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Abstract—Power efficiency is a critical design objective in modern
CPU design. Architects need a fast yet accurate architecture-level
power evaluation tool to perform early-stage power estimation. However,
traditional analytical architecture-level power models are inaccurate. The
recently proposed machine learning (ML)-based architecture-level power
model requires sufficient data from known configurations for training,
making it unrealistic.

In this work, we propose AutoPower targeting fully automated
architecture-level power modeling with limited known design config-
urations. We have two key observations: (1) The clock and SRAM
dominate the power consumption of the processor, and (2) The clock
and SRAM power correlate with structural information available at
the architecture level. Based on these two observations, we propose the
power group decoupling in AutoPower. First, AutoPower decouples across
power groups to build individual power models for each group. Second,
AutoPower designs power models by further decoupling the model into
multiple sub-models within each power group. In our experiments,
AutoPower can achieve a low mean absolute percentage error (MAPE)
of 4.36% and a high R2 of 0.96 even with only two known configurations
for training. This is 5% lower in MAPE and 0.09 higher in R2 compared
with McPAT-Calib, the representative ML-based power model.

I. INTRODUCTION

Power efficiency is a critical design objective in modern CPU
design, and its optimization relies on efficient power evaluation.
However, as the complexity of processors keeps scaling up, standard
VLSI power evaluation flow requires increasing time. The standard
power evaluation flow goes through RTL implementation, RTL
simulation, logic synthesis, and power simulation [1]. Completing
such a power evaluation flow can take weeks, seriously hindering
early microarchitecture optimization and design space exploration.
Architects need a fast yet accurate architecture-level power evaluation
to support the early optimization of CPU microarchitecture.

Analytical Power Model: Classical architecture-level power mod-
els such as McPAT [2] and Wattch [3] are analytical models [4]
designed by engineers for a specific type of processor1. However,
as processor architecture keeps updating, the analytical power model
can hardly reflect the design of new processors. As mentioned in
many studies [4]–[6], directly applying McPAT on the new generation
of CPUs incurs unacceptable errors [4]. Therefore, it is usually
necessary to modify McPAT for each target architecture, requiring
huge engineering effort and time overhead.

Machine learning (ML)-based Power Models: In recent years,
ML-based architecture-level power models [6], [7] are trained to
predict the CPU power consumption based on hardware parameters
and event parameters. However, training an accurate ML-based model
requires a large number of samples with golden power labels. In prac-
tice, it is time-consuming to go through a standard power evaluation
flow to collect golden power labels. More importantly, the number of
available configurations is also limited. Therefore, these data-hungry
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1Engineers carefully analyze the hardware behavior of each component when
relevant events occur to infer the activity of the hardware circuit, and then
utilize their own experience and experimental data to estimate the power
consumption of the component when relevant events occur.

Fig. 1: The framework of AutoPower. We have two key observations. (1)
Clock and SRAM dominate the power consumption. (2) Clock and SRAM
power correlate with structural information available at the architecture
level. Based on these observations, AutoPower decouples the power
modeling across different power groups and further decouples the power
model for each power group into multiple sub-models.

ML-based models are not applicable in real engineering scenarios.
Some recent ML works [4] proposed to reduce required training data
by unifying analytical models and ML-based models. However, [4]
relies on analytical resource functions, which are design-dependent
and heavily based on architect expertise. Therefore, there is still a
lack of a fully automatic power modeling method that only requires
limited known design configurations for training.

Goal: This work proposes our new solution named AutoPower2,
achieving both fully automatic and few-shot architecture-level power
modeling, 1) Fully automatic: The power modeling method does
not require any engineer-defined design-specific analytical power
model. 2) Few-shot: The model can achieve high accuracy with very
limited known configurations for training. As illustrated in Fig. 1.
Our solution is initially based on two key observations:

• Observation 1: Clock and SRAM dominate total power
consumption. The clock and SRAM dominate the power con-
sumption of the processor. Observation 1 in Fig. 1 shows power
percentage of each power group of RISC-V BOOM CPU [8]
measured at layout stage. It demonstrates that the clock and
SRAM dominate the power consumption of the processor.

• Observation 2: Clock and SRAM power correlate with
structural information available at the architecture level..
(1) Clock power mainly depends on clock pins in registers
and clock gating information. The number of registers and
the percentage of registers with clock gating are predictable
even at the architecture level. (2) SRAM in processors usually
follows a four-level hierarchy from top to bottom: component,
SRAM Position, SRAM Block, and SRAM Macro. Many design
components have some SRAM Positions that will be filled

2It is open-sourced at https://github.com/hkust-zhiyao/AutoPower



by SRAM-dominated structures (e.g., tables and queues). Each
SRAM Position consists of multiple SRAM Blocks that will
be defined in RTL implementations. SRAM Block is built up
with SRAM Macros supported by technology node library (i.e.,
SRAM compiler).

Power Group Decoupling in AutoPower: (1) Motivated by our
1st observation, AutoPower decouples the power models across power
groups, building individual power modeling methods for different
power groups including clock, SRAM, and logic. (2) Motivated by
our 2nd observation, within each power group, AutoPower further
decouples the modeling into multiple sub-models based on our
observed unique pattern of each power group.

AutoPower adopts innovative power modeling methods for each
power group as shown in Fig. 1. (1) For the clock, AutoPower is
the first architectural power model that explicitly considers clock
gating, an indispensable optimization that significantly reduces clock
power. Based on the structure of clock power, it proposes to decouple
the clock power modeling into the prediction of register count,
gating rate, and our pre-defined effective active rate. (2) For SRAM,
AutoPower estimates the power based on our proposed hierarchy
with a top-down approach. AutoPower transfers the feature from
components to SRAM Position, then applies the hardware model
and activity model to estimate hardware information and read/write
frequency at the SRAM Block level, and finally combines SRAM
Macro hardware information and read/write frequency with macro-
level mapping. (3) For the logic power, AutoPower decouples it into
register power (without clock pins) and combinational logic power,
with different modeling methods.

Contributions: Our contributions are summarized below.
• We propose a new architecture-level power modeling framework,

AutoPower, that decouples the power model across power groups
and within each power group. It requires no design-specific
engineer expertise and achieves high accuracy with only a few
training samples (i.e., few-shot learning).

• AutoPower proposes innovative power models for each power
group: 1) For clock power, AutoPower considers the clock gating
technology and decouples the model based on the structure
of clock power. 2) For SRAM power, AutoPower estimates
the SRAM Macro information and read/write frequency based
on our proposed four-level hierarchy. 3) For logic power, Au-
toPower adopts decoupled power for combinational logic and
register power respectively.

• We evaluate AutoPower based on 15 out-of-order RISC-V
CPUs with different configurations and 8 workloads. AutoPower
achieves a low MAPE of 4.36% and a high R2 of 0.96 on
average only using two known configurations for training. It
achieves 5% lower MAPE and 0.09 higher R2 compared with
representative prior works.

II. METHODOLOGY

AutoPower decouples the modeling into different power groups
including clock power, SRAM power, and logic power. Within
each power group, AutoPower further decouples the power models
into multiple simple sub-models based on the specific structural
information of each power group.

As an architecture-level power model, AutoPower only takes hard-
ware parameters and event parameters as input to calculate the power
consumption of the processor. Hardware parameters denoted as H
are the parameters to determine the processor configurations, such as
DecodeWidth and ICacheWay. Event parameters denoted as E are the
information collected from architecture-level performance simulators,

Fig. 2: The clock power includes the power of clock pins in the ungated
register (Ungated Pin Power), the power of clock pins in the gated register
(Gated Pin Power), and the power of clock gating cells (Gating Cell
Power). These three parts can be modeled with the register count, gating
rate, and effective active rate, which are estimated by ML models.

by simulating a workload with a certain CPU configuration, for
example, the number of cache misses and branch mispredictions.

We introduce our model for clock power (Sec. II-A), SRAM power
(Sec. II-B), and remaining logic power (Sec. II-C) in this section.

A. Power Model for Clock

Clock consumes a significant percentage of power, as shown in
Fig. 1. We devote a customized power modeling method for the clock-
related power. Such clock-related power is dominated by the internal
power of the clock pins in registers. Clock gating is one of the most
effective techniques for optimizing clock power, utilizing the clock
gating cells to gate the clock of the register. Therefore, AutoPower
takes the effect of clock gating into account.

Fig. 2 illustrates our clock power model, which decouples the clock
power into the power of clock pins in the ungated register (Ungated
Pin Power), the power of clock pins in the gated register (Gated Pin
Power), and the power of clock gating cells (Gating Cell Power).
To accurately model these three parts of the clock power, we further
decouple them into formulations represented by register count, gating
rate, and effective active rate. Therefore, ML models only require
estimating these three values, which have simpler correlations with
hardware parameters and event parameters.

Formulation of Clock Power: The clock power of a processor
with the clock gating technique consists of the register clock pin
power and the power of clock gating cells. The register clock pin
power includes the power of clock pins in the ungated register
(ungated pin power) and the power of clock pins in the gated register
(gated pin power). Denoting the clock power as Pclk, ungated pin
power as Pungated, gated pin power as Pgated, and the power of clock
gating cell as Pcell, the clock power can be formulated below,

Pclk = Pungated + Pgated + Pcell (1)

We further decouple the power of each part. To formulate it, we
denote the number of registers as R, the ratio between registers and
clock gating cells as r, the percentage of gated registers as g, the
clock pin power per register with active clock as preg, the pin power
of latch in clock gating cell as platch, and the average active rate across
all gated registers as α. We formulate Pungated, Pgated, and Pcell below,

Pungated =R ∗ (1− g) ∗ preg (2)

Pgated =α ∗R ∗ g ∗ preg (3)

Pcell = r ∗R ∗ g ∗ platch (4)

(1) For the ungated pin power Pungated in Eq. 2, the clock pin
keeps active for every cycle, regardless of the workload that is
executed on the processor. Therefore, the power is the multiplication
between the number of ungated registers R ∗ (1 − g) and the clock
pin power per register with active clock preg. (2) For the gated pin
power in Eq. 3, because of the clock gating, the clock pin can be



inactive for some cycles. Therefore, the active rate α should be
considered. (3) For the power of the clock gating cell in Eq. 4, it is
difficult to estimate all of these factors accurately at the architecture
level. However, in processors, the number of clock gating cells is
approximately proportional to the number of gated registers. Besides,
the negligible effect of the toggling of its control signal and the
number of registers connected with its output clock can be ignored
under the architecture-level power modeling scenarios. Therefore, the
power can be formulated as Eq. 4.

Putting them together, Eq. 1 can be expressed as below,

Pclk =R (1− g) preg + αRg preg + r R g platch

=R (1− g) preg + αRg preg (1 + r platch / preg) (5)

The reason why we do not directly estimate the number of ungated
registers and the number of gated registers is that the clock gating is
performed with the logic synthesis tools, which is difficult to predict
at the architecture level. In contrast, estimating the total number of
registers R and the gating rate g can be easier.

To facilitate the ML-based prediction, we further simplify α∗ (1+
rplatch/preg) as an effective active rate α′,

α′ =α ∗ (1 + r platch / preg) (6)

then Eq. 5 can be finalized as below,

Pclk =R (1− g) preg + α′Rg (7)

In Eq. 7, Preg can be looked up from the library file of the technology
node adopted for the VLSI flow. Therefore, we totally require three
prediction models. (1) register count prediction model Freg to predict
R, (2) gating rate prediction model Fgate to predict g, and (3) effective
active rate prediction model Fα′ to predict α′.

Prediction Model: We formulate the three prediction models
below,

R = Freg(H), g = Fgate(H), α′ = Fα′(H,E) (8)

Register count and gating rate of a processor are determined after
logic synthesis regardless of workload executed. Therefore, register
count prediction model and gating rate prediction model only take
hardware parameters of the component as input features. We adopt
ML models to learn the correlation. Because the correlation is usually
simple and we do not have sufficient samples for training, we adopt
the linear model with L2 normalization as our ML model. To collect
labels for training, we can collect the number of registers and the
number of gated registers from the netlists of known configurations.

Different from register count and gating rate, the active rate α
depends on both configuration and workload executed, which is the
same case for the effective active rate α′. Therefore, the effective
active rate prediction model takes both the hardware parameters and
the event parameters as input features. We also adopt the ML model to
learn the correlation. In contrast to the register count and gating rate
prediction where the correlation is relatively simple, this correlation
can be relatively complex. Besides, samples on known configurations
for training can be more than the register count and gating rate
because we can get multiple samples on a configuration by executing
different workloads. Therefore, we adopt a relatively advanced ML
model, XGBoost [9], to capture the complex correlation.

B. Power Model for SRAM

SRAM plays an important role in modern processors as the
backbone of several tables, such as the history table in branch
predictor and the metadata table in IFU, and caches. Its high power

consumption is caused by expensive SRAM access. To estimate the
SRAM power, we propose to explore the general hierarchy of SRAM
in modern CPUs. Our model targets to estimate the SRAM power
based on the SRAM Macro information, including the type, number,
and read/write frequency. Then the SRAM power can be accurately
estimated with the technology node library. Our SRAM power model
mainly consists of (1) a scaling-pattern-based hardware model to
estimate the number and shape of SRAM Blocks, (2) an activity
model to predict the read/write frequency of SRAM Block, and
(3) a macro-level mapping model to map the SRAM Block level
information to SRAM Macro level.

SRAM Hierarchy: As shown in Fig. 3(a), we propose to model
the SRAM power following our proposed general four-layer hierarchy
with a top-down approach:

Component → SRAM Position → SRAM Block → SRAM Macro

SRAM Position: At the architecture level, some components in-
clude one or more SRAM Position that are built from SRAM and
serve different functionalities. For example, in IFU, the Fetch Target
Queue has two SRAM Positions: 1) ghist, the SRAM structure for the
queue; 2) meta, the SRAM structure to store some other metadata.

SRAM Block: At the RTL design level, to build up an SRAM
Position, one or multiple identical SRAM Block will be used to
implement a single- or multi-bank structure. SRAM Block is a logical
SRAM with the shape and type required for building SRAM Position.
It is the lowest-level layer that is visible to microarchitecture and
independent of the support of the adopted technology node library.
For example, as shown in Fig. 3(a), the ghist consists of multiple
SRAM Blocks called ghist 0 ext.

SRAM Macro: At the VLSI implementation level, SRAM Macro is
the macro supported by the adopted technology node library. Memory
compiler in the technology node library cannot generate memory
macros with arbitrary shapes. Therefore, the SRAM Block with an
unsupported shape should be built up with multiple SRAM Macro
supported by the memory compiler. This step is microarchitecture-
invisible and is a part of the VLSI flow, where the VLSI flow usually
adopts an automatic script to generate a plan to build up each input
SRAM Block with the supported SRAM Macros.

Power Model Overview: For the ultimate calculation of the
SRAM power, we (1) transfer the feature from the Component to the
SRAM Position, (2) propose a hardware model and activity model to
estimate the hardware information and read/write frequency for the
SRAM Block based on the feature of SRAM Position, and (3) then
propose macro-level mapping to transform the SRAM Block level
estimation to the SRAM Macro level for ultimate power calculation.

Information at the SRAM Position Level: Similar to the Com-
ponent, the SRAM Position is also visible at the architecture level.
Therefore, the information at the SRAM Position level includes the
hardware parameter H and event parameter E of its component.

SRAM Block Hardware Model: The hardware model takes the
hardware parameter of an SRAM Position as input to estimate the
hardware information at the SRAM Block level, including the width,
depth, and count of SRAM Blocks to build the SRAM Position.

The estimation is challenging because input information only
includes high-level hardware parameters for SRAM Position. With
our observation of SRAM scaling in processors, we propose a scaling-
pattern-based hardware model for estimation.

Our insight is that the scaling of SRAM Blocks with respect
to hardware parameters H mainly follows two general patterns:
(1) Capacity scaling, the total SRAM capacity scales linearly with
a hardware parameter, and (2) Throughput scaling, the width or



Fig. 3: (a) SRAM power model follows a top-down four-level SRAM hierarchy of processor. For each SRAM Position in a component, SRAM
Block hardware model estimates hardware information of SRAM Blocks, and SRAM Block activity model estimates read/write frequency of SRAM
Blocks. Based on the estimation, macro-level mapping calculates hardware information and read/write frequency of SRAM Macros, then SRAM
Power can be estimated. (b) Illustration of macro-level mapping. It shows the relation between SRAM Block read/write and SRAM Macro read/write.

Training Config
Hardware Parameter Block Information

FetchWidth DecodeWidth FetchBufferEntry width depth count
C1 4 1 5 120 8 1

C15 8 5 40 240 40 1

TABLE I: The metadata table example for SRAM Block hardware model.
It includes two known configurations C1 and C15 for training.

number of SRAM blocks scales linearly with a hardware parameter
to provide more throughput. Based on the two scaling patterns, we
can automatically infer the number and shape of SRAM Block even
with limited known configurations during training.

The core of our hardware model is to detect which specific hard-
ware parameters the throughput or capacity linearly scales with and
scaling coefficient. Based on the information, we can get formulations
of width, depth, and count of the SRAM Block.

To detect these hardware parameters, the model tries all hard-
ware parameter combinations to fit a directly proportional func-
tion based on known configurations for training and selects the
best combination with minimal error. We take the metadata ta-
ble (meta) in IFU as an example. The hardware parameters
of the metadata table include FetchWidth, DecodeWidth, and
FetchBufferEntry. Table I shows the hardware parameters and
SRAM Block information of two known configurations for train-
ing. The hardware parameter combinations include {FetchWidth},
{DecodeWidth}, {FetchBufferEntry}, {FetchWidth, DecodeWidth},
{FetchWidth, FetchBufferEntry}, {DecodeWidth, FetchBufferEntry},
and {FetchWidth, DecodeWidth, FetchBufferEntry}. The model
checks each combination by fitting a directly proportional function
and gets its error. For example, when checking if the capacity scales
with {FetchWidth, DecodeWidth}, the model fits the function below,

Capacity = k ∗ FetchWidth ∗ DecodeWidth

The capacities, calculated by width * depth * count, of known
configurations are 120 * 8 * 1 = 1920 bit and 240 * 40 * 1 =
19200 bit, the FetchWidth * DecodeWidth are 4 * 1 = 4 and 8 *
5 = 40. Therefore, the model can get the k as 240 and the error
on two configurations for training as 0. This indicates the capacity
scales linearly with FetchWidth and DecodeWidth, and results in the
formulation of capacity as below,

Capacity = 240 ∗ FetchWidth ∗ DecodeWidth

Similarly, we can get the formulation of throughput and width,

Throughput = 30 ∗ FetchWidth, Width = 30 ∗ FetchWidth

Because count is the throughput divided by width, and depth is the
capacity divided by throughput, we can get the formulation of count
and depth,

Count = 1, Depth = 8 ∗ DecodeWidth

Based on the formulation of width, depth, and count, we can estimate

the SRAM Block information with only the hardware parameters.
The reason why we do not directly fit the width, depth, and count

is that these three values usually do not scale linearly with hardware
parameters in many SRAM Positions such as the table of ROB.

SRAM Block Activity Model: The activity model takes the
hardware and event parameters of the SRAM Position as input to
estimate the average read/write frequency of the SRAM Blocks.

Because the factors that determine the read/write frequency are
complex, we utilize an ML model for the activity model. The
input feature includes three parts: (1) hardware parameters of the
SRAM Position, (2) event parameters of the SRAM Position, and
(3) program-level features that are independent of microarchitecture,
such as the number of branch instructions. All prior works do not
take the program-level features into consideration. However, we find
that the inaccurate performance simulator is one of the root causes
of the low accuracy of the ML-based power model, therefore, some
microarchitecture-independent features that are not affected by the
performance simulator should be taken into account to improve the
model accuracy. To collect the labels, we extract the traces of the
read and write enable signals in RTL simulation to calculate the read
and write frequency. The ML model we utilized is XGBoost [9].

Macro-Level Mapping: Macro-level mapping takes the hardware
information and average read/write frequency of the SRAM Block as
input to calculate the hardware information and read/write frequency
of SRAM Macro. Hardware information of SRAM Macro includes
the shape and count of required SRAM Macros to build SRAM Block.

The hardware mapping takes the SRAM Block shape (i.e. width
and depth) as input to calculate the shape and count of SRAM Macros
to build up the SRAM Blocks. The mapping rule is a part of VLSI
flow such as BOOM VLSI flow [8]. It is available and unchanged
for all processors implemented with the same VLSI flow. Therefore,
given the estimated SRAM Block information, we can use the rule
to get the shape and count of SRAM Macros.

To map the read and write frequency to the SRAM Macro level,
we carefully analyze the building up of SRAM Block from SRAM
Macro and result in a formulation to estimate the SRAM Macro level
activity. Fig. 3(b) illustrates the activity of SRAM Macros when an
SRAM Block read or write is triggered. When reading the SRAM
Block, only the row of SRAM Macros that correspond to the address
will be read. Therefore, the average read frequency of SRAM Macro
fR

macro is that of SRAM Block fR
block divided by the number of SRAM

Macros used to form a column denoted as Ncol.
Different from the reading, when writing the SRAM Block, be-

cause of the masking adopted for writing, only the SRAM Macros
that correspond to a valid mask sector will be written. To get a unified
formulation for the read and write, we define “one write” to SRAM
Block as a write to SRAM Block with all masks valid. For example,
if an SRAM Block has two mask sectors, a write to this SRAM
Block has one mask valid and another invalid, we will record it as



0.5 write. This will be taken into consideration when collecting the
labels of write frequency for SRAM Block. Denoting the average
read and write frequency per SRAM Macro as fR

macro and fW
macro and

that per SRAM Block as fR
block and fW

block, based on the analysis in
Fig. 3(b), the macro-level mapping can be formulated below,

fR
macro = fR

block/Ncol, fW
macro = fW

block/Ncol (9)

Ultimate SRAM Power Calculated at the Macro Level: With the
number and types of SRAM Macros and the read and write frequency,
we can estimate the SRAM power given the read and write power,
denoted as PR and PW looked up from the technology node library.
The toggling of address and data pins also has power consumption,
but it only has a small contribution to the SRAM power compared
with the read and write. Therefore, it can be approximately regarded
as a constant. Denoting the SRAM power as PSRAM and power caused
by the toggling of address and data pins as C, we formulate the
SRAM power as below,

PSRAM = fR
macro ∗ PR + fW

macro ∗ PW + C (10)

where C can be estimated based on the golden power of an SRAM
Block collected from power simulation.

C. Power Model for Logic

AutoPower models the logic power by estimating the register
power and combinational logic power individually.

Power Model for Register: The register power is the power of
registers excluding its clock pin. Our register power model includes
a hardware model and an activity model.

In detail, hardware model Freg takes hardware parameters H as
input features and golden number of registers as labels. The activity
model Fact takes both hardware parameters H and event parameters
E of the component as input features. The active rate label is Preg/R.
The register power is the multiplication of Freg and Fact,

Preg = Freg(H) ∗ Fact(H,E) (11)

Power Model for Combinational Logic: Estimating the power
consumption of the combinational logic is challenging. Compared
with the clock, the SRAM, and the register, the pattern of combi-
national logic power is more complex. Besides, the combinational
logic has a variety of cell types with different power characteristics,
incurring the difficulty of decoupling.

Therefore, compared with directly decoupling along physical infor-
mation, we build a combinational logic power model that decouples
the power into a stable power and a variation. The stable power
is the power value that can reflect the general combinational logic
characteristics from the power aspect, where we adopt the average
power across all workloads in the fixed benchmarks for training. It is
a purely hardware-related model, only depending on hardware param-
eters. The variation is the ratio between combinational logic power
and stable power, which represents workload-specific information.

In detail, the stable model Fsta is trained based on the average
combinational power across all workloads Psta, with the hardware
parameters as input features. The variation model Fvar takes both
hardware parameters and event parameters as the input features and
the ratio between power and the stable power Pcomb/Psta as labels. The
combinational logic power prediction can be formulated as below,

Pcomb = Fsta(H) ∗ Fvar(H,E) (12)

Hardware Parameter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8
DecodeWidth 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

FetchBufferEntry 5 8 16 8 16 24 18 24 30 24 32 40 30 35 40
RobEntry 16 32 48 64 64 80 81 96 114 112 128 136 125 130 140

IntPhyRegister 36 53 68 64 80 88 88 110 112 108 128 136 108 128 140
FpPhyRegister 36 48 56 56 64 72 88 96 112 108 128 136 108 128 140

LDQ/STQEntry 4 8 16 12 16 20 16 24 32 24 32 36 24 32 36
BranchCount 6 8 10 10 12 14 14 16 16 18 20 20 18 20 20

Mem/FpIssueWidth 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2
IntIssueWidth 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5

DCache/ICacheWay 2 4 8 4 4 8 8 8 8 8 8 8 8 8 8
DTLBEntry 8 8 16 8 8 16 16 16 32 32 32 32 32 32 32
MSHREntry 2 2 4 2 2 4 4 4 4 4 4 8 8 8 8

ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4

TABLE II: The CPU configurations used in our experiment. It includes
15 BOOM CPU configurations with different scales.

Component BPTAGE BPBTB BPOthers ICacheTagArray ICacheDataArray ICacheOthers
Hardware
Parameter

FetchWidth
BranchCount

FetchWidth
BranchCount

FetchWidth
BranchCount

ICacheWay
ICacheFetchBytes

ICacheWay
ICacheFetchBytes

ICacheWay
ICacheFetchBytes

Component RNU ROB Regfile DCacheTagArray DCacheDataArray DCacheOthers

Hardware
Parameter

DecodeWidth
DecodeWidth
RobEntry

DecodeWidth
IntPhyRegister
FpPhyRegister

DCacheWay
MemIssueWidth
DCacheTLBEntry

DCacheWay
MemIssueWidth

DCacheWay
MemIssueWidth
DCacheTLBEntry

Component FP-ISU Int-ISU Mem-ISU I-TLB D-TLB FU Pool

Hardware
Parameter

DecodeWidth
FpIssueWidth

DecodeWidth
IntIssueWidth

DecodeWidth
MemIssueWidth

ICacheTLBEntry DCacheTLBEntry
MemIssueWidth
FpIssueWidth
IntIssueWidth

Component Other Logic DCacheMSHR LSU IFU

Hardware
Parameter

All MSHREntry
LDQEntry
STQEntry
MemIssueWidth

FetchWidth
DecodeWidth
FetchBufferEntry

TABLE III: Architecture-level hardware parameters for each component.

III. EXPERIMENTAL RESULTS

A. Experiment Setup

In our experiment, we adopt Chipyard [10] v1.8.1 to generate RTL
code. We utilize RISC-V BOOM CPU [8] with 15 configurations
with different scales for evaluation, as shown in Table II. Table III
lists the hardware parameters for each component. We have eight
workloads from riscv-tests [11] for evaluation, including dhrystone,
median, multiply, qsort, rsort, towers, spmv, and vvadd.

We performed RTL simulation, logic synthesis, and power simula-
tion with Synopsys VCS® [12], Synopsis Design Compiler® [13], and
PrimePower [1] respectively. Our VLSI flow is based on TSMC 40nm
standard cell library and associated Memory Compiler to generate
SRAM. To collect event parameters, we utilize gem5 [14] as our
performance simulator.

B. Power Prediction Results

1) Summary of Baseline Methods: We compare AutoPower with
the state-of-the-art architecture-level automatic power modeling
method McPAT-Calib [6] as our baseline. Besides McPAT-Calib, we
also include an extra baseline for the ablation study, McPAT-Calib
+ Component. McPAT-Calib + Component adopts the McPAT-Calib
as a building block and builds power models for each component
respectively. We select XGBoost [9] as the ML model adopted in
McPAT-Calib and McPAT-Calib + Component, as it is the best ML
model reported by McPAT-Calib [6].

2) End-to-End Power Model Accuracy: Fig. 4 and 5 visualize the
comparison between AutoPower with our baseline method, McPAT-
Calib, and the ablation study, McPAT-Calib + Component, when only
2 and 3 configurations are known for training when building the
power model. Each point represents a configuration with a workload,
points with the same configuration are in the same color. The com-
parisons demonstrate that AutoPower can consistently outperform
McPAT-Calib. Under the two scenarios, AutoPower can achieve the
highest R2 of 0.96 and 0.97, which is 0.07 higher on average than
McPAT-Calib with R2 of 0.87 and 0.91. AutoPower can also achieve
the lowest MAPE of 4.36% and 3.64%, which is 4.2% lower on
average than McPAT-Calib with MAPE of 9.29% and 7.07%. This
superiority is achieved by the suitable decoupling of AutoPower.
Fig. 6 shows the comparison results when comparing AutoPower



(a) McPAT-Calib (b) AutoPower
Fig. 4: Accuracy Comparison with 2 configurations for training.

(a) McPAT-Calib (b) AutoPower
Fig. 5: Accuracy comparison with 3 configurations for training.

Fig. 6: Summary of the comparison between AutoPower and other
methods under different numbers of known configurations for training.
“Comp” stands for Component.

Fig. 7: Detailed comparison of clock power prediction between
AutoPower− that directly utilizes the ML model and the AutoPower.

Fig. 8: Detailed comparison of SRAM power prediction between
AutoPower− that directly utilizes the ML model and the AutoPower.

with the extra baseline McPAT-Calib + Component. It demonstrates
that AutoPower can also outperform McPAT-Calib + Component
consistently. This ablation study further verifies that power group
decoupling is critical for accurate power estimation.

3) Clock Model Accuracy: To demonstrate the superiority of the
AutoPower compared with directly applying the ML model for each
power group, we provide another baseline, AutoPower−. It only
decouples the model across different power groups and only directly
adopts the ML model for the estimation of each power group.

Fig. 7 shows the prediction accuracy for the clock power and the
comparison with AutoPower−. It demonstrates that our proposed

Large Max Power Error (%) Min Power Error (%) Average Error (%)
Workload C2 C3 C4 C2 C3 C4 C2 C3 C4
GEMM 7.7 9.9 8.1 10.2 11.6 14.9 3.5 2.3 11.0
SPMM 10.6 13.3 14.1 14.7 18.8 20.7 2.0 3.5 8.7

TABLE IV: Summary of fine-grained time-based power trace prediction
results for large workloads with millions of cycles. It shows the percent-
age errors for maximal power, minimal power, and the average time-based
power prediction error.

clock power model can surpass AutoPower− which directly estimates
the clock power for most components. Clock power prediction is
challenging because of the lack of RTL-level information. Fig. 7
also shows that, with our proposed clock power modeling method,
even with limited features and limited training data, AutoPower can
still achieve a relatively low MAPE of 11.37% and a high correlation
coefficient R of 0.93 with 2 known configurations for training.

The high accuracy of clock power is contributed by the accurate
prediction of each sub-model. The prediction of the number of
registers R and gating rate g can achieve a low MAPE on average
with 6.93% with 2 known configurations.

4) SRAM Model Accuracy: Fig. 8 shows prediction accuracy
for SRAM power and comparison with AutoPower−. The results
demonstrate that SRAM power model in AutoPower can achieve a
higher accuracy compared with AutoPower− for most components.
It can achieve high accuracy even if only the architecture-level
information is available, with a low MAPE of 7.60% and a high
correlation coefficient R of 0.94, under 2 known configurations.

Such a high accuracy benefits from the accurate estimation of the
number of macros and the read/write frequency. Especially, with
our insight based on the scaling pattern of SRAM in processor
designs, our hardware model can accurately predict the SRAM
Block hardware information with a nearly 0 MAPE, and then it can
accurately model the SRAM Macro with the rule from VLSI flow.

5) Time-Based Power Trace Prediction for Large Workloads: Be-
sides average power, fine-grained time-based power trace prediction
is also critical for modern processor design. However, because of
the fine-grained information required for prediction, architecture-level
power trace prediction is challenging.

We adopt two large workloads with millions of cycles, GEMM
and SPMM, as our target workloads for time-based power trace
prediction. The length of the time step is 50 cycles. The model is
trained based on only two known configurations. Table. IV shows the
accuracy when applied to the C2, C3, and C4. It demonstrates that,
even for fine-grained time-based power trace prediction, our model
trained on two known configurations can still achieve a low MAPE
without tuning on additional time-based power trace data.

IV. CONCLUSION

In this work, we propose AutoPower targeting fully automated
architecture-level power modeling with limited known design con-
figurations. It decouples the modeling into different power groups
and further decouples the power models into multiple simple sub-
models based on the specific structural information of each power
group. AutoPower lowers the data requirement barrier, which is a
compelling addition to architects’ toolbox.
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