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Abstract—Circuit representation learning has shown promise in
advancing Electronic Design Automation (EDA) by capturing structural
and functional circuit properties for various tasks. Existing pre-trained
solutions rely on graph learning with complex functional supervision,
such as truth table simulation. However, they only handle simple and-
inverter graphs (AIGs), struggling to fully encode other complex gate
functionalities. While large language models (LLMs) excel at functional
understanding, they lack the structural awareness for flattened netlists.
To advance netlist representation learning, we present NetTAG, a netlist
foundation model that fuses gate semantics with graph structure, handling
diverse gate types and supporting a variety of functional and physical
tasks. Moving beyond existing graph-only methods, NetTAG formulates
netlists as text-attributed graphs, with gates annotated by symbolic logic
expressions and physical characteristics as text attributes. Its multimodal
architecture combines an LLM-based text encoder for gate semantics
and a graph transformer for global structure. Pre-trained with gate
and graph self-supervised objectives and aligned with RTL and layout
stages, NetTAG captures comprehensive circuit intrinsics. Experimental
results show that NetTAG consistently outperforms each task-specific
method on four largely different functional and physical tasks and
surpasses state-of-the-art AIG encoders, demonstrating its versatility.

I. INTRODUCTION

Machine learning (ML) techniques have demonstrated remarkable
achievements in electronic design automation (EDA). Existing ML
methods are mostly tailored to specific tasks such as predicting
physical metrics (e.g, timing [1], [2], [3], area [4], [5], [6],
power [7], [8], [9], and routability [10], [11], [12]) or the reasoning
of circuit functionalities [13], [14], [15], [16]. These methods are
typically developed by supervised training, requiring extensive
label collection and model customization for each task. Despite
obvious effectiveness, they are time-consuming to develop and lack
generalizability, often capturing only task-specific patterns rather
than a generalizable understanding of circuits.

Recent circuit representation learning methods (i.e., encoders)
generate informative embeddings for circuits and are able to support
a range of downstream tasks [17], [18]. Existing methods mainly
focus on VLSI circuit netlists, and some works also explore RTL
circuits [19], analog circuits [20], and FPGAs [21]. We provide a
detailed summary of the netlist encoders in TABLE I. All these netlist
encoders capture circuit functionality through graph structure leverag-
ing graph learning models, such as Graph Neural Networks (GNNs)
or Graph Transformers (GTs). They either directly infer functionality
with graph topology [22], [23], [24], or employ functional informa-
tion to pre-train the models [25], [26], [27], [28], [29], [30], [31].

However, we argue that existing graph-only netlist encoders
lack sufficient expressiveness to capture complex circuits. These
methods rely on graph models that inherently prioritize structural
information over semantics (i.e., functionality). Their limitations
include: (1) Limited to and-inverter graph (AIG). Most methods
target only simple AIG-based netlists, representing a narrow subset
of standard cell libraries, and cannot handle post-mapping netlists
with diverse gate types. (2) Dependence on complex functional
supervision. Representative methods like the DeepGate family [25],
[26], [27], [30] and FGNN [28], [29] incorporate truth table simula-
tion to capture AIG functionality. However, truth tables suffer from
exponential state expansion when applied to post-synthesis netlists
with multi-input complex gates (e.g., full adders, multiplexers),
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Fig. 1: Overvew of NetTAG. Netlists are formulated as text-attributed
graphs, with functional and physical text attributes extracted for
each gate. Within NetTAG, gate attributes are initially encoded by
ExprLLM, then refined with global netlist graph structures using
TAGFormer. NetTAG is pre-trained with self-supervised objectives
and aligned with RTL and layout embeddings, enabling versatile
support for both functional and physical tasks after fine-tuning.

limiting their applicability. (3) Lack of physical information. None
of these methods consider physical characteristics, focusing solely
on logic functionality. Consequently, these encoders are limited
to AIG-based tasks (e.g., equivalence checking, SAT solving) and
struggle with tasks for post-mapping netlists [2], [3], [7], [10], [11],
[12], [14], [15], especially those evaluating physical design quality.

Recently, large language models (LLMs) have demonstrated re-
markable expressiveness in circuit-related generative tasks [32], [33],
[34]. However, LLMs inherently capture circuit textual semantics
rather than structure. Limited work has explored LLMs for general-
purpose circuit representation learning, with key limitations sum-
marized as follows: (1) Struggle with netlists. Although LLMs can
interpret circuit functionality from RTL code, the gate-level netlists
are more flattened and lack informative context, making functional
understanding more challenging. (2) Lack of structural encoding.
LLMs struggle to capture the circuit structures, limiting their utility
for netlist representation learning.

In this work, we present NetTAG, a foundation model1 for netlists
that captures functional and physical properties across diverse gate
types. Unlike previous circuit encoders and LLM solutions focusing
on single circuit modality, NetTAG fuses gate text semantics with
global graph structures to achieve functional and physical under-
standing. Serving as a foundation model, the pre-trained NetTAG
generates versatile embeddings for logic gates, register cones, and
full circuits. The embeddings can be easily fine-tuned for various
downstream tasks, supporting largely different netlist-stage functional
and physical tasks across these circuit granularities. As shown
in Fig. 1, we propose the following innovative strategies in NetTAG:

• Preprocess: formulating netlists as text-attributed graphs.
This paper is the first to represent netlists in text-attributed
graphs (TAGs) format. In the netlist graph, we annotate each
gate with functional symbolic logic expressions and physical
characteristics as node-level text attributes. Our TAG format
combines gate textual attributes with graph topology, moving
beyond existing graph-only circuit representation learning.

1The code and pre-trained NetTAG model are available at
https://github.com/hkust-zhiyao/NetTAG. The pre-trained model enables
users to easily generate and fine-tune embeddings for their own netlist tasks.



TABLE I: Comparision of state-of-the-art netlist representation learning methods.

Method Target Circuit Encoding Methodology Downstream Tasks
Cell Type Circuit Type Modality ML Model Pre-Train Target Cross-Stage Align Target Type

DeepGate1/2 [25], [26] AIG Comb. Graph GNN Gate N/A Gate Func.
DeepGate3 [27] AIG Comb. Graph GT Gate&Circuit N/A Gate Func.
FGNN [28], [29] AIG Comb. Graph GNN Circuit N/A Gate&Circuit Func.

HOGA [23] AIG Comb.&Seq. Graph GNN N/A N/A Gate&Circuit Func.&Phys.

NetTAG
(Ours)

Any
Gate

Comb.&
Seq.

Text&
Graph

LLM&
GT

Gate&
Reg. Cone

RTL&
Layout

Gate&
Reg. Cone&

Circuit
Func.&
Phys.

• Multimodal architecture: fusing semantic and structure.
Leveraging TAGs, NetTAG introduces an innovative multimodal
architecture that combines an LLM-based text encoder (i.e.,
ExprLLM) with a graph transformer (i.e., TAGFormer).
ExprLLM first encodes fine-grained gate text attributes into
semantic-rich node embeddings, then TAGFormer refines them
with overall graph structure, generating final individual gate
and overall graph embeddings.

• Aligned pre-training: self-supervised and cross-stage-aware.
We introduce four circuit-specific self-supervised objectives
to pre-train NetTAG across circuit granularities, enhancing
Boolean logic understanding and fusing gate semantics with the
global graph structure. Moreover, we align netlist embeddings
with those from RTL and layout stages to strengthen cross-stage
functional and physical awareness.

We evaluate NetTAG on four largely different EDA tasks, covering
both functional reasoning and physical design quality predictions
at different circuit granularities. NetTAG consistently outperforms
all state-of-the-art (SOTA) task-specific models, achieving 14% and
13% higher accuracy in logic gate and register function identification,
respectively, and reducing errors by 2% for register slack, and 7% for
both circuit area and power predictions. NetTAG demonstrates strong
generalization across these representative tasks. Finally, we evaluate
the scalability of NetTAG by scaling up model size and dataset
volume. The results indicate a huge potential for improvement by
scaling up either model or circuit datasets in future work.

II. METHODOLOGY

A. Overview
Fig. 2 outlines the NetTAG workflow. First, netlist data is

converted into TAG format, detailed in Section II-B. NetTAG’s
multimodal architecture, which combines fine-grained gate text and
overall circuit graph refinement, is illustrated in Section II-C. Step 1
enhances Boolean logic comprehension for ExprLLM (Section II-D),
and Step 2 fuses gate semantics with circuit structure in TAGFormer,
incorporating cross-stage alignment to strengthen both functional
and physical understanding (Section II-E). Finally, Section II-F
demonstrates the fine-tuning strategy that leverages the pre-trained
NetTAG for various downstream tasks.

B. Circuit Data Preprocessing
Conventional graph methods like GNNs and GTs mainly capture

structural information but fall short when the semantic context is also
needed. TAG representation learning bridges this gap by encoding
nodes as text and leveraging graph connections [35], [36], effectively
improving node classification performance. Intuitively, netlists, with
their graph structure and detailed gate logic functions, are ideally
suited for formulation as TAGs.

Formulating netlist as TAG. Given a gate-level netlist N , we
represent it as a text-attributed graph GN = {T , E}, where each gate
in the netlist is a node in the graph. Here, T = {t1, . . . , tm} is a
set of gate text attributes, where m representing the total gate count.
Each attribute ti contains functional and physical properties of the
ith gate, as shown in Fig. 3(b), and consists of a sequence of tokens
ti. E is the set of edges connecting the gates.

Specifically, for functionality, we extract the symbolic logic expres-
sion for each gate based on its k-hop fan-in cone. These expressions
are constructed using a formal verification toolkit [37], providing
formal definitions for gate functionality. An example is demonstrated
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Fig. 2: NetTAG Workflow. Sequential netlists are chunked into combi-
national register cones and converted into TAGs. During pre-training,
NetTAG is trained with node-level and graph-level self-supervised
objectives, and it is aligned with RTL and layout embeddings. The
pre-trained NetTAG then generates netlist embeddings, which are
fine-tuned with netlist-stage task labels.

in Fig. 3(b), the 2-hop expression for this NOR gate with the symbolic
name “U3” is derived from the Boolean functions of nodes within its
2-hop fan-in cone. The expression for “U3” is represented as: “U3 =
!((R1 ⊕ R2)|!R2)”. Each expression includes symbolic names for
input gates and the Boolean operations. We summarize the key advan-
tages of exploiting the symbolic expression for functional encoding:

1) Versatile gate support: Our symbolic expressions use Boolean
formulas to represent any gate type, including complex gates like
AOI and full adders. This enables NetTAG to support diverse
gate types in netlists, beyond the limitations of AIG formats.

2) Direct functional encoding: In contrast to pre-trained circuit
encoders that rely on graph-based learning with truth table super-
vision [29], [27], symbolic expressions enable straightforward
static analysis, covering all input conditions without exponential
growth problems by exhaustive truth table simulation.

3) Structure independence: Unlike structure-based methods that
infer functionality with graph topology [23], [24], our approach
derives gate expressions from Boolean formulas. It easily
recognizes the same functionality across varying structures and
distinguishes different functions in similar topologies.

4) Compatible with language models: Expressions can be
seamlessly processed by language models, unleashing LLMs’
reasoning capabilities to enhance circuit functional understand-
ing. This functional expression also enables self-supervised pre-
training for LLMs, such as expression contrastive learning, to
improve LLMs’ logic understanding from expression data itself.

For the physical characteristics, we annotate each gate with in-
formation extracted from the standard cell library, including char-
acteristics such as power, area, delay, toggle rate, probability, load,
capacitance, and resistance. Both functional and physical attributes
are combined to form the text attribute for each gate.

Processing RTL and layout data. In addition to the target netlists,
we utilize corresponding RTL and layout data to enhance NetTAG’s
cross-stage awareness. As shown in Fig. 3(a) and (c), RTL code
is processed directly as text containing functional semantics, while
layout data is represented as connectivity graphs annotated with
physical characteristics. Specifically, nodes in the layout graphs are
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annotated with capacitance, resistance, and delay values extracted
from the Standard Parasitic Extraction Format (SPEF) file.

Chunking sequential circuit into register cones. To handle large-
scale sequential circuits, we propose chunking the original circuit into
register cones. For each register, we backtrace through all driving
logic up to other registers, creating a subcircuit cone that captures the
complete state transition of the register, including update relationships
and timing paths. This chunking process significantly reduces circuit
size for our NetTAG, enhancing scalability. We apply this method
consistently across netlist, RTL, and layout data, ensuring that cross-
stage cones remain functionally equivalent2 for subsequent alignment.

C. NetTAG Model Architecture

Fig. 4 illustrates the architecture of NetTAG, which comprises two
main components: ExprLLM for gate-level text encoding and TAG-
Former for further circuit-level graph encoding. Additionally, two
auxiliary pre-trained encoders are employed to generate embeddings
for the RTL code and layout graph, facilitating cross-stage alignment.
We detail our NetTAG architecture below.

ExprLLM of NetTAG is initialized using an LLM-based text
embedding model to encode gate text attributes as initial node embed-
dings. Following [38], we adapt a decoder-only LLM into a general-
purpose text encoder by converting causal attention to bidirectional
attention, which has shown superior encoding performance over
encoder-only models (e.g., BERT) [39]. ExprLLM takes the gate text
attributes ti as input, converting them into the text embeddings Ti:

Ti = ExprLLM(ti). (1)

TAGFormer of NetTAG refines node embeddings from
ExprLLM using a graph transformer model, which captures netlist
graph structure via global attention. We include a [CLS] node
connected to all other nodes in the graph, serving as the graph-level
embedding. The initial embedding for each gate ni is created
by concatenating its text embedding Ti from ExprLLM with its
physical characteristics vector xphysi. TAGFormer then processes
node embeddings {n1, . . . , nm} with their connectivity E into a
sequence of netlist gate embeddings {N1, . . . , Nm, Ncls}, where
Ncls represents the entire graph embedding:

ni = (Ti, xphysi),

{N1, . . . , Nm, Ncls} = TAGFormer({n1, . . . , nm}, E).
(2)

Auxiliary RTL and Layout Encoders support cross-stage align-
ment for NetTAG by providing functional and physical insights from
RTL and layout stages. The pre-trained RTL encoder, an LLM-based
text encoder, generates RTL embeddings Rcls. Similarly, the layout
encoder, a pre-trained graph transformer, produces layout embeddings
Lcls. Please note that these auxiliary cross-stage encoders are used
only during pre-training.

D. Pre-Training Step 1: Enhacing logic understanding in ExprLLM

We design pre-training objectives tailored for circuit netlists to cap-
ture both functional and structural information using our multimodal
NetTAG. As shown in Fig. 4, the pre-training process is divided into

2Most registers maintain unchanged throughout design stages.

two main steps: (1) Pre-training ExprLLM to strengthen its under-
standing of Boolean logic, and (2) Pre-training TAGFormer to fuse
gate text semantics from frozen ExprLLM with circuit graph struc-
ture. Additionally, two pre-trained RTL and layout encoders are used
for cross-stage alignment. We detail our pre-training objectives below.

Objective #1 Symbolic expression contrastive learning. In step1,
we apply logic expression contrastive learning to enhance ExprLLM’s
understanding of Boolean expressions. As shown in Fig. 3, we
begin by building a gate expression dataset from 2-hop symbolic
expressions3. Then each expression is transformed using randomly
applied Boolean equivalence rules4 to generate a new positive sample.
The InfoNCE loss [40] is then applied to differentiate each positive
expression pair from other negatives, formulated as:

L#1
expr = FCL(T , T+) = − log

exp(Tori · T+/τ)∑k
i=0 exp(Tori · Ti/τ)

, (3)

where τ is the temperature scaling factor, T+ is the positive em-
beddings, and T represents all k samples in the batch, including the
original sample embeddings Tori along with all other (k−1) negative
sample embeddings Ti(i ̸= ori).

E. Pre-Training Step 2: Fusion in TAGFormer & Cross-Stage Align
1) Pre-training within TAGFormer for semantic and structure

fusion: We propose gate-level and graph-level self-supervised
objectives to jointly pre-train TAGFormer, fusing semantic-rich gate
embeddings from pre-trained and frozen ExprLLM with the global
circuit structure. The pre-training objectives are illustrated below:

Objective #2.1 Masked gate reconstruction. This objective
aims to capture the structural roles of various gates by leveraging
their connectivity within the netlist graph. Specifically, we propose
to randomly mask a subset of gates in the netlist using a special
[MASK] node. The model is then tasked with predicting the gate
type (e.g., NOR, MUX, AND, etc.) of the masked gates based on
the remaining unmasked nodes.

This objective is formulated as a multi-class classification problem,
where the predicted gate types are treated as discrete labels. NetTAG
first processes the masked graph to generate inputs and generates
masked node embeddings Nmask

i for each masked gate in T mask. Then
a classification Multi-layer Perceptron, denoted as MLPclass, takes the
masked node embeddings Nmask

i as input and outputs the predicted
probability distribution over gate types. The ground-truth gate type
for each masked node i is denoted by ymask

i . The classification loss
is defined using the cross-entropy loss as follows:

L#2
gate = −

∑
i∈T mask

ymask
i log

(
MLPclass(N

mask
i )

)
. (4)

Objective #2.2 Netlist graph contrastive learning. This objective
captures global structural and functional information by clustering
similar netlists and separating dissimilar ones. Positive samples
are generated via functionally equivalent transformations of each
netlist graph [29], while negative samples are distinct graphs within
the same batch. The InfoNCE loss is also applied to minimize the

3We choose 2-hop to balance the expression expansion and runtime.
4We implemented Boolean transformation rules such as De-Morgan’s law,

distributive law, commutative law, associative law, etc.
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distance between positive pairs while maximizing separation from
negative samples:

L#2
graph = FCL(Ncls, N

+
cls), (5)

where N+
cls denotes the positive sample embeddings, and Ncls

includes the original and all other negative samples in the batch.
Objective #2.3 Netlist graph size prediction. This objective

aims to predict the number of each type of gate in a given netlist
graph based on the graph-level embedding, which is formulated as a
regression problem. Denote ysize as the ground-truth gate counts
for a netlist graph GN . We employ an auxiliary model MLPregr,
which takes the graph-level embedding Ncls as input and outputs
the predicted gate counts. The objective is to minimize the Mean
Squared Error (MSE) between the predicted and actual gate counts,
as formulated below:

L#2
size =

1

n

n∑
i=1

(
ysize
i − MLPregr(Ncls)

)2

, (6)

where n is the number of gate types, and each element in ysize

corresponds to the predicted count for a specific gate type.
2) Pre-training beyond TAGFormer to enhance functional

and physical awareness: Objective #3 Cross-stage contrastive
alignment. Beyond the pre-training objectives within NetTAG’s
components, we introduce cross-stage alignment to integrate
information from RTL-stage functionality and layout-stage physical
implementation into NetTAG. This alignment enhances NetTAG’s
cross-stage awareness, benefiting both functional and physical
downstream tasks, as further demonstrated in Section III-D. Using
contrastive objectives, we align the circuit embeddings from RTL
(i.e., R+

cls), netlist (i.e., Ncls), and layout (i.e., L+
cls) within a shared

latent space, as formulated below:
L#3

align = FCL(Ncls, R
+
cls) + FCL(Ncls, L

+
cls). (7)

To this end, we formulate the overall self-supervised pre-training
objective of NetTAG as the following two-step process:

LNetTAG =

{
L1

expr (Step 1)
L2

gate + L2
graph + L2

size + L3
align (Step 2)

(8)

F. Fine-tuning for downstream tasks
NetTAG generates multi-grained embeddings for netlist elements,

including combinational gates, register cones, and entire circuits. For
sequential circuits, circuit-level embeddings are computed by sum-
ming the embeddings of all register cones, while for combinational
circuits, their overall embeddings are directly obtained on the [CLS]
node without the need for chunking into cones.

For downstream tasks, we fine-tune these embeddings with
lightweight task models like MLPs or tree-based models (e.g.,
XGBoost). NetTAG’s versatile embeddings support both regression

and classification across functional and physical tasks for netlists.
For functional tasks, the fine-tuning model predicts early RTL-
stage information on netlists, such as gate functions and register
types. As for physical tasks, it predicts late layout-stage metrics like
register endpoint slack, power, and area. We will provide the detailed
evaluation results in Section III-B.

III. EXPERIMENTAL RESULTS

A. Experimental Setup

Data preparation. We collect circuits for pre-training from various
sources, including benchmark RTL code from ITC99 [41], Open-
Cores [42], Chipyard [43], and VexRiscv [44]. All RTL designs
are synthesized into netlists using Synopsys Design Compiler using
NanGate 45nm technology library and then undergo physical design
with Cadence Innovus. Gate and design quality metrics and statistics
are obtained using Synopsys PrimeTime. For symbolic logic expres-
sions, we use PySMT [37], a symbolic reasoning toolkit for formal
verification, to construct and manipulate the Boolean expressions.

The statistical details of our dataset are shown in TABLE II.
For the expression dataset used by ExprLLM, we collected 313k
original expressions, each augmented with functionally equivalent
transformations, resulting in a total of 626k expressions. As for the
circuit netlist data, we collected 100k subcircuit cones after chunking,
which were also functionally augmented to reach 200k samples in
total. Additionally, we included 10k aligned RTL and layout cones for
cross-stage alignment. When applying NetTAG to downstream tasks,
we directly use the original task datasets if available. Otherwise, we
utilize designs from the aforementioned open-source benchmarks.

TABLE II: Statistics of circuit expression and netlist dataset.

Source
Gate Expression Circuit Netlist

# Data # Tokens
(Avg.) # Data # Nodes

(Avg.)

ITC99 47k 6,960 4k 1,025
OpenCores 76k 212 55k 173
Chipyard 109k 9,849 20k 2,813
VexRiscv 81k 5,289 21k 901

Total 313k 5,810 100k 855

Implementation details. For the implementation of NetTAG, we
initialize ExprLLM with LLM2Vec [38], an open-source LLM-based
encoder based on Meta Llama-3.1-8B [45], with 8k maximum input
tokens. For the graph transformer backbone of TAGFormer, we adopt
SGFormer [46]. Additionally, we use NV-Embed [47] (maximum 32k
input tokens) as the pre-trained RTL text encoder, and the layout en-
coder is pre-trained using a graph contrastive objective on SGFormer.
Each MLP contains three layers with a hidden dimension of 256, and
the output dimension of NetTAG is set to 768. We pre-train ExprLLM
using LoRA on the full dataset for one epoch, followed by 50 epochs



of pre-training for TAGFormer. Afterward, fine-tuning is performed
with lightweight models and task-specific labels. All experiments are
conducted on 8 Nvidia 4090 GPUs and 4 Nvidia A6000 GPUs.

B. Performance on Various Downstream Tasks

We evaluate the pre-trained NetTAG on four representative
netlist-stage tasks, including functional and physical tasks across
combinational and sequential circuits. These tasks span multiple
netlist granularities: combinational gates, register cones, and entire
circuits, offering a thorough assessment of NetTAG’s capabilities.

NetTAG consistently outperforms task-specific baselines in each
task, demonstrating its ability to capture functional and physical
circuit information. This highlights NetTAG’s role as a foundation
model that is capable of generating informative embeddings for
netlists. Detailed evaluations for each task are as follows:

Task1: Combinational gate function identification. This task
identifies the functional type of each netlist combinational gate (e.g.,
adder, multiplier, comparator) as described in the original RTL code.
Accurate gate function identification is critical for applications such
as reverse engineering, hardware security, and functional verification.
We evaluate NetTAG on an open-source dataset from GNN-RE [14],
ensuring no label-related text is included in the gate text attributes
and using the same metrics for a fair comparison.

As shown in TABLE III, NetTAG significantly outperforms GNN-
RE across all metrics, with an average improvement of 14% in
accuracy (97% vs. 83%), 11% in precision, 14% in recall and
F1-score. These improvements demonstrate NetTAG’s robust ability
to capture functional information on each gate, enabling superior
generalization compared to the task-specific GNN-based method.

TABLE III: Performance comparison on Task1: combinational gate
function identification.

GNN-RE [14] NetTAG
Acc. Prec. Recall F1 Acc. Prec. Recall F1Design
(%) (%) (%) (%) (%) (%) (%) (%)

1 79 82 79 74 97 97 97 97
2 96 96 96 96 100 100 100 100
3 94 94 94 94 100 100 100 100
4 78 83 78 78 100 100 100 100
5 91 92 91 90 99 99 99 99
6 74 78 74 68 94 94 94 93
7 80 80 80 80 84 87 84 81
8 89 90 89 87 95 96 95 96
9 65 77 65 67 100 100 100 100

Avg. 83 86 83 82 97 97 97 96

Task2: Sequential state/data register identification. This task
distinguishes state registers from data path registers, which is
essential for understanding high-level control and data flow within
low-level netlists, supporting security analysis and verification.
We evaluate NetTAG against ReIGNN [15], a supervised method
specifically designed for this task based on GNN. The evaluation
metrics include sensitivity and balanced accuracy (the average of
sensitivity and true negative rate).

As demonstrated in TABLE IV, NetTAG significantly outperforms
ReIGNN in both metrics. It achieves a 44% improvement in sensitiv-
ity (90% vs. 46%) for state register identification and a 13% increase
in overall accuracy (86% vs. 73%), highlighting its superior capability
of capturing structural and functional information from register cones.

Task3: Endpoint register slack prediction. This task focuses on
predicting sign-off timing slack at the netlist stage to provide early
feedback, thereby expanding the optimization space in the physical
design flow. The prediction is highly challenging due to substantial
graph topology changes during physical design optimizations, as
discussed in [2]. We compare NetTAG with the state-of-the-art GNN-
based method from [2], extending their post-placement method to
work at the post-synthesis stage. Performance is evaluated using cor-
relation coefficient (R) and mean absolute percentage error (MAPE).

TABLE IV: Performance comparison on Task2: state/data register
identification & Task3: endpoint register slack prediction.

Task 2 Task 3
REIGNN [15] NetTAG GNN⋆ NetTAG
Sens. Acc. Sens. Acc. R MAPE R MAPEDesign

(%) (%) (%) (%) (%) (%)

itc1 50 72 100 98 0.89 13 0.94 9
itc2 100 92 100 100 0.91 10 0.93 9

chipyard1 30 65 80 79 0.72 17 0.7 20
chipyard2 30 65 90 86 0.86 12 0.95 9

vex1 50 74 82 74 0.94 11 0.93 12
vex2 32 60 86 82 0.97 18 0.97 9

opencores1 42 73 93 84 0.99 26 0.92 29
opencores2 37 80 92 82 0.93 30 0.98 26

Avg. 46 73 90 86 0.9 17 0.92 15
⋆ We adapt the GNN model from [2] for netlist-stage slack prediction, as
it was originally designed for the layout stage.

As shown in TABLE IV, NetTAG outperforms the customized
GNN baseline [2], achieving more accurate slack prediction with R
of 0.92 vs. 0.9 and a MAPE of 15% vs. 17%.

Task4: Overall circuit power/area prediction. This task predicts
final layout power and area metrics at the netlist stage, offering early
estimates for physical design. We compare NetTAG with the synthesis
tool and a customized GNN model adopted from PowPrediCT [7], a
layout-stage state-of-the-art optimization-aware power predictor.

For area prediction, NetTAG achieves a 4% MAPE without
optimization and 11% with optimization, outperforming the GNN’s
5% and 18% and the synthesis EDA tool’s 5% and 34%. For
power, it yields an 8% MAPE without optimization and 12% with
optimization, surpassing the GNN’s 12% and 19% and the EDA
tool’s 34% and 38%. These results highlight NetTAG’s strong
accuracy and robustness for circuit-level tasks.

TABLE V: Performance comparison on Task4: overall circuit
power/area prediction.

Target Metric†
EDA Tool GNN⋆ NetTAG

R MAPE R MAPE R MAPE
(%) (%) (%)

Area w/o opt 0.99 5 0.99 5 0.99 4
w/ opt 0.95 34 0.95 18 0.96 11

Power w/o opt 0.99 34 0.99 12 0.99 8
w/ opt 0.73 38 0.76 19 0.86 12

† Post-layout labels are collected in two scenarios: without considering
optimization (denoted as “w/o opt”) and with optimization as illustrated
in [7] (denoted as “w/ opt”).
⋆ We adapt the GNN model from [7] for netlist power and area prediction,
as it was originally designed for the layout-stage power prediction.

C. Comparision with pre-trained netlist encoders

In addition to the task-specific methods, we also compare Net-
TAG with pre-trained netlist encoders. Since they are all limited
to combinational AIG circuits, we evaluate them only on Task
1, using an AIG-format dataset. As shown in Fig. 5, NetTAG
outperforms SOTA AIG-based encoders, including FGNN [29] and
DeepGate3 [27], achieving the highest average performance across
all metrics. Notably, NetTAG achieves superior accuracy on the AIG
dataset compared with more diverse gate datasets in TABLE III
for Task 1, underscoring its adaptability. We also evaluate the
standalone ExprLLM component of NetTAG, which performs well
using symbolic expressions, highlighting the power of gate semantic
understanding. These results emphasize NetTAG’s advantage in com-
bining semantic and structural information through the TAG format.
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Fig. 5: Comparision with pre-trained AIG encoders on AIG dataset.
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Fig. 6: Ablation study.

D. Ablation Study
This ablation study evaluates the contributions of three key aspects

of NetTAG: TAG-based representation, self-supervised pre-training
objectives, and cross-stage alignment. The analysis, shown in Fig. 6,
highlights the impact of each component on the model’s performance
across the four tasks, with detailed analysis as follows:

Effectiveness of learning netlist via TAG. Removing text at-
tributes and relying only on graph structure significantly reduces per-
formance, especially on functional tasks. This indicates that semantic
information from text attributes is crucial. Additionally, physical tasks
also show a slight decline, suggesting that even structure-focused
tasks benefit from the added semantic context in TAG.

Effectiveness of self-supervised pre-training objectives. The
results demonstrate that the expression contrastive learning objective
(#1) for ExprLLM has the greatest impact on functional tasks,
suggesting it enhances the LLM’s understanding of symbolic logic
expressions. Objectives #2.1 (masked gate reconstruction) and #2.2
(graph contrastive learning) improve performance across both func-
tional and physical tasks, highlighting their role in capturing both lo-
cal and global netlist structure. Objective #2.3 (graph size prediction)
shows the strongest effect on physical tasks, where a comprehensive
understanding of the netlist’s overall structure is essential.

Effectiveness of cross-stage alignment. Removing cross-stage
alignment leads to a notable drop in performance across all four tasks.
This alignment effectively enhances NetTAG’s ability to integrate
both early-stage functional and late-stage physical information, which
is crucial for downstream tasks.

E. Runtime Analysis
In TABLE VI, we present NetTAG’s runtime across various

benchmarks. Most runtime is spent on preprocessing (i.e., converting
netlists into TAG format) and node-level inference using ExprLLM.
Despite these steps, NetTAG demonstrates around a 10x speedup over
traditional physical design workflows using commercial EDA tools.
There is significant potential for further runtime improvements. For
example, symbolic expression extraction for each gate can be highly
parallelized, reducing preprocessing time. Additionally, the ExprLLM
inference time could be largely reduced by scaling up GPU resources,
as this runtime depends on GPU performance and quantity.

IV. DISCUSSION

A. Scalability: Performance Scaling with Model and Data Size
In Fig. 7, we study how the downstream task performance of

NetTAG scales with both model size and pre-training data size.

TABLE VI: Runtime (minutes) Comparision.

Source
EDA Tool Ours (Avg.)

P&R
(Avg.) Pre⋆ Infer TotalExprLLM TAGFormer

ITC99 164 2 5 0 7
OpenCores 288 18 12 1 31
Chipyard 251 15 10 1 26
VexRiscv 207 8 5 2 15
GNNRE / 4 2 0 6

⋆ Preprocessing (chunking into cones and converting netlist into TAG).

The plot shows the performance of each task after fine-tuning.
Scaling ExprLLM backbone from 110M parameters (BERT) to larger
models like Meta Llama 3.1 with 1.3B and 8B parameters results in
significant performance improvements across all four tasks. Similarly,
expanding data size from 25% to 100% of the dataset consistently en-
hances performance. These results demonstrate the scalability of Net-
TAG, suggesting that further increases in model and data size could
lead to even greater improvements in accuracy and generalization.

88

96 97

79
83

86

75

85

95

Ac
cu

ra
cy

 (%
)

26
23

1524 22

12
10

20

30

110M 1.3B 8B

M
AP

E 
(%

)

Task 1 Task 2 Task 3 Task 4

95 96 97

80 84
86

80

90

100

Ac
cu

ra
cy

 (%
)

19

16
15

15
13

1210

20

25% 50% 100%

M
AP

E
(%

)

(a) Increasing model size (b) Increasing data size
Fig. 7: Performance scaling with model and data size.

B. Demo: Reasoning Netlist’s Arithmetic Function with NetTAG
Fig. 8 shows how NetTAG improves functional reasoning for

arithmetic netlists. Using an LLM (e.g., OpenAI’s o1-preview) to
analyze post-synthesis netlist Verilog texts, we assess its ability to
interpret the arithmetic function from the flattened netlists. Without
NetTAG’s gate-level function identification, the LLM struggles with
interpreting functionality from flattened netlists. When integrated
with NetTAG, the LLM accurately infers that the netlist module
compares two 2-bit values, performs addition and multiplication, and
selects the result based on the comparison outcome.

This module compares two 2-
bit values a and b, performs 
addition and multiplication on 
them, and selects the result 
based on the outcome of the 
comparison.

The design seems to 
conditionally combine bits 
from a and b to create the 
output Out, using both logical 
operations and multiplexing. 
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Fig. 8: A demo for reasoning arithmetic function from netlists.

V. CONCLUSION AND FUTURE WORK

In this paper, we present NetTAG, a foundation model for netlist
representation learning that accommodates diverse gate types and
supports a range of functional and physical tasks. By formulating
netlists as text-attributed graphs, NetTAG uniquely integrates gate
semantics with graph structure through its multimodal architecture
and self-supervised pre-training objectives. Future work will enhance
NetTAG by extending pre-training to larger circuit datasets and
exploring decoding methods to broaden task support capabilities.
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