3.06e-3
LGB 0.984 0.922 3.08e-3
RF 0.869 0.782 8.88e-3
𝜖-SVR 0.943 0.886 5.32e-3
𝜈-SVR 0.942 0.881 5.45e-3

We split the collected datasets
into train/val/test splits of ra-
tio 0.8/0.1/0.1 and utilize the
train/val splits for surrogate hy-
perparameter tuning. We rep-
resent the hyperparameters in
ConfigSpace [12] and utilize
SMAC3 [11] for finding the con-
figurations for the surrogates. Finally, we fit the surrogates on the
datasets using the train split and evaluate on the test split.

Table 2: XGB test perfor-
mance on ANB-{device}-
{metric}.

Dataset 𝑅2 KT 𝜏 MAE
ANB-ZCU-Thr 0.990 0.955 13.2
ANB-ZCU-Lat 1.000 0.987 5.2e-2
ANB-VCK-Thr 0.991 0.949 69.5
ANB-VCK-Lat 0.999 0.980 4.0e-2
ANB-TPUv3-Thr 0.975 0.905 29.1
ANB-TPUv2-Thr 0.994 0.962 14.4
ANB-A100-Thr 0.995 0.975 159.7
ANB-RTX-Thr 0.996 0.968 116.1

We evaluate the surro-
gates’ fit quality using the
coefficient of determination
(𝑅2), Kendall’s Tau rank cor-
relation 𝜏 , and mean abso-
lute error (MAE). As shown
in Table. 1, gradient-boosting
techniques outperform all
other surrogates in all three
evaluation metrics. We also
notice a similar trend in the
on-device performance surrogates. Table. 2 shows the performance
of XGBoost on the test datasets of ANB-{device}-{metric}.

Accel-NASBench: Sustainable Benchmarking for Accelerator-Aware NAS DAC ’24, June 23–27, 2024, San Francisco, CA, USA

(a) (b) (c)

(d) (e) (f)

Figure 4: Search using RL-based bi-objective optimization. Fig (a) shows the pareto-optimal front using simulated search on
accuracy-latency objectives. Fig (b)-(f) show the results of accuracy-throughput search on (b) ZCU102 and (c) VCK190 FPGAs,
(d) TPUv3, (e) A100 and (f) RTX 3090 GPUs. Also shown in red, magenta, and purple star markers are pareto-optimal solutions
hand-picked for evaluation. Legends show their performances predicted by surrogates.

(a) (b)

Figure 5: Comparison of trajectory of uni-objective search be-
tween (a) true and (b) simulated runs using Accel-NASBench.

4 EVALUATING ACCEL-NASBENCH
4.1 Evaluating the accuracy surrogate
We compare the trajectory of search using only the accuracy surro-
gate against true optimizer runs (using scheme 𝑝∗) on three popular
discrete NAS optimizers: Regularized Evolution (RE) [13], Random
Search (RS) [10], and REINFORCE [19]. The trajectories using sim-
ulated runs (i.e., surrogate-based) are averaged over five runs with
different random seeds; however, the true runs are only performed
once owing to the high evaluation cost of each run (similar to [14]).

4.1.1 Results. Fig. 5 shows the trajectory of (a) true and (b) simu-
lated search. The accuracy surrogate is able to mimic the behaviour
of true search as shown by the similarity in trajectories, with RS
predictably underperforming compared to REINFORCE and RE
owing to the high variability of model performance in the search
space. This is in contrast to the dense and highly predictable DARTS
search space in which RS is able to achieve near state-of-the-art per-
formance [10]. On MnasNet space, RS stagnates fairly early while
RE and REINFORCE achieve significantly better results. This is in
line with the findings of existing works (such as Siems et al. [14]).

4.2 Accel-NASBench for bi-objective search
We evaluate the performance of Accel-NASBench for bi-objective
accuracy-throughput (latency) RL-based search using REINFORCE
[19]. Towards this end, instead of comparing the search trajectory
between surrogates-based search and true search, we show that the
search results using surrogates yield models that are comparable
in accuracy and performance to those found by existing works
that perform true search [5, 16]. We do this to avoid the exorbitant
compute cost and complex instrumentation of true bi-objective dis-
crete RL-based search, which would require both accuracy and on-
device throughput measurements in a single, continuous pipeline.
Having not utilized any model or dataset proxies in the construc-
tion of Accel-NASBench, the search results can be compared di-
rectly against known high-quality models (such as Gupta and Akin
[5], Tan and Le [16]). We perform searches using the throughput
surrogates of five devices and the latency surrogate of ZCU102
FPGA. Fig. 4 (a) shows the pareto-optimal solutions resulting from
accuracy-latency bi-objective search using the ZCU102 FPGA la-
tency surrogate. Fig. 4 (b)-(f) shows the accuracy-throughput search
results targeting five accelerators.

Evaluation. Since the accuracy surrogate predicts the accuracy
under the proxified training scheme (𝑝∗) rather than the true accu-
racy, we evaluate a few hand-picked pareto-optimal solutions from
the searches by training using the reference training scheme 𝑟 , and
by performing on-device throughput/latency measurements. The
evaluation true accuracy and throughput/latency results are plotted
in Fig. 6 for the 5 hardware platforms. We compare the obtained
accuracy-throughput against existing state-of-the-art searched and
handcrafted models. Results show performance improvements com-
pared to accuracy-FLOPs optimization works such as EfficientNet-
B0 [16] and MobileNetsV3 [6]. For example, our effnet-vck190-a

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Ahmad et al.

(a) (b) (c)

(d) (e) (f)
Figure 6: Evaluation true results comparison against high-quality models on (a) accuracy-latency tradeoff on ZCU102, and
accuracy-throughput tradeoff on (b) ZCU102, (c) VCK190 FPGAs, (d) TPUv3, (e) A100 and (f) RTX-3090 GPUs. In red markers are
the evaluation results of our search using accuracy-throughput/latency bi-objective search using REINFORCE. The zero-cost
search using Accel-NASBench yields models that compare to known high-quality solutions in the MnasNet search space (e.g.,
EfficientNet-b0 and EfficientNet-EdgeTPU-S). Existing FPGA results obtained from Vitis-AI model zoo.

achieves 1.8% higher accuracy and 55.0% better throughput than
effnet-b0 [16], and 0.37% higher accuracy and 29.4% better through-
put than effnet-edgetpu-s [5], on the VCK190 FPGA platform.

Given the fact that surrogate-based zero-cost search is able to
find models that offer comparable accuracy-throughput trade-offs
against existing high-quality true search results, we conjecture
that the surrogates’ predictive distributions mimic the true accu-
racy/throughput distributions fairly accurately since the NAS opti-
mizer is able to effectively explore the well-performing regions of
the search space.

5 CONCLUSION
We presented an approach that allows for computationally effi-
cient construction of NAS benchmarks for large-scale datasets. The
presented approach searches for training proxies that maintain
architecture rankings relative to their true ranks while reducing
model training costs. Using the proposed approach, we built Accel-
NASBench, the first NAS benchmark for the ImageNet dataset,
which includes hardware accelerator performance benchmarks for
GPUs, TPUs, and FPGAs. We validated Accel-NASBench using a
suite of experiments with various NAS optimizers, hardware plat-
forms, and optimization objectives. We hope that our approach
will guide the development of more high-quality benchmarks for
large-scale datasets, and Accel-NASBench will serve as a useful
zero-cost tool for NAS researchers in evaluating their techniques.

REFERENCES
[1] Han Cai, Ligeng Zhu, and Song Han. 2018. Proxylessnas: Direct neural architec-

ture search on target task and hardware. arXiv:1812.00332 (2018).
[2] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A downsampled

variant of imagenet as an alternative to the cifar datasets. arXiv preprint
arXiv:1707.08819 (2017).

[3] Xuanyi Dong and Yi Yang. 2020. Nas-bench-201: Extending the scope of repro-
ducible neural architecture search. arXiv preprint arXiv:2001.00326 (2020).

[4] Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim,
and Nicholas Lane. 2020. Brp-nas: Prediction-based nas using gcns. Advances in

Neural Information Processing Systems 33 (2020), 10480–10490.
[5] Suyog Gupta and Berkin Akin. 2020. Accelerator-aware neural network design

using automl. arXiv preprint arXiv:2003.02838 (2020).
[6] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-

ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. 2019.
Searching for mobilenetv3. In ICCV.

[7] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive
growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196 (2017).

[8] R. Krishna, G. Hinton, et al. 2009. CIFAR-10 dataset. https://www.cs.toronto.edu/
~kriz/cifar.html.

[9] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You,
Qixuan Yu, Yue Wang, and Yingyan Lin. 2021. Hw-nas-bench: Hardware-aware
neural architecture search benchmark. arXiv preprint arXiv:2103.10584 (2021).

[10] Liam Li and Ameet Talwalkar. 2020. Random search and reproducibility for
neural architecture search. PMLR.

[11] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter.
2022. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter
Optimization. J. Mach. Learn. Res. 23, 54 (2022), 1–9.

[12] Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp,
Joshua Marben, Philipp Müller, and Frank Hutter. 2019. BOAH: A tool suite
for multi-fidelity bayesian optimization & analysis of hyperparameters. arXiv
preprint arXiv:1908.06756 (2019).

[13] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the aaai
conference on artificial intelligence, Vol. 33. 4780–4789.

[14] Julien Siems, Lucas Zimmer, Arber Zela, Jovita Lukasik, Margret Keuper, and
Frank Hutter. 2020. Nas-bench-301 and the case for surrogate benchmarks for
neural architecture search. arXiv preprint arXiv:2008.09777 (2020).

[15] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture
search for mobile. In CVPR.

[16] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In ICML. PMLR.

[17] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie,
Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, et al. 2020. Fbnetv2: Differentiable
neural architecture search for spatial and channel dimensions. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[18] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and
Frank Hutter. 2019. Nas-bench-101: Towards reproducible neural architecture
search. In International Conference on Machine Learning. PMLR, 7105–7114.

[19] Barret Zoph andQuoc V. Le. 2017. Neural Architecture Searchwith Reinforcement
Learning. arXiv:1611.01578 (2017).

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Background
	2.2 Challenges and Related Works

	3 Methodology
	3.1 Search Space and Dataset
	3.2 Search for Training Proxies
	3.3 Constructing Accel-NASBench

	4 Evaluating Accel-NASBench
	4.1 Evaluating the accuracy surrogate
	4.2 Accel-NASBench for bi-objective search

	5 Conclusion
	References

