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Abstract—Accurate power prediction in VLSI design is crucial for
effective power optimization, especially as designs get transformed from
gate-level netlist to layout stages. However, traditional accurate power
simulation requires time-consuming back-end processing and simulation
steps, which significantly impede design optimization. To address this, we
propose ATLAS, which can predict the ultimate time-based layout power
for any new design in the gate-level netlist. To the best of our knowledge,
ATLAS is the first work that supports both time-based power simulation
and general cross-design power modeling. It achieves such general time-
based power modeling by proposing a new pre-training and fine-tuning
paradigm customized for circuit power. Targeting golden per-cycle layout
power from commercial tools, our ATLAS achieves the mean absolute
percentage error (MAPE) of only 0.58%, 0.45%, and 5.12% for the clock
tree, register, and combinational power groups, respectively, without any
layout information. Overall, the MAPE for the total power of the entire
design is <1%, and the inference speed of a workload is significantly
faster than the standard flow of commercial tools.

I. INTRODUCTION

Power is an increasingly important objective in modern chip
design. As design complexity keeps scaling up, it is increasingly
costly for chip designers to get accurate power values of their design.
It is even more challenging to simulate time-based (e.g., per-cycle)
power values, which enables the analysis of peak power and power
fluctuations (Ldi/dt). As Fig. 1 shows, starting at a gate-level netlist,
designers need to complete the design whole layout process and then
employ target workloads (in .fsdb or .vcd format) to simulate time-
based power consumption based on commercial EDA tools [1], [2].
Both layout and power simulation can take days or even weeks for
large designs or workloads. In summary, accurate, efficient, time-
based power models are in high demand.

Prior Power Modeling Works. In recent years, various novel
data-driven power modeling techniques [3]–[9] have been proposed,
providing unprecedented early-stage and fast power evaluations based
on machine learning (ML) power models. Representative power
modeling works have been summarized in Table I. However, no prior
works can provide time-based power and generalize across different
designs simultaneously. We categorize existing power modeling so-
lutions into two main types:

• The first type of works (e.g., PRIMAL [3], APOLLO [4]) can
provide accurate and time-based power values, but they do
not support general cross-design models. Instead, they [3], [4]
require training a new design-specific power model from scratch
for each new design. This development process, especially the
label collection step, is highly time-consuming.

• The second type of works [5]–[9] can provide a general power
model that applies to new designs, which are unknown during
model training. Perhaps due to the difficulty of generalization,
none of these works further provide time-based power values.
Moreover, most of these works [5]–[7], [9] do not model power
based on different workloads. Instead, they only model the
average power value based on the propagation of user-defined
toggle rates (i.e., vectorless power values).

Fig. 1: Overview of ATLAS for time-based netlist power modeling.
Standard traditional power simulation for post-layout design is time-
consuming due to both layout steps and per-cycle power simulation.
ATLAS achieves significant acceleration over the standard flow.

In addition, many prior power modeling solutions [3]–[7] do
not model the ultimate power after design layout. For faster data
collection, they adopt power values simulated at the gate-level netlist
stage as labels, skipping the layout process. As a result, they are not
validated on capturing ultimate post-layout power, which is heavily
affected by many factors such as accurate metal wire capacitance,
timing optimization on netlist (e.g., buffer insertion, netlist recon-
struction), the clock tree, etc.

Our Solution ATLAS. In this work, we propose ATLAS, targeting
efficient evaluation of the time-based post-layout power of any given
gate-level netlist. To the best of our knowledge, ATLAS is the first
work that supports both time-based power simulation and general
cross-design power modeling. Moreover, ATLAS targets the most
accurate power label from layout stage and realistic designs (e.g.,
out-of-order CPU designs instead of small blocks). Compared with
standard simulation flow based on EDA tools, the general ATLAS
solution bypasses both the layout process and time-based power
simulation, achieving significant speedups.

ATLAS achieves unprecedented general time-based power model-
ing based on a customized pre-training and fine-tuning paradigm. It
proposes the following novel strategies:

• Sub-module generation: ATLAS first splits each design into

Power Models
Applied

Stage
Support

Workloads
Time-
Based

Cross-
Design

Target
Layout

PRIMAL [DAC’20] [3]
APOLLO [MICRO’21] [4]

RTL

Yes Yes No

No
Sengupta et al. [ICCAD’22] [5]

SNS [ISCA’22] [6]
SNS V2 [MICRO’23] [7]

No
No Yes

MasterRTL [ICCAD’23] [8] Yes
Yes

PowPredicCT [DAC’24] [9] Layout No

ATLAS Netlist Yes Yes Yes Yes
∗GRANNITE [10] estimates toggle rate instead of power, thus not listed
in the table. It is neither time-based nor targeting layout.

TABLE I: Summary of representative ML-based power models.



non-overlapping sub-modules. ATLAS will evaluate the per-
cycle post-layout power of each small sub-module.

• Pre-training: A general netlist encoder model is pre-trained
based on multiple self-supervised learning tasks without power
labels. The encoder, based on graph transformer, is trained by
guessing the masked toggle rate and node type, as well as
recognizing the alignment between regular post-synthesis netlist1

and the ultimate post-layout netlist. The encoder will encode
each sub-module into a general embedding (i.e., vector) with rich
design information. Such an informative embedding effectively
supports challenging power modeling tasks.

• Fine-tuning: Based on the embedding from the pre-trained
encoder, we fine-tune different lightweight models for three
power groups: combinational logic, register, and clock tree.

We evaluate ATLAS on different designs with 300K to 600K cells
under realistic workloads. ATLAS achieves high accuracy in per-
cycle power modeling, with only < 1% error percentage on average.
ATLAS is up to 1000× faster than the traditional commercial flow
by bypassing both the layout process and standard time-based power
simulation. The results indicate the superior predictive capability of
ATLAS, demonstrating its effectiveness in cross-stage, cross-design,
and time-based power prediction.

II. METHODOLOGY OVERVIEW

This section provides an overview of ATLAS. ATLAS includes
three major steps: design netlist preprocessing (Sec. III and Fig. 2),
pre-training (Sec. IV and Fig. 3), and fine-tuning (Sec. V and Fig. 4).

Preprocessing (Sec. III). The flow begins with netlist preprocess-
ing, preparing the dataset for ATLAS pre-training. In this step, we
split each design in the gate-level netlist into many non-overlapping
sub-modules. We transform each sub-module into the graph format
and annotate related features (e.g., cell type, cell power from liberty
file) to each node (i.e., cell instance). During training, the pre-
processed data will be adopted to pre-train the encoder. During
inference, ATLAS will encode each sub-module and predict its per-
cycle power value.

Pre-training (Sec. IV). The pre-training step will train a general
circuit encoder, targeting two general learning goals: 1) recognizing
the structure and functionality of netlists; 2) learning the alignment
between netlist and layout. This encoder is pre-trained with five
novel and customized self-supervised tasks to recognize the inherent
semantics and structures of sub-modules, without relying on any
power labels. After the pre-training, the encoder is expected to capture
the transformations made on each sub-module (e.g., buffer insertion,
reconstruction, clock tree) during layout and encode the information
into its output embedding vector.

Unlike previous self-supervised learning tasks on netlists [11]–[13]
that only target combinational circuits, we target realistic sequential
designs. Moreover, we incorporate per-cycle toggle information into
one of the five self-supervised learning tasks, allowing ATLAS to
learn about signal propagation.

Fine-tuning (Sec. V). The final step of ATLAS fine-tunes different
lightweight models for three different power groups: combinational
logic, sequential logic, and clock network. These models leverage the
embedding vectors generated during pre-training as input, generating
fine-grained per-cycle power value of each power group for each sub-
module. Summing up all power groups of all sub-modules provides
the total power for each cycle.

1In this manuscript, if not explicitly described, by default “netlist” refers to the
post-synthesis gate-level netlist before layout. The post-layout netlist (with
timing optimization and clock tree) will be explicitly mentioned.
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Fig. 2: Netlist Preprocessing of ATLAS. The preprocess includes circuit
segmentation in both gate-level netlist Ng , N+

g and post-layout netlist
Np. N+

g represents a Boolean-equivalent expression of Ng and both
are functionally equivalent with similar circuit structures. For each sub-
circuit gi in Ng , there exists an equivalent gate-level expression g+i and
a transformed expression pi after layout.

III. NETLIST PREPROCESSING

The netlist preprocessing step is essential for preparing the dataset
used in ATLAS. This involves generating netlists from different stages
and collecting key features that facilitate effective learning.

A. Sub-module Format

Fig. 2 illustrates the netlist preprocessing process. Given a gate-
level netlist Ng , we split it into a set of non-overlapping sub-
modules Ng ∈ {g1, g2, ..., gi}. Then this original netlist Ng will be
transformed to a corresponding post-layout netlist Np, which will
similarly yield a set of sub-modules Np ∈ {p1, p2, ..., pi}. During
this standard layout process, the netlist will be optimized for better
timing through buffer insertion, netlist reconstruction, etc. Also, the
clock tree will be synthesized and added to the design.

Most previous works on circuit quality prediction [6]–[8] choose
to split circuits into multiple logic cones, then model the PPA of each
logic cone. Each input code corresponds to one flip-flop, including
all input logic and flip-flops that drive it. In comparison, we split the
circuit into sub-modules, and then encode and evaluate the power of
each sub-module. This approach offers obvious advantages:

Non-overlapping: Works [6]–[8] based on logic cones unavoid-
ably involve significant overlapping between different cones, making
them actually inappropriate for power modeling. The significant logic
overlap will make the summing up of the power of each cone much
larger than the total design power. In contrast, our approach uses non-
overlapping sub-modules defined by specific functional roles. We can
accurately estimate the power of a larger component or the whole
design by summing the powers of all its constituent sub-modules.

Fine-grained Analysis: By splitting based on sub-module, the
ATLAS model achieves fine-grained predictions not only in terms
of time but also at the component level. Since each sub-module is
determined by the inherent functionality of the netlist, the power of
each sub-module provides fine-grained feedback to designers.

B. Netlist Collection for Self-supervised Learning

To support the learning of the general intrinsic netlist information
across stages, we will collect different netlists during preprocessing.
The collected netlists will be applied in self-supervised encoder pre-
training in the next step. As shown in Fig. 2, we will generate three
types of netlist for model pre-training: Ng , Np and N+

g . The Ng is
the original gate-level netlist by synthesizing RTL code. The N+

g and
Np are introduced below.



1) For recognition of structure and functionality: By applying
logic-invariant transformations on Ng , we can derive another gate-
level netlist N+

g , which has the same functionality but a different
structure. As a basic property of circuits, different gate-level netlists
can implement the same functionalities. Our encoder model will
learn the structural and functional similarities among sub-modules by
recognizing structures with the same functionality. During encoder
pre-training, as we will introduce, Ng provides original samples,
while N+

g provides corresponding positive samples. Sub-module that
differs from the target sub-module serves as a negative sample.

2) For alignment with the layout stage: We employed commer-
cial tools to perform layout on Ng , with each layout step involving
optimization. Ultimately, we obtained the post-routing design layout,
and we refer to the corresponding post-layout netlist as Np. During
encoder pre-training, as we will introduce, the objective is to learn the
cross-stage alignment between Ng and Np, making the embedding
of the gate-level netlist Eg to capture and reflect the information of
post-layout netlist Ep.

C. Feature Collection

We split all netlists from Section III-B into sub-modules. Then
we convert each sub-module to a directed graph (DG). Each node
corresponds to each cell instance and directed edges are the wires
connecting these nodes. By representing sub-modules as DGs, we
will leverage the advantages of graph transformer models to capture
the circuit structures and semantics.

After converting all sub-modules to DGs, we proceed to collect
features for every graph node. To benefit the subsequent learning
process, we have carefully selected four types of features: Node Type,
Per-cycle Toggle, Cell Internal and Leakage Power.

1) Node Type: We categorize all cells according to their func-
tionality into 18 types, using one-hot encoding to represent the cell
type. ATLAS will learn to recognize the node type and node type
effectively conveys each cell’s functional characteristics.

For example, the clock tree in post-layout netlist Np involves the
interconnection of many clock-related cells, such as Clock Buffer,
Clock AND, and Clock Multiplexer, all categorized as the CK type
by us. By learning to recognize masked CK-type nodes during pre-
training, the encoder is guided to capture the effect of the clock tree.

2) Per-cycle Toggle: Per-cycle toggle represents switching activity
at a node’s output port during a specific timestamp under real work-
loads. Including a per-cycle toggle aims for ATLAS to learn the signal
propagation relation between nodes and to predict signal propagation.
During the pre-training, the encoder will learn by predicting the
masked toggle behavior.

3) Cell Internal and Leakage Power: For each cell instance, both
internal and leakage power values will be parsed from the lookup
tables in the .lib files from the technology library according to its
cell type. These standard cell power values provide important cell
information and are directly power-related.

IV. ATLAS PRE-TRAINING

ATLAS trains a general circuit encoder to convert each sub-module
into a representation. Fig. 3 illustrates the entire self-supervised
pre-training process of the encoder model based on efficient graph
transformer [14]. The encoder will generate an embedding for each
individual node, as well as an additional overall graph embedding for
the whole input graph (i.e., corresponding sub-module).

The encoder is pre-trained on the unlabeled circuit dataset, tar-
geting the following two general learning goals: 1) recognizing the
structure, functionality, and toggle propagation of netlists; 2) learning
the alignment between netlist and layout. The encoder is expected to

Fig. 3: ATLAS Pre-training. This framework employs a self-supervised
and cross-stage flow that incorporates two types of contrastive learning.
Additionally, ATLAS includes predictions for [MASK TOGGLE] ([MT]) sub-
module size and [MASK NODE TYPE] ([MN]).

encode the learned information into its output embedding vector. To
achieve this, we carefully designed five encoder pre-training tasks: ❶

Masked toggle propagation learning; ❷ Masked node type learning;
❸ Sub-module size learning; ❹ Gate-level netlist contrastive learning;
❺ Cross-stage alignment contrastive learning.

Our proposed five self-supervised learning tasks can be roughly
categorized into three types, as summarized below.

1) Masked node recovery (Tasks ❶, ❷). We will mask (i.e.,
hide) important node properties (e.g., type, toggle) of randomly
selected nodes. A temporary MLP-based classification head
will predict the masked node properties based on the encoder-
generated node embedding. During pre-training, the encoder and
classification head (to be discarded after pre-training) will be
trained end-to-end to maximize accuracy. The encoder will thus
learn to encode the structural information of connected circuit
operators within the circuit graph.

2) Size recognition (Task ❸). A temporary MLP-based regression
head will predict the total number of nodes in the given graph
(i.e., sub-module netlist) based on encoder-generated graph
embedding. During pre-training, the encoder and regression head
(to be discarded after pre-training) will be trained end-to-end
to maximize accuracy. The encoder will learn to encode more
global graph information in the overall graph embedding.

3) Netlist contrastive learning (Tasks ❹, ❺). The encoder will
be trained to minimize the embedding distance of netlists of
the same sub-module with the same functionality (i.e., positive
samples), while maximizing the embedding distance of different
sub-modules (i.e., negative samples).

We formally introduce and formulate each learning task below.
Task #1 Masked toggle propagation learning: To train our

encoder model to handle per-cycle workloads, we mask the per-cycle
toggle information of randomly selected nodes. A temporary MLP
classifier will predict whether the masked node is toggling based
on encoder-generated node embeddings. This pre-training task trains
the encoder to capture the toggle information and the propagation of
toggles. Specifically, we randomly mask the toggle feature (0 or 1)
of selected nodes and replace it with a special token [MASK TOGGLE].
Subsequently, we predict whether these nodes will toggle based on
the embedding of the masked node, which also captures neighbor-
ing nodes’ information. We represent the input circuit in masked
graph format as Ĝ. The ground-truth toggle feature of the masked
nodes is represented by tmsk

Ĝ
. The predicted toggle feature for the

masked nodes is represented by pmsk(Ĝ), which is based on node
embeddings2. The objective is to minimize the ross-entropy (CE) loss

2To simplify the formulation, the encoder model does not directly appear in
the loss term in Eq. (1). The prediction pmsk(Ĝ) is based on encoder model.



between tmsk
Ĝ

and pmsk(Ĝ), as expressed in the following formula:

L#1
MT = EĜ∼DCE

(
tmsk
Ĝ , pmsk(Ĝ)

)
(1)

where EĜ∼D represents the expectation E over the circuit graph
dataset D.

Task #2 Masked node type learning: Similar to the toggle task,
we randomly mask the node type information and replace it with a
special token [MASK NODE TYPE]. A temporary MLP classifier will
predict the one-hot encoding for the masked node types based on
the embeddings of the masked node. The input circuit’s masked
representation is denoted as Ĝ, with the ground-truth type for the
masked nodes represented by cmsk

Ĝ
and the predicted type denoted by

qmsk(Ĝ). The objective is to minimize the cross-entropy (CE) loss
between the true one-hot encoding cmsk

Ĝ
and the predicted one-hot

encoding qmsk(Ĝ), expressed as:

L#2
MN = E(Eg)∼DCE

(
cmsk
Ĝ , qmsk(Ĝ))

)
(2)

Task #3 Sub-module size learning: The size of a circuit design
is often directly correlated with its overall power consumption.
We propose a pre-training task to recognize the size of each sub-
module. A temporary MLP regressor will predict the number of nodes
(Numpre) in the whole graph (i.e., cell count in sub-module) based on
the overall graph embedding. The objective is to minimize the MSE
between predicted node number Numpre and the actual number of
nodes Numtrue:

L#3
Size = EĜ∼D

[
(Numpre − Numtrue)

2] (3)

Task #4 Gate-level netlist contrastive learning: To capture
the functionalities of each sub-module, we employed contrastive
learning on the netlist. Specifically, for the gate-level netlist Ng with
many sub-modules gi, we generate another N+

g through functionally
equivalent transformations. N+

g provides new sub-modules g+i with
identical functionalities but different structures. At this task, we con-
sider gi and g+i as a pair of positive samples. All other sub-modules in
the batch that exhibit different functionalities are treated as negative
samples (g−i ) of gi. The contrastive objective pulls functionally
similar sub-modules closer together in their respective embedding
spaces while pushing dissimilar sub-modules further apart. We denote
the embeddings of gi, g+i , and g−i as Eg , E+

g , and E−
g , respectively.

Specifically, we minimize the InfoNCE loss [15] used for sub-module
embeddings, defined as CL, as follows:

L#4
CL1 = E(Eg)∼DCL

(
Eg, E

+
g , E−

g

)
(4)

Task #5 Cross-stage alignment contrastive learning: For cross-
stage contrastive learning, similar to Task #4, we aim for gate-level
netlist Ng to be closer in the embedding space to the corresponding
post-layout netlist Np. This alignment task targets capturing layout
information from Np in netlist embedding. For such contrastive
learning, the original sample is still gi, while the positive sample
is pi, and the negative samples p−i comprise all other functionally
distinct sub-modules in the batch. We denote the embeddings of pi
and p−i as Ep and E−

p , respectively. We also adopt the InfoNCE loss
function for this purpose:

L#5
CL2 = E(Eg,Ep)∼DCL

(
Eg, Ep, E

−
p

)
(5)

Finally, we formulate the complete self-supervised pre-training
objective of our model by jointly employing the five tasks:

L = L#1
MT + L#2

MN + L#3
Size + L#4

CL1 + L#5
CL2 (6)

Regarding the encoder of ATLAS, traditional Graph Neural Net-

Fig. 4: ATLAS Fine-Tuning. The total post-layout power is divided into
different groups as three separate fine-tuning tasks, which are predicted
by three fine-tuning models. Other than embedding vectors Eg , ATLAS
uses cell internal power, cell capacitance, and node number as features,
avoiding the need for cumbersome feature engineering and complex
machine learning models.

works (GNNs) [16] and Graph Transformers [17] [18] can be
resource-intensive when applied to large-scale graphs. Considering
that some of our DGs contain tens of thousands of nodes, we employ
an efficient Graph Transformer, SGFormer [14], as the encoder for
ATLAS. In our DGs, SGFormer achieves propagation capabilities
across any node using a single global attention network of linear
complexity, while maintaining linear complexity with respect to the
number of nodes. Furthermore, it does not require positional encod-
ings, feature or graph preprocessing, or additional loss functions.

V. ATLAS FINE-TUNING

To apply pre-trained ATLAS on downstream power modeling tasks,
as shown in Fig. 4, we divide the total power into three power groups:
the clock tree power, the combinational logic power, and the register
power3. Each power group will be modeled by its respective fine-
tuning model, denoted as FCT , FComb, and FReg . These fine-tuned
power models differ from purely supervised methods by utilizing the
embedding Eg from the encoder as features, rather than relying on
cumbersome feature engineering and complex ML models to process
raw circuits.

Regarding the clock tree group, it is completely absent in the post-
synthesis netlist Ng and appears only in post-layout netlist Np, which
is unknown during inference. Therefore, we do not incorporate any
additional features in addition to the embedding. We rely solely on
the embedding Eg to predict the power of the clock tree group. This
approach will demonstrate that our encoder model has effectively
learned the alignment between Ng and Np.

For both combinational and register groups, we choose to combine
the embeddings Eg with additional relevant features available from
netlist Ng . For the combinational group, we utilize the number of
combinational nodes nComb of the post-synthesis netlist, along with
the total cell internal power IComb and total cell capacitance CComb

of the combinational group as features. The cell internal power and
cell capacitance of each node are collected from the lookup tables
in the .lib file of the technology library. To calculate the total cell
internal power IComb and total cell capacitance CComb, we multiply
each cell internal power and capacitance in the combinational section
by the per-cycle toggle of their output pins and sum up the results.

As for the register group, similar to the combinational group, we
adopt the number of register nodes nReg , the total cell internal power
IReg and total cell capacitance CReg of the register group from Ng

as additional features for fine-tuning.
As a result, our fine-tuning models are lightweight and easily

integrable, including tree-based models, such as XGBoost [19]. So

3Our register power group includes (and is dominated by) the power of the
clock pin in each register. Accordingly, our clock tree power group does not
include such register clock pin power.
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the significant differences in netlist power between gate level and layout.

the total predicted power is:

Ptotal = FCT (Eg) + FComb(Eg, nComb, IComb, CComb)

+ FReg(Eg, nReg, IReg, CReg)
(7)

VI. EXPERIMENTAL RESULTS

A. ATLAS Implementation and Experiment Data Generation

We implement our ATLAS using PyTorch and PyTorch Geometric
(PyG), a library built on top of PyTorch that facilitates writing and
training GNNs. Our pre-training is conducted on a Linux machine
equipped with an NVIDIA A6000 GPU, while the fine-tuning tasks
are performed on an Intel Xeon processor with 128GB of memory.

RTL simulation on workloads is based on Synopsys VCS®[20]
(VCS). The logic synthesis is executed at a clock frequency of 1GHz
using Synopsys Design Compiler®[21] (DC). In our experiments,
we utilized the TSMC 40nm standard cell library [22], along with
the corresponding Memory Compiler. We utilized the Innovus® to
perform mixed-size placement, clock tree synthesis, and routing, with
each step including timing optimization, ultimately resulting in the
chip design layout. After detailed routing with Innovus®, we dump
out the post-layout ultimate netlist and corresponding RC values
in Standard Parasitic Extraction Format (SPEF) files. We conduct
accurate layout-stage power simulation based on the post-layout
netlist, SPEF file, and different workloads (denoted as W1, W2). The
per-cycle ground-truth layout power simulation is performed based
on Synopsys PrimeTime PX® [1] (PTPX®).

In this work, we generated a dataset with six different realistic
designs (named C1 to C6 from smallest to largest) that support
workload simulation. Table II presents the cell count statistics for six
different designs at both the gate-level and post-layout stages. The cell
counts range from approximately 300,000 to 600,000, indicating their
difference. For the same design, the increase in cell count from the
gate-level stage to the post-layout stage reflects the impact of timing
optimization and clock tree synthesis during the layout process.

For ATLAS pre-training stage, our dataset comprises aligned 3,253
DG pairs of Ng , N+

g , N−
g and Np for each cycle. We employed four

C1 C2 C3 C4 C5 C6

Gate-level 289384 322664 389120 399486 465129 597877
Post-layout 301650 340923 412186 422391 494614 638666

TABLE II: The statistics of the gate counts for the six designs at the
gate-level and post-layout stages.

designs (C1, C3, C5 and C6) for training and two designs (C2 and
C4) for testing, ensuring absolute no overlap between the training
and testing designs. Ultimately, the number of DGs in the training
and testing datasets is 92,500 and 37,640, respectively. During the
encoder pre-training process, the five self-supervised tasks are trained
simultaneously for 60 epochs, requiring approximately 21 hours.
Despite such training runtime, please notice that the encoder only
needs to be pre-trained once and then applied to different designs.
We employ ReLU as the activation function and set the batch size
to 16, with a learning rate of 1e-4 using the Adam optimizer. In the
fine-tuning phase, we use XGBoost with 500 estimators and a depth
of 5, taking only several seconds for training.

B. Power Modeling Experiment Setup

Commericial Tool as Baseline. Our experiment will evaluate the
modeling accuracy and efficiency of per-cycle post-layout power
based on post-synthesis netlists (without any layout information).
Moreover, the tested design is strictly not seen by the power model
during training. As summarized in the introduction, prior works either
require a design-specific model for time-based power modeling [3],
[4] or can only evaluate the average power [5]–[9]. As a result, no
prior ML-based power models apply to this challenging cross-design
per-cycle power modeling task. Moreover, it is very challenging to
naturally adapt prior works to our brand-new tasks not supported
originally. Therefore, we choose to compare ATLAS with the standard
commercial tool at the post-synthesis netlist stage.

Exclusion of Memory Group from Results. In our analysis of power
consumption, memory (i.e., SRAM) accounts for almost half of the
total power in the entire design. But for this memory power group,
we can predict its power with very high accuracy, without too much
effort at the netlist stage. Since the SRAM macro is unchanged
during layout, we developed a basic ML model based on the toggle
activities of memory ports from workload, and energy values from
lookup tables in SRAM .lib files. Our model achieves an error
of only 0.5% without relying on any power simulators. Given such
high accuracy in memory power prediction, incorporating the memory
power model into ATLAS would lead to a lower error, but primarily
dominated by the memory group. To demonstrate the benefits of
our ATLAS effectively, we choose to exclude this easier memory
group in results. Instead, we focus on predicting the more challenging
other powers of the combinational, clock tree, and register groups.



Design & Workload
Error Percentage of ATLAS Error Percentage of Gate-Level PTPX®

Combinational Clock Tree Register Clock Tree + Register Total Combinational Clock Tree Register Clock Tree + Register Total

C2
W1 4.37% 0.17% 0.27% 0.18% 0.61% 70.62% 100% 2.36% 31.94% 27.79%
W2 5.35% 0.15% 0.32% 0.22% 0.57% 71.01% 100% 2.22% 31.93% 27.81%

C4
W1 5.41% 1.07% 0.54% 0.41% 0.80% 67.92% 100% 2.34% 29.17% 24.60%
W2 5.34% 0.93% 0.68% 0.67% 1.13% 69.36% 100% 2.44% 29.23% 25.08%

Average 5.12% 0.58% 0.45% 0.37% 0.78% 69.73% 100% 2.34% 30.57% 26.32%

TABLE III: MAPE (%) of design C2 and C4 under two workloads W1 and W2.

As introduced Section V, we implemented three corresponding fine-
tuned models: FCT , FComb, and FReg .

We evaluate the accuracy of per-cycle power modeling with Mean
Absolute Percentage Error (MAPE) between label Yi and prediction
Ŷi, assuming altogether m cycles in the tested workload.

MAPE =
1

m

m∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣× 100% (8)

C. Power Prediction Results
Fig. 5 visualizes power prediction results (ATLAS) and the actual

power values (Labels) over 300 cycles for testing designs C2 and
C4, under workload W1. For comparison, we present the commercial
tool’s simulation result on exactly the same gate-level netlist and
workload (Gate-Level PTPX®). For both C2 and C4, the overall
power trace shapes of ATLAS across the three power groups closely
resemble the labels, with the total MAPE being only 0.61% and
0.80%, respectively. In comparison, the gate-level PTPX® error is
higher than 25% for both designs. Its power trace also differs
significantly from the label. This error shows the gap between the
power of the gate-level netlist and the power of the ultimate layout.

In Table III, we provide a more comprehensive comparison of
results for ATLAS and Gate-Level PTPX®, which displays the MAPE
for different power groups under both workloads W1 and W2. Gate-
Level PTPX® still exhibits the > 25% prediction accuracy in total
power in all cases, while ATLAS shows < 1% error.

In terms of the most challenging combinational group prediction,
ATLAS shows an average MAPE of 5%, while Gate-Level PTPX®

has a considerably higher MAPE of 69%. Since there is no clock tree
in the gate-level netlist, Gate-Level PTPX® shows a MAPE of 100%.
ATLAS demonstrates a remarkably low MAPE of only 0.58%.

In summary, standard commercial tools at the gate-level stage show
> 25% error on time-based layout power due to the lack of layout
information. ATLAS, by pre-training and fine-tuning, well captures
the potential impact of layout and demonstrates a remarkable < 1%
error for the per-cycle power of new circuit design.

Fig. 6 further illustrates the ATLAS-predicted power of five major
components in the design C2. The prediction of each component’s
power is the summation of the predicted power of all its sub-
modules. Combined with the layout, the component power predictions
further provide power distributions on the layout. In the table on
the right of Fig. 6, we present each component’s labels, ATLAS
power predictions, and the associated MAPE values. It is evident that
the power predictions vary across different components, with some
over-estimation and others under-estimation. The component error is
slightly higher than total power but mostly maintained < 5%.

D. Runtime Comparison
Table IV presents the time taken for back-end processing using

Innovus, the time for power simulations using PTPX®, and the
time taken by ATLAS to directly predict power. Here we included
the runtime used for the entire preprocessing step in ATLAS. We
calculated the average time (in seconds) for six designs. Compared
with the complete traditional flow that performs both complete layout
and time-based power simulations, ATLAS finished estimating the
300-cycle workload with > 1000× less runtime.

C2 
Component Label (W) ATLAS (W) MAPE (%)

frontend 0.1894 0.1898 1.01

lsu 0.0217 0.0229 5.59

ptw 0.0094 0.0092 2.07

dcache 0.0551 0.0551 1.44

core 0.1821 0.1791 1.68

C4 
Component Label (W) ATLAS (W) MAPE (%)

frontend 0.1934 0.1886 2.43

lsu 0.0321 0.0338 5.68

ptw 0.0097 0.0093 4.37

dcache 0.0580 0.0554 4.55

core 0.2429 0.2479 2.13C4

C2

Fig. 6: Component-level power analysis of C2 under W1, illustrating the
division into five major components, each comprised of their respective
sub-modules, highlighting ATLAS’s accuracy in the component level.
C2 is an out-of-order CPU design, its main components include the CPU
frontend, load-store unit (LSU), data cache (dcache), etc.

Design
ATLAS Traditional Flow

Pre. Infer Total P&R Simulation Total

C1 62 3.2 65.2 46392 96 46488

C2 66 4.8 70.8 55327 98 55425

C3 67 4.1 71.1 69624 105 69709

C4 72 4.6 76.6 79836 112 79948

C5 75 5.1 80.1 105742 131 105873

C6 86 4.9 90.9 124860 156 125016

Average 72 4 76 80297 116 80413

TABLE IV: Runtime (in seconds) comparison for 300 cycles extracted
from W1. Column names represent: Pre. (Data Preprocessing), Infer
(Inference), Simulation (Time-based Power Simulation).

In summary, compared to standard design flow based on commer-
cial tools, ATLAS offers three significant advantages: ❶ it eliminates
the need for the time-consuming layout process; ❷ it reduces the time
required for per-cycle power simulation; ❸ the accuracy of power
predictions for post-layout netlists by ATLAS far exceeds that of
Gate-Level PTPX® at the early-stage of gate-level netlists.

VII. CONCLUSION

In this paper, we propose ATLAS, a pioneering framework for
fine-grained per-cycle power prediction. ATLAS is the first work
that supports both time-based power simulation and general cross-
design power modeling. It achieves unprecedented general time-based
power modeling based on a customized pre-training and fine-tuning
paradigm. When evaluated on the prediction of per-cycle post-layout
power based on gate-level netlist, ATLAS achieves a remarkable
MAPE of < 1% for total power estimation with inference speeds
that are > 1000× faster than traditional flow.
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