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Abstract—In electronic design automation, logic optimization operators
play a crucial role in minimizing the gate count of logic circuits.
However, their computation demands are high. Operators such as refactor
conventionally form iterative cuts for each node, striving for a more
compact representation - a task which often fails 98% on average. Prior
research has sought to mitigate computational cost through paralleliza-
tion. In contrast, our approach leverages a classifier to prune unsuccessful
cuts preemptively, thus eliminating unnecessary resynthesis operations.
Experiments on the refactor operator using the EPFL benchmark suite
and 10 large industrial designs demonstrate that this technique can
speedup logic optimization by 3.9× on average compared with the state-
of-the-art ABC implementation.

Index Terms—AND-Invert Graph, Logic Synthesis, Logic Refactoring,
Pruning, Machine Learning

I. INTRODUCTION

In logic synthesis, Boolean resynthesis is a technology-independent
process that optimizes a logic network to reduce its nodes and
levels [1]–[7]. It analyzes the Boolean expressions and iteratively
applies local transformations (e.g., operators) to the logic gates and
their interconnections. By leveraging these transformations, Boolean
resynthesis optimizes digital circuits for lower power consumption,
delay, and area. While Boolean resynthesis operators are essential
for circuit optimization, they must be used with caution due to their
computational expenses.

Since most resynthesis operators are heuristic and suboptimal,
iterative runs are necessary to identify further potential improvements
in the logic circuit [1]. However, each successive iteration yields
diminishing returns in terms of area improvement, while increasing
the computational cost of logic synthesis. Moreover, the demand
for a shorter turn-around time keeps increasing in the fast-paced
electronics industry. By reducing the runtime of key optimization
operators, designers can efficiently explore a wider range of design
options, leading to better design solutions. Such an improvement
of synthesis operators is design-agnostic, benefiting the synthesis
process of almost all digital designs.

In recent years, machine learning (ML) has been increasingly
leveraged to enhance logic synthesis. Neto et al. [8] employ ML to
reinvigorate logic optimization algorithms and explore more advanced
designs. Other recent research works utilize ML techniques for
sequence tuning to improve the PPA [9]–[13]. However, none of
the ML-driven solutions improve the efficiency of the operators,
which are the runtime bottleneck for realistic industrial designs with
millions of nodes. For example, executing the refactor operator on
a synthetic circuit with 23 million nodes in the EPFL benchmark
suite [14] can take up to 1.5 hours. Despite some recent efforts in
GPU acceleration [15], [16], there might be scenarios with hardware
constraints that do not support such parallelism. Also, such GPU
parallelism is potentially compatible with other improvements in
operators. To the best of our knowledge, no prior work has addressed
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the redundancy in refactor or proposed a method to prune the
unnecessary iterations. In this work, we propose ELF, a novel and
general method, which prunes the redundancy in logic optimization
operators and significantly accelerates the refactor operator. Our
contributions are summarized as follows:

• We present the redundancy problem in logic refactoring, and we
provide a detailed examination of redundancy in both academic
and industrial designs, which, on average, exhibit a failure to
improve a node’s cut by 98%.

• Then, we propose an efficient and accurate model to detect
redundant operations during the refactoring process. Our model
achieves an average accuracy of 87% and recall of 93% on
academic circuits, and an average accuracy of 85% and recall
of 95% on industrial designs.

• Finally, we propose ELF, an efficient logic refactor [2] operator
by integrating the redundancy detection model in the synthesis
process. Compared with the state-of-the-art original ABC [17]
implementation, our method achieves an average speedup of
5.29× with a minimal design quality loss of less than 0.27% on
academic designs. Similarly, on industrial designs, our method
achieves a speedup of 2.80× with a negligible design quality
loss of less than 0.08%.

The remainder of this paper is structured as follows. Background
and related work are reviewed in Section II. Section III provides an
in-depth discussion of our proposed technique. Experimental results
are presented in Section IV, followed by concluding remarks and
future directions in Section V.

II. BACKGROUND & RELATED WORK

A Boolean network is a directed acyclic graph (DAG) that maps
an n-dimensional Boolean vector to an m-dimensional one, such that
{0, 1}n → {0, 1}m. The input and output vectors are known as
primary inputs (PIs) and primary outputs (POs). And-Inverter Graphs
(AIGs), containing only two-input AND gates and inverters, are
commonly used to represent Boolean networks due to their simplicity
and scalability [18].

Logic synthesis transformations can be classified into two cat-
egories: local operators, which are fast but achieve limited opti-
mization, and global operators, which are slower but capable of
more significant PPA improvements. Local operators only consider
a node or small cut, resulting in a runtime linear to the cut size. In
contrast, global resynthesis operators consider the entire graph when
identifying optimization opportunities. Although global operators can
substantially improve PPA, their prohibitive runtime makes them
impractical for large industrial circuits.

We focus on the refactor operator, as its an essential component
in industrial optimization flows and there has been little effort in
literature to improve. While, refactor provides a lower area reduction
relative to other operators, its usage is critical since its transforma-
tions unlock further optimizations in the AIG [2]. Nevertheless, its



running time is significant. For example, in a popular logic synthesis
flow such as Resyn2, the refactor step typically accounts for 20−40%
of the total execution time, despite being invoked only twice, whereas
the balance and rewrite steps are invoked three and four times,
respectively. Amaru et al. proposed a Boolean filtering for these
operators to reduce the number of gates process without affecting
the quality of result (QoR) [19]. However in their results they do
not report the runtime for the operators, so we cannot evaluate the
effectiveness of the method.

1) Refactor [2] iterates over all the nodes and forms a large cut
for each one of them. Each cut is transformed into an SOP
and factored into a more compact form, while maintaining the
function of the root node. If there are more removed nodes than
nodes added, the new resynthesized subgraph gets committed.
As refactor has seen minimal follow-on work since its proposal,
research opportunities likely remain.

2) Rewrite [1] greedily iterates over all nodes, forming all 4-
input cuts. It substitutes each cut with a precomputed minimal
subgraph selected from 222 NPN classes. The subgraph with
the maximum non-negative gain, i.e. removed nodes minus
added nodes, is committed. Recent extensions consider 5-
input subgraphs [20], apply rewrite in a sliding window [7],
and improvements in the efficiency by utilizing an engineered
dynamic-scoring function [21].

3) Resubstitution [2] attempts to express the function of a node
with other nodes present in the network called divisors. A
transformation is accepted if the new implementation is better
than the current node implementation using the immediate
fanins. Resubstitution can be generalized to k-resubstitution.
Let k be the exact number of nodes added and l the nodes
within the MFFC of the node. If k-resubstitution is possible
and l > k, the change is committed as the total number of
nodes in the graph decreased. Since the graph is an AIG in our
setting, the newly added nodes are two-input AND gates with
potential inverters in the inputs or outputs.

III. METHODOLOGY

Section III-A presents a general perspective on logic optimization
operators and in more detail the refactor operator, motivating the need
for our pruned approach, ELF. Section III-B delves into the technical
details of the proposed pruning method, ELF, as well as optimiza-
tions to enhance performance. Finally, Section III-C enumerates the
features uses for the classifier along with their rationale.

A. Logic Optimization Operators & Motivation

There is a range of logic optimization operators such as rewrite,
refactor, and resubstitution which differ in their local transformations
but, their algorithmic frameworks share key similarities. Each oper-
ator iterates through nodes in the same sequence, applying a distinct
function to each node. Algorithm 1 illustrates the general pipeline of
logic optimization.

In Algorithm 1, the Boolean Optimization function resynthesizes
the cut with fewer nodes, but commits the change only if the gain,

Algorithm 1 General form of Logic Optimization
1: for each node in AIG do
2: Apply Boolean Optimization(node, AIG)
3: Gain = nodes removed − nodes added
4: if Gain > 0 then
5: Commit change in AIG

Iterate over ALL nodes

Form one large cut for the given node

Refactor the cut

Does the new cut decrease the number of 
nodes in the graph?

N

Commit the new cut in the AIG

Y Originally 
committed

0.05 − 10.8 %

Originally
 

NOT committed
89.2 − 99.9 %

ELF: Classify the cut. Prune?Y

N

ELF prunes
  

cuts
69.4 − 95.1 %

Fig. 1. Flow of ELF and the original refactor demonstrating the redundancy.

defined as removed nodes minus added nodes, is positive. After cut
optimization, functionality must be preserved by adding the necessary
nodes. However, in most iterations, the cut fails resynthesis, wasting
computation time. Specifically in refactor on the arithmetic circuits
in EPFL arithmetic benchmark, at most 7.34% of cuts are refactored.
Similar trends hold for other operators, which can be even more time-
intensive. Therefore, we propose ELF, an efficient learned classifier
that given structural cut information, predicts whether a cut can
get refactored. A key component behind ELF are the hand-crafted
lightweight features that capture salient structural information to
create compact cut representations.

B. ELF: Pruning Cuts

As shown in the Algorithm 1, refactor iterates over all nodes
in the And-Inverter Graph (AIG), forms a cut for each node and
resynthesizes it. However, approximately 89.2−99.9% of the formed
cuts may fail to get optimized, wasting computational effort. We
address this by classifying each node’s benefit from resynthesis prior
to function application. Specifically, we predict whether a given node
is unlikely to be optimized, pruning it from the search space before
proceeding. Only beneficial nodes undergo attempted resynthesis.
Figure 1 demonstrates the flow of the original ABC implementation
of refactor with its shortcomings and the green cells highlight how
ELF changes the flow and prevents unnecessary computation. ELF
can be very effective as it can omit to refactor 69.4− 95.1% of the
nodes.

At the core of our method, ELF, is an efficient and compact
classifier. While refactor is time-consuming on large industrial cir-
cuits, it operates efficiently on a per-cut basis. This characteristic
necessitates rapid inference to effectively reduce overall execution
time. The stringent time constraints inherently disqualify most ad-
vanced model architectures, such as graph neural networks, for this
application. To illustrate, the inference time per cut using a small
Graph Convolutional Network (GCN) is approximately 30 times that
of resynthesizing the cut itself.

After extensive experimentation with various model architectures,
including XGBoost trees and diverse ensemble models, we found that
a feedforward neural network offers the optimal balance between exe-
cution speed and generalization to unseen circuits, while maintaining
high recall and accuracy. The computational complexity of a single
layer in a feedforward neural network is Θ(m ∗ h + k ∗ h), where
m represents the number of inputs, k the number of outputs and h
the number of hidden units.

Achieving high recall is crucial for our classifier, as our goal is
to reduce runtime without compromising area optimization. Recall



Algorithm 2 ELF: Efficient Logic Refactoring
1: Collect features for each node’s cut
2: Classify each node
3: for each node in AIG do
4: if the node is classified to fail then
5: Continue
6: Refactor(node, AIG)
7: Gain = nodes removed − nodes added
8: if Gain > 0 then
9: Commit change in AIG

quantifies the percentage of nodes correctly classified as 1. A recall
of 100% ensures no degradation in the quality of logic optimization.
This emphasis on recall aligns with our objective of enhancing
computational efficiency while preserving the effectiveness of the
refactor operator in logic synthesis workflows. Equally crucial is high
accuracy, which directly correlates with runtime reduction. As we
accurately prune more nodes, we expect a proportional decrease in
runtime. The synergy between high recall and accuracy thus forms the
cornerstone of our approach, enabling efficient circuit optimization
without sacrificing quality.

To further decrease the inference time we use some engineering
tricks such as kernel fusion and graph compilation for the model.
Additionally, before node iteration, we batch all the cut data into
one tensor so that we can maximize vectorization and minimize the
process of packing/unpacking the data into tensors. Therefore, the
complexity of classifying N nodes with a model that has complexity
Θ(M) is Θ(NM). Despite concerns about diminished accuracy,
experiments validate the viability of the batch classification approach.
An intuitive explanation for this phenomenon is that the cuts at the
start, are more likely to have available optimizations, which might
be lost while refactoring the AIG. Although, we might unnecessarily
resynthesize cuts that no longer can be optimized, this will only
impose a degradation in the runtime, but not the area. The detailed
implementation of ELF is outlined in Algorithm 2.

As seen in Algorithm 1 the logic optimization methods share an
overall similar structure. Thus, it is possible to extend ELF to work
for other operators other than refactor. The ultimate goal would be
to have a unified logic optimization operator where the classifier
conducts multiclass prediction to select the Boolean resynthesis
function for each node, including skipping non-beneficial nodes.
Thus, streamlining the entire process of logic synthesis.

C. Feature Selection

The features must add minimal runtime overhead while encapsu-
lating salient information about the number of nodes to be removed
and the logic sharing. Logic sharing refers to nodes that connect to
nodes outside the cut. Meaning that their deletion is non-trivial as they
affect the functionality of other parts of the circuit. A straightforward
approach to represent the cut is to use the cut’s root truth table.
Although the truth table captures the functionality of the cut, it
fails to encapsulate logic sharing. Additionally, large truth tables
scale exponentially with the number of leaves, potentially incurring
substantial computational costs. Logic optimization operators resyn-
thesize first the cut as an isolated graph then, consider the impact
of reinserting the optimized cut. If the nodes that need to be added
to maintain the logic sharing exceed the number of nodes removed,
the cut does not get committed. Thus, structural cut information can
potentially capture both node deletion opportunities and logic sharing
information.

leaf leaf leaf leaf

root 

Root level: 9

Root fanout: 3

Number of leaves: 4 

Cut size: 9

Level: 6

Level: 7

Level: 8

Level: 9

Reconvergent nodes: 2

Cut fanout (outward-edges): 10

Root node
Nodes in the cut
Nodes NOT in the cut

Fig. 2. Example of the features used to represent a cut in an AIG

We represent cuts by 6-dimensional feature vectors, comprising:
root fanout, root level, total cut fanout, cut size, number of re-
convergent nodes, and number of leaf nodes. Figure 2, contains an
example of a cut with its features. In refactor, given a node it forms
a reconvergence driven cut, where the given node is the cut’s root
node. The root level refers to the level of the given node within the
AIG. The fanout refers to the outward going edges of a node. So, in
Figure 2 the cut’s root level is 9 and has 3 outgoing edges meaning
the root fanout is 3. The triangle in the figure represents the cut and
cut size refers to the number of nodes within it, which is 9 in this
case. Similarly to the root fanout, the total cut fanout refers to the
cut’s total number of outgoing edges, which is 10. For a node to be
a leaf there must be at least one path from a primary input (PI) that
goes through the leaf and reaches the root of the cut without going
through any other leaf. In Fig. 2, there are 4 leaf nodes. Finally, if
there are two paths starting from a node vs and ending to the node
ve they are denoted as reconvergent paths and vs is a reconvergent
node. Note that we only count the nodes that are part of reconvergent
paths locally within the cut, for simplicity. In Fig. 2 there are only 2
locally reconvergent nodes marked with the arrows.

The rationale behind features related to the fanout are that they
capture logic sharing as they indicate that they connect with nodes
outside the cut. The bigger the fanout, the harder it is to replace the
nodes within the cut. The cut size indicates the number of nodes to
potentially prune, but its role can be to regularize other features. For
example, the neural network might learn to divide total cut fanout by
the cut size. The leaves cannot be simplified so a higher number of
leaves might be less likely to be successfully optimized. The root’s
level implies the importance of a node. The higher level of a node, the
more important it might be. Finally, in Theorem 1 in a recent paper
by Riener et al. [7], they proved that if a certain type of optimization
exists, then reconvergent nodes should exist. Thus, we include the
number of reconvergent nodes as a feature.

These lightweight features are ideal for our problem as they are
cheap to compute. We achieve efficient collection by accumulating
the features during cut construction. Our flexible approach can run
on CPUs or parallelized to run on GPUs.

IV. EXPERIMENTAL RESULTS

In section IV-A, we introduce the implementation details and
information about the datasets. Section IV-B compares the efficiency
and effectiveness of the ELF over the baseline method, the original
state-of-the-art refactor implementation of ABC, followed by Section
IV-C, which presents the experiments on the classifier’s quality
metrics. Finally, Section IV-D contains explainability experiments



along with an analysis of the features used and their impact on the
model’s output.

A. Experimental Settings

We evaluate on the EPFL arithmetic benchmarks [14] and industrial
designs. While the results are consistent for all the circuits, we show
the results for the 6 largest EPFL circuits, and train the model on
all the AIGs in the suite except the one we test on. Similarly for
the industrial circuits, we train on all the other designs except the
one we test on for 10 designs and report the average results. Note,
we keep the two datasets separate for reproducibility. Table I and
Table II contains statistics for the AIGs in the EPFL benchmarks
and industrial designs, on which we report detailed results. The
Refactored column the percentage represents the ratio of nodes that
get resynthesized. It is evident that the datasets are highly imbalanced,
since percentage of nodes that do get refactored are mostly around
1%. Although these circuits vary in size, demonstrating the scalability
of our method, they are smaller than real industrial circuits, which
often contain tens of millions of nodes and exhibit similar trends.
Only three AIGs contain a relatively higher number of nodes that
can get refactored, sqrt in the EPFL benchmarks and two industrial
designs design 5 and 10, which contain 7.34%, 10.8%, and 4.53%
nodes that can be resynthesized, respectively. This imbalance makes
the learning significantly more difficult. Additionally, our classifier
needs to be recall driven. Meaning that we do not want to misclassify
cuts, since it will impact the quality of the operator. High accuracy is
relatively easy to achieve, in the current setting, simply by classifying
every cut as a 0. The difficulty in our task is to find a good balance
between recall and accuracy. Thus, minimizing running time, with
minimal impact on the number of AND gates.

To show that the models can generalize to unseen data, we train
the classifier to all the arithmetic datasets other than the one we are
testing on. Similarly for the industrial design circuits, none of the
circuits that get tested are part of training. Additionally, each dataset
is standardized individually with mean variance normalization. This
way we can make the model infer to sizes that it might have not
seen so far. The features we use to train the classifier with, can
be calculated with simple accumulators while forming the cut with
almost no additional runtime cost. This is necessary as refactor is

TABLE I
ARITHMETIC EPFL CIRCUITS STATISTICS

Design And Level PIs POs Refactored
div 57247 4372 128 128 285 (0.50%)
hyp 214335 24801 256 128 1992 (0.93%)
log2 32060 444 32 32 530 (1.65%)

multiplier 27062 274 128 128 247 (0.91%)
sqrt 24618 5058 128 64 1806 (7.34%)

square 18484 250 64 128 177 (0.96%)

TABLE II
INDUSTRIAL CIRCUITS STATISTICS

Design And Level PIs POs Refactored
design 1 384971 65 13135 13127 1142 (0.30%)
design 2 267358 49 27800 20603 1184 (0.44%)
design 3 628777 36 35552 34480 1569 (0.25%)
design 4 159763 44 35784 34712 1273 (0.80%)
design 5 428904 51 52344 51283 46376 (10.8%)
design 6 507027 35 26292 25220 603 (0.12%)
design 7 305218 72 20228 19148 839 (0.28%)
design 8 77130 40 18357 18325 42 (0.05%)
design 9 190600 71 26168 26139 807 (0.42%)

design 10 423661 40 42257 33849 19180 (4.53%)

already an efficient algorithm, leaving little running time available
for inference. The features we use are root fanout, root level, cut
total fanout, cut size, number of reconvergent nodes, and number of
leaf nodes.

The experiments were run on an Intel(R) Xeon(R) Platinum 8180M
CPU @ 2.50GHz with 1 thread and 1TB of RAM. The models were
trained using pytorch and the model was run directly in C++ within
ABC [17] and executed with the ONNX Runtime framework. To
efficiently standardize and execute the model we merged a Mean
Variance Normalization node directly with the model and run all
the cut data into one batch. While ML libraries are quite optimized,
they have quite a bit of overhead when it comes to wrapping and
unwrapping the data into tensors. Taking advantage of vectorization
and limiting the overhead of the tensor objects, inference is very fast.

The model has 4 fully-connected layers with shape 6 → 12 →
12 → 6 → 1 and a total of 325 parameters. Although more
sophisticated architectures could potentially achieve better results,
they are often prohibited by the tight time-budget. For instance,
convolutional layers could be employed to enable the model to
learn feature extraction autonomously, but this would require a GPU
to fully leverage their capabilities. We initialize the parameters of
each layer with Xavier initialization and the biases set to 0. For
training we used a batch size of 64, 30 epochs up with early
stopping and patience of 10 epochs. The optimizer was Adam with
learning rate of 0.1 and a learning rate scheduler of cosine annealing
with warm restarts. While we tried a range of losses such as focal
loss, class balanced loss and class balanced focal loss, binary cross
entropy worked the best. Additionally, to augment the data, we used
MixUp [22] to improve generalization and overall model metrics. We
tested more data augmentation techniques such as Synthetic Minority
Over-sampling Technique [23] and One Sided Selection [24], but
a weighted random sampler proved better. Furthermore, we tested
dropout layers to potentially improve generalization, but it proved
ineffective.

B. Comparison with Baseline

To demonstrate the effectiveness of ELF we compare it against the
original implementation of refactor within ABC [17]. Additionally,
we call the rf -l version of the operator. The quality metrics we
report include the number of AND gates, levels, and their relative
differences, the runtimes and the speedup of the proposed method.
Let the relative difference be δ for a metric mELF for the proposed
method, ELF, and mABC for the original implementation of refactor
in ABC. Then, we measure the differences as δ = mELF−mABC

mABC
×

100%. From an industrial perspective, the area degradation should
not exceed 0.5%, while achieving a 1.25× speedup.

Table III presents the results of applying the original implemen-
tation of refactor operator within ABC vs this work, ELF, on the
arithmetic circuits in the EPFL benchmark. The experiments show
a significant runtime speedup varying from 2.50× up to 7.69×.
Simultaneously, there is minimal increase in the area. In the worst
case, the number of nodes can increase by 0.27% for div, while the
area difference is 0% for other circuits. The level is the same among
all circuits. While, the runtime of the refactor operator is generally
small for the circuits in the EPFL benchmark, industrial designs might
contain several million nodes making the original implementation
expensive i.e. several hours. We later present experiments on large
synthetic AIGs.

The significant runtime speedup enables us to apply ELF twice
without exceeding the execution of the original implementation of
refactor in ABC. Thus, Table IV contains the results of chaining



TABLE III
REFACTOR’S PERFORMANCE IN ORIGINAL ABC VS ELF. EXPERIMENTS ON ARITHMETIC CIRCUITS IN THE EPFL BENCHMARK.

Original ABC ELF (this work) Difference
Design Nodes Runtime (s) And Level Runtime (s) And Level Speedup And Level

div 57247 1.00 56745 4372 0.21 56897 4372 4.76× +0.27% 0%
hyp 214335 6.82 212341 24801 0.93 212341 24801 7.33× 0.00% 0%
log2 32060 0.71 31517 445 0.13 31564 445 5.46× +0.15% 0%

multiplier 27062 0.77 26814 274 0.10 26815 274 7.69× 0.00% 0%
sqrt 24618 0.25 22811 5932 0.10 22872 5931 2.50× +0.27% 0%

square 18484 0.52 18302 250 0.13 18314 250 4.00× +0.07% 0%

TABLE IV
REFACTOR’S PERFORMANCE IN ORIGINAL ABC VS APPLYING ELF TWICE. EXPERIMENTS ON ARITHMETIC CIRCUITS IN THE EPFL BENCHMARK.

Original ABC ELF × 2 (this work applied twice) Difference
Design Nodes Runtime (s) And Level Runtime (s) And Level Speedup And Level

div 57247 1.00 56745 4372 0.43 56664 4372 2.32× −0.14% 0%
hyp 214335 6.82 212341 24801 2.02 212296 24801 3.38× −0.02% 0%
log2 32060 0.71 31517 445 0.53 31564 445 1.34× +0.15% 0%

multiplier 27062 0.77 26814 274 0.35 26814 274 2.20× 0.00% 0%
sqrt 24618 0.25 22811 5932 0.17 22872 5931 1.47× +0.27% 0%

square 18484 0.52 18302 250 0.27 18307 250 1.93× +0.03% 0%

TABLE V
REFACTOR’S PERFORMANCE IN ORIGINAL ABC VS ELF. EXPERIMENTS ON INDUSTRIAL CIRCUITS.

Original ABC ELF (this work) Difference
Design Nodes Runtime (s) And Level Runtime (s) And Level Speedup And Level

design 1 384971 4.10 382941 54 1.32 383021 54 3.10× +0.02% 0.00%
design 2 267358 2.95 265387 48 0.85 265582 49 3.47× +0.07% +2.08%
design 3 628777 6.35 627059 36 1.91 627059 36 3.32× 0.00% 0.00%
design 4 159763 1.63 157097 44 0.38 157228 44 4.29× +0.08% 0.00%
design 5 428904 5.03 294992 46 2.17 295168 48 2.32× +0.06% +4.35%
design 6 507027 5.75 506416 36 2.32 506420 36 2.48× 0.00% 0.00%
design 7 305218 3.31 303609 64 1.48 303680 64 2.24× +0.02% 0.00%
design 8 77130 0.82 77082 40 0.33 77082 40 2.48× 0.00% 0.00%
design 9 190600 1.75 189471 71 0.77 189520 68 2.27× +0.03% −4.23%
design 10 423661 4.93 381423 39 2.45 381433 39 2.01× 0.00% 0.00%

TABLE VI
REFACTOR’S PERFORMANCE IN ORIGINAL ABC VS ELF. EXPERIMENTS

ON LARGE SYNTHETIC CIRCUITS.

Design Nodes ABC Runtime (s) ELF Speedup And Diff.
sixteen 16216836 2243.63 2.97× +0.07%
twenty 20732893 3138.46 2.87× +0.06%

twentythree 23339737 3914.77 2.85× +0.06%

ELF twice against the baseline. In the worst case, ELF maintained
a 1.34× speedup in runtime, but it failed to improve the quality
further. Overall, a subsequent application of the proposed method
can improve the results except in two circuits, log2 and sqrt. It is
important to note that three of the circuits, multiplier, sqrt, and square,
do not have any potential improvements in general when applying
the original refactor operator twice. In contrast, for div and hyp by
applying ELF twice we can still have a significant speedup in the
running time and reduce the area of the AIG. Note that, these two
graphs are the two largest arithmetic circuits in the EPFL benchmark.

Table V shows that ELF is equally effective in 10 industrial
designs. These circuits are larger than the ones within the EPFL
benchmark and vary from 77k-629k nodes. The trend from the
results on the circuits in the EPFL benchmark continues to industrial
design that are larger. The runtime speedup varies from 2.01× to
4.29×, while the added number of nodes is minuscule. In the worst
case the number of nodes increased by 0.08%, but was also as
low as 0%. No information about these 10 circuits was part of
the training data, which demonstrates that the classifier succeeded

in generalizing. Thus, demonstrating the effectiveness of ELF and
potential applicability to industrial solutions.

Finally, Table VI presents the condensed results of applying the
original implementation of refactor operator within ABC vs this work,
ELF, on synthetic circuits in the EPFL benchmark. Originally, the
runtime of refactor can be longer than 1 hour for circuits such as the
one with 23 million nodes, but ELF can theoretically speedup the
operator by 2.90× on average with little impact on the And nodes
difference. To effectively observe these speedups in practice for large
circuits, it is necessary to invest engineering efforts into improving
the implementation of reinserting the refactored cut back into the
AIG.

C. Model Quality Experiments

To effectively prune cuts our classifier needs to be recall-driven
first and also achieve a high enough accuracy. Recall and accuracy
are calculated as

Recall =
TP

TP + FN
, Accuracy =

TP + TN
TP + FP + FN + TN

.

Recall directly affects the area, as it measures the proportion of nodes
that were correctly classified as 1. Instead, accuracy is related to the
overall runtime. The more accurate the model the more nodes the
algorithm can skip. Thus, reducing the running time.

Table VII contains the model quality metrics of ELF on the
arithmetic circuits in the EPFL benchmark. The classifier achieves a
high recall and accuracy, while it was never trained on the test circuit



at all. Recall is consistently above 93% and up to 100% for some
circuits, but it is only 76% for div. Finally, accuracy is overall high,
varying from 77% up to 96%, even though the recall is also high.
Therefore, this justifies the runtime reduction, while maintaining a
low impact on the area, varying from 0% to +0.27%.

TABLE VII
MODEL QUALITY METRICS OF ELF ON THE ARITHMETIC CIRCUITS IN THE

EPFL BENCHMARK.

Design Recall Accuracy TP TN FP FN
div 76% 84% 217 48045 8905 68
hyp 100% 77% 1992 162061 50282 0
log2 93% 90% 494 28295 3235 36

multiplier 100% 96% 246 25740 1075 1
sqrt 97% 92% 1745 20951 1860 61

square 94% 84% 167 15422 2885 10

Table VIII contains quality metrics of the ELF classifier. The
results are consistent with the ones on the arithmetic circuits. Recall
is high varying from 81% to 100% and so is accuracy 81 − 93%.
We used the same classifier to test the quality on over 170 industrial
designs. Recall is on average 91.8% and accuracy 81.0%.

TABLE VIII
MODEL METRICS OF ELF ON THE INDUSTRIAL CIRCUITS

Design Recall Accuracy TP TN FP FN
design 1 94% 92% 1069 351154 32477 73
design 2 81% 85% 958 226380 39711 226
design 3 100% 93% 1564 582528 44604 5
design 4 89% 93% 1132 147701 10780 141
design 5 100% 81% 46272 310728 70552 104
design 6 100% 87% 600 439699 66644 3
design 7 91% 79% 762 240122 63985 77
design 8 100% 79% 42 60857 16211 0
design 9 94% 85% 755 160845 28924 52

design 10 100% 74% 19144 293832 110537 36

D. Features Study

t-SNE plots [25] are a widely used technique for visualizing high-
dimensional data in a two-dimensional space. Figure 3 presents such
a visualization of our feature space, where orange points represent
instances that underwent refactoring, and blue points indicate those
that did not. The plot reveals the presence of distinct clusters,
albeit dispersed across the space. This cluster distribution can be
attributed to three key factors: the highly imbalanced nature of our
dataset, the relatively low dimensionality of our feature space, and
the discrete characteristics of our features. Despite these challenges,
the discernible separation between clusters suggests that effective
classification is feasible.

Figure 4 illustrates the SHAP [26] (SHapley Additive exPlanations)
values for each feature in our model. SHAP values quantify the
contribution of each input feature to the model’s prediction, indicating
both the magnitude and direction of influence. Positive SHAP values
push the prediction towards 1 (indicating likely refactoring), while
negative values push towards 0 (suggesting no refactoring). While
SHAP values may not fully capture complex feature interactions,
they provide valuable insights. For instance, the plot reveals that
a low number of reconvergent nodes decreases the likelihood of
refactoring, which aligns with the intuition that reconvergent nodes
present optimization opportunities. Conversely, cuts with a high
number of leaves, high root node level, or large cut size are less likely
to be refactored. These features, while potentially not individually

Fig. 3. t-SNE visualization of the feature space

explanatory, can collectively convey important information about the
cut. For example, a high leaf count in a moderately sized cut might
indicate lower node redundancy, as leaf nodes are irreplaceable.
The cut fanout shows ambiguous SHAP values, but the difference
between the cut’s fanout and the root’s fanout represents the number
of nodes without external edges, which are crucial for maintaining
AIG functionality and thus cannot be replaced.

Fig. 4. SHAP (SHapley Additive exPlanations) values for each feature in the
model

V. CONCLUSION

In summary we propose ELF a pruning strategy for the refactor
operator that can speedup resynthesis by 3.9× on average with a
minimal effect on the area. To achieve this we trained a compact
model to classify, if the cuts will get successfully refactored. The
features used to train the classifier are lightweight and ideal for time
sensitive ML applications. An extensive experimental analysis on
the EPFL benchmark suite and industrial circuits demonstrates the
effectiveness in reducing the running time of the refactor operator.
Given the similar structure of other logic synthesis operators such
as rewrite and resubstituion, ELF can be adjusted to prune the
unnecessary computation of those functions. A further extension of
this work is to propose a unified logic optimization operation. Instead
of having a sequence of operators, the classifier can choose the
function to apply directly to the node or skip it. Such an operator
could potentially significantly reduce the running time, achieve better
PPA and eliminate the need to perform sequence tuning.
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