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Abstract—In recent years, AI-assisted IC design methods have demon-
strated great potential, but the availability of circuit design data is
extremely limited, especially in the public domain. The lack of circuit data
has become the primary bottleneck in developing AI-assisted IC design
methods. In this work, we make the first attempt, SynCircuit, to generate
new synthetic circuits with valid functionalities in the HDL format.

SynCircuit automatically generates synthetic data using a framework
with three innovative steps: 1) We propose a customized diffusion-based
generative model to resolve the Directed Cyclic Graph (DCG) generation
task, which has not been well explored in the AI community. 2) To
ensure our circuit is valid, we enforce the circuit constraints by refining
the initial graph generation outputs. 3) The Monte Carlo tree search
(MCTS) method further optimizes the logic redundancy in the generated
graph. Experimental results demonstrate that our proposed SynCircuit
can generate more realistic synthetic circuits and enhance ML model
performance in downstream circuit design tasks.

I. INTRODUCTION

The ever-increasing demands for chip performance have caused
escalating integrated circuit (IC) complexity, challenging traditional
Electronic Design Automation (EDA) methodologies. In recent years,
AI-assisted IC design techniques have demonstrated remarkable po-
tential in accelerating the chip design process. Notable AI for EDA
applications include automated chip design generation [1], [2], [3], fast
chip quality prediction [4], [5], [6], [7], [8], [9], [10], and automated
chip design planning [11].

SynCircuit: Pathway to Big Data in Circuits. Compared with
generating datasets with limited circuits in the public domain, we
believe the automated generation of a large number of synthetic
circuits is the most promising way to completely solve the circuit
data availability problem in the foreseeable future. In this work, we
demonstrate the feasibility of this promising direction with a novel
synthetic circuit generation framework named SynCircuit.

To the best of our knowledge, SynCircuit proposed in this work
is the first technique to automatically generate brand-new synthetic
circuits with valid functionalities. Specifically, we achieve this with
novel customized graph learning algorithms and follow-up refinement
techniques. The synthetic circuits are in the RTL stage and support
hardware description language (HDL) code format. They can be
automatically synthesized into regular netlists and turned to layouts
with commercial tools. These synthetic designs can not only enhance
the training and robustness of AI models by providing diverse and
extensive datasets but also may serve as benchmarks for assessing the
performance of existing design algorithms [12], [9], [13]. In addition,
our proposed directed graph generation framework potentially applies
to other tasks, such as neural architecture search (NAS) and Bayesian
optimization [14], [15], [16].

SynCircuit generates synthetic circuits with 3 phases:
Phase 1. Generation of Large Directed Cyclic Graph (DCG).

Circuit design code (i.e., HDL code) can be equivalently represented
as directed cyclic graphs (DCG), allowing the utilization of graph
generation algorithms to create synthetic circuit designs. However, most
machine learning (ML) research on graph generation has focused on
undirected graphs [17], [14], [18], [19], [20], leaving unsolved chal-
lenges on generating directed graphs. For instance, edge predictions in
these prior works are determined by applying a symmetric operator
to the pairwise node embeddings. Also, spectrum-based generation
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Fig. 1: The overview of SynCircuit. It addresses the serious design
scarcity issue by generating new synthetic circuits. Through a three-
stage process consisting of denoising, validity refinement, and opti-
mization, SynCircuit can generate an unlimited number of synthetic
circuits suitable for downstream ML tasks.

techniques like Spectre [21] and DiGress [22] rely on properties
specific to undirected graphs, such as symmetric Laplacian matrices.
Some works generate directed graphs in an autoregressive manner
following the topological order [15], [23]. However, they do not apply
to directed cyclic graphs, where a topological sort does not exist. In
summary, the generation of DCG is not a well-solved problem, not
only for synthetic circuit data generation in EDA applications, but also
in the general AI community.

In response to the challenges posed by large directed cyclic graphs
in circuit designs, we propose a graph generation algorithm for digital
circuits. We employed a diffusion generation framework for graph
generation and designed an efficient and low-cost denoising network
that includes an encoder and a decoder. For the graph encoder, a
directed messaging-passing neural network is utilized to better capture
the local features of graphs while only requiring a relatively low
memory consumption. For the decoder, we model the directed edge
relation based on learnable translated embeddings.

Phase 2 & 3. Refinement of Synthetic Circuits. Additionally, how
to ensure the graph validness, i.e., satisfying the circuit constraints, is
not also fully explored in graph generation, especially in a one-shot
manner. Given the fanin constraints and combinational loop prevention
requirements, we propose a probability-guided graph post-processing
strategy to further refine the invalid synthetic graph obtained from
the denoising process. This technique sequentially processes the fan-in
edges of each node, which not only ensures that the resulting circuit
satisfies the constraints but also preserves the generative information
of the diffusion model as much as possible.

We also point out the logic redundancy problem in the synthetic
circuits. To further alleviate the redundancy of the generated designs
and improve their utility as data augmentation in downstream tasks,
we also employ Monte Carlo Tree Search (MCTS) to further fine-tune
the generated graphs. This approach allows us to obtain higher-quality
graphs that are better suited for real applications.

We summarize our contributions as follows:
• To the best of our knowledge, we are the first to propose

a framework for generating digital circuits at the RTL level
from a graph generation perspective. This framework comprises
three components in the generation phase: directed cyclic graph
generation, probability-guided postprocessing, and MCTS-based
optimization.

• We propose a graph generative model solution targeting the
challenging directed cyclic graph generation task. We utilize the



diffusion framework and reconstruct the edge direction informa-
tion through an asymmetric edge decoder.

• To further alleviate the redundancy of the generated designs and
improve their utility as data augmentation in downstream tasks,
we employ MCTS to further fine-tune the generated graphs.
This approach obtains higher-quality graphs with optimized logic
redundancy which are better suited for real applications.

• We conducted experiments on graph structural property similarity
evaluation and demonstrated that SynCircuit generates more real-
istic graphs. Experiments on early RTL-stage PPA prediction show
that SynCircuit can help alleviate the data availability problem in
AI-based solutions for EDA tasks.

II. PROBLEM FORMULATION

DCG representation of HDL code. Given a circuit design HDL
code D, it can be mapped to a circuit graph representation G through
a bijection function f : D ↔ G using our developed parser. Here, G
is a directed cyclic graph represented as (V,E,X), where V denotes
the set of nodes, E represents the set of edges with ei,j ∈ E indicating
a directed edge from vi to vj , and X represents the attributes of the
nodes. The node attributes include node type and width. The node types
are primarily categorized into IO port, arithmetic operator, register
(reg), bit selection, and concatenate operator. The width attribute
reflects the output signal width of the corresponding node.

Circuit constraints C. To ensure that the graph can be parsed back
into HDL code, valid G must satisfy two types of constraints:

• The node type uniquely determines the number of parent nodes.
For example, a node of the type “mux” requires three parent nodes,
while the type “add” requires two.

• The graph must not contain any combinational loops. The com-
binational loop is defined as a cycle that does not include any
registers, which would cause timing violations.

Generate new large circuits. In order to provide generation flexibil-
ity, we will use the generative model to produce edges E conditioned on
the specified node number V and attributes X by users. Our objective
is to learn the probability distribution P (G | V,X) from a set of
real circuit HDL codes through their graph representations {Gi}. This
will enable the generation of a series of new synthetic circuit graphs
{Gsyn

i }. We aim for these synthetic circuit design graphs to closely
resemble real designs in terms of topological structure and satisfy all
the circuit constraints C. Moreover, considering most registers in real
designs will not be removed in the synthesis stage, we require the
generated circuits to have as low logic redundancy as possible.

III. OVERVIEW OF SYNCIRCUIT

Initially, the realistic designs are converted into directed cyclic graph
representation. We subsequently trained a diffusion model P (G | V,X)
on these designs. In the generation stage, as Figure 2 shows, our
proposed circuit generation process consists of three phases: initial
graph generation, validness post-process, and optimization refinement.

P (G)
1→ Gini 2→ Gval 3

→ Gopt

In the generation phase of 1 , we adopt the trained diffusion model
and apply the denoising process to obtain an initial synthetic graph
Gini with a corresponding edge probability matrix P

(t=0)
E . The value

of (i, j) in PE represents the directed edge ei,j existence probability.
In phase 2 , we propose an autoregressive method to determine the
edges based on the Gini to ensure that the refined graph Gval satisfies
all the circuit constraints C. In the final phase 3 , we address the
issue of significant logical redundancy in the generated circuits. Gval

is fine-tuned by the MCTS-based method, reducing logic redundancy
and thereby enhancing the performance of downstream tasks. In the
following subsections, we will explain each stage in detail.

IV. PHASE 1. DCG GENERATION TECHNIQUE

Limitation of prior works on DCG generation. Many prior graph
generation works utilize a symmetric operator or semi-positive-definite
Laplacian matrix to assign edges. This symmetric assumption does not
support the asymmetric edge in the directed cyclic graph. For directed

acyclic graphs (DAGs), previous work [23], [15] addresses DAG
generation by sorting node order based on the topological structure
and then generating nodes in a layerwise manner. Topological sorting
ensures that a node’s parent nodes always precede it in the order.
Consequently, the edge direction is automatically determined. However,
there is no topological node ordering in the DCG graph since the nodes
in a loop share the same topological level.

The proposed DCG generation technique overview. To the best
of our knowledge, we are the first to address the task of generating
directed cyclic graphs using a diffusion model framework. The method
involves a forward diffusion process and a reverse denoising process.
In the forward process, we gradually corrupt the adjacency matrix A
by adding noise, transforming it from the original data distribution into
a noisy distribution. The goal of the reverse process is to reconstruct
the original adjacency matrix from the noisy version by reversing this
corruption. During the reverse denoising process, a denoising neural
network ϕθ with an encoder and a decoder is trained with real circuits.
The encoder processes the node attributes and the noisy adjacency
matrix to generate node representations that consist of rich graph
structural information at each denoising step. The decoder utilizes these
node representations to effectively reconstruct the ground truth edge
connections. By training ϕθ in the reverse process, the model learns
to progressively denoise the graph structure, ultimately generating
synthetic circuits similar to realistic ones.

A. Forward Process

In the forward diffusion process, we progressively corrupt the adja-
cency matrix A by applying a series of predefined transition matrices,
introducing noise at each time step t. Specifically, starting from the
initial graph G(0) = (X,A(0)), the corrupted adjacency matrix A(t) at
time t is obtained via a Markov process:

A(t) = A(t−1)Q̃
(t)
A

where Q̃
(t)
A is the noise transition matrix at time t. By iteratively

applying these transitions, we gradually transform A(0) into a noisy
distribution. To control the degree of corruption, we employ a schedul-
ing strategy (e.g., cosine schedule [24]) to adjust the noise level over
time. The scheduling ensures that the corrupted adjacency matrices A(t)

smoothly transit from the original data distribution to a predetermined
noise distribution.

B. Denoising Process

In the denoising diffusion process, our goal is to recover the original
adjacency matrix A(0) from the noisy matrix1 A(T ). Based on the
node attributes2 X , we model the conditional probability pθ(G

(t−1)) =
pθ(A

(t−1)|A(t), X, t), parameterized by a denoising network ϕθ,t. In
the generation stage, the ϕθ,t will reconstruct a probability matrix P t−1

E

given G(t). The new graph Gt−1 will be updated by sampling the edge
existence probability matrix P t−1

E .

C. Encoder Design for Large Graphs

In the denoising network architecture ϕθ,t, the encoder is to capture
the structural information of the input noisy graph G(t). Handling
large-scale graphs with more than 10K nodes poses computational
challenges. To address this, we design an efficient encoder based on
Message Passing Neural Networks (MPNNs), which have a computa-
tional complexity linear to the number of edges |E|.

The encoder generates the representation for each node. When
initializing the node embeddings, we use an MLP to obtain a time
embedding for the current step t and combine it with the node
attributes. By introducing the time step information t which conditions
the encoder at different noise levels, we can improve the denoising

1In training, the A(T ) is obtained from the forward process. In inference, we
randomly sample a completely noisy adjacency matrix

2In training, the X is obtained directly from the real circuits. In inference,
we can either use the P (X) distribution from the real design or set it according
to the user’s specifications.



Fig. 2: Overview of SynCircuit framework. The circuit generation process starts with the specified node number V and attributes X . In Phase 1,
the model performs a reverse diffusion process, where it predicts the probability of an edge existing between any pair (i, j) to obtain P

(t)
E . Then

we sample from P
(t)
E to update a graph G(t) as a new time state. After T denoising steps, the Gini = G(0) is obtained. However, the generated

graph may not necessarily be valid. In Phase 2, during post-processing, we sequentially assign parents to each node based on P
(t=0)
E , ensuring

at each step that the circuit satisfies the constraints. In Phase 3, considering that some synthetic circuits exhibit significant logic redundancy, we
employ an MCTS-based optimization technique, thereby reducing the generated design redundancy and better serving the downstream tasks.

performance at different diffusion steps. The node representation of
each node j is updated through several layers of message passing:

Hl+1
j = σ

(
W l

hH
l
j +

∑
i∈Pj

1

|P(j)|W
l
mHl

i

)
where Hl

j is the representation of node j at encoder layer l, P(j)
denotes the parents of node j, W l

h and W l
m are learnable weight

matrices of the MPNN-based encoder, and σ is Relu function.

D. Decoder Design
In the denoising model ϕθ,t, the decoder will decide the existence

of directed edges between pairs of nodes based on their encoded
representations Hi from the encoder. In the context of directed graphs,
conventional symmetric operations are insufficient to distinguish the
directionality of edges. For example, the dot product [25] or Eu-
clidean distance [15] of node embeddings Hi, Hj are commutative
(i.e., H⊤

i Hj = H⊤
j Hi and ∥Hi −Hj∥2 = ∥Hj −Hi∥2), failing to

differentiate an directed edge from node i to j or from node j to i.
To address this limitation, we model the directed edge ei,j by

associating Hi and Hj with a learnable relation embedding r(t) [26],
capturing the inherent directionality of the edge. In an asymmetric
relation, the fundamental idea is that the embedding of the source node
Hi, when translated by the relation embedding r(t), is supposed to be
close to the embedding of the target node Hj . We define the decoder’s
prediction for the existence probability of ei,j at time step t as follows:

P
(t−1)
E (i, j) = p̂

(t−1)
ij = pθ

(
A

(t−1)
ij = 1 | H(t)

i , H
(t)
j , t

)
= MLP

({(
H

(t)
i + r(t)

)
⊙H

(t)
j

}
⊕ d(t)

)
where H

(t)
i and H

(t)
j are the representations of nodes i and j at

time step t from the encoder, r(t) is the learnable relation embedding
obtained by r(t) = MLPr(t), ⊙ denotes element-wise multiplication,
⊕ denotes vector concatenation, d(t) is the learnable embedding of the
time step t obtained by d(t) = MLPd(t).

V. PHASE 2. PROBABILITY-GUIDED GRAPH POST-PROCESSING

In phase 1, we obtain the Gini and the edge existence probability
P

(t=0)
E . But the Gini will mostly likely violate circuit constraints C.

Therefore, we need to utilize the edge existence probability P
(t=0)
E to

refine Gini and produce designs Gval that meet all predefined circuit
constraints. We propose a probability-guided sequential post-processing
approach to leverage the P

(t=0)
E for parent node selection while

ensuring both fanin limitations and combinational loop prevention
which are required by constraints C.

The post-processing algorithm iteratively processes each node in the
circuit graph. For each node i, if its parent edges in Gini are valid,
then we will skip this node. If this node violates C, we leverage the
predicted edge probabilities from the previous diffusion model, sorting
potential parent nodes by their connection probabilities in descending
order. Before adding an edge from a candidate parent j, we need to
check if the combinational loops would be created by this new edge.
It can be achieved by checking if there exists a path from i to j in the
subgraph that excludes register-type nodes. This sequential processing
continues until the required number of valid parents is found.

VI. PHASE 3. REFINEMENT ON CIRCUIT REDUNDANCY

Logic redundancy problem. Another important yet rarely studied
challenge is logic redundancy. In real circuits, human designers will not
likely introduce too much redundant logic into the circuit, which can be
reflected by the sequential cell count in the optimized netlist. We define
a metric, sequential cell preservation ratio (SCPR) which is calculated
by dividing the number of sequential cells in the synthesized netlist by
the total number of bits in sequential signals in the pre-synthesis HDL
design. Our experiments show that the SCPR is usually between 70%
to 100% in real designs. But some synthetic designs Gval can not even
reach a 10% SCPR, which shows a serious logic redundancy problem.

Our objective in 3 . To better align the generated circuits with real
ones not only in the topological aspects but also in the redundancy
perspective, we aim to refine Gval and obtain Gopt, thus reducing the
ratio of removed registers by the synthesis tool.

A. Challengs and optimization overview.

To optimize synthesized circuit designs, we face the challenges
of an immense exploration space. To tackle this issue, we optimize
the driving cone for the target register3 one by one. In the cone
optimization procedure, we introduce an MCTS-based effective strategy
for navigating the large design space and finding circuits with better
logic preservation quality.

3The term “driving cone for a register” refers to the set of nodes obtained
by performing a reverse breadth-first search starting from a register node. This
search traces back through the parent nodes until nodes of type “const”, “in”,
or other “reg” nodes are encountered. The nodes traversed during this process
collectively constitute the driving cone for our target particular register.



Fig. 3: MCTS-based circuit optimization flow overview. (a) The search tree is on the left and each state node represents an adjacency matrix.
(b) A swapping atomic operation on the adjacency matrix facilitates state transformations during the search. (c) We propose a new metric,
post-synthesis size (PCS) as the reward model to guide the search process.

B. Monte Carlo tree search-based exploration.

We detail the MCTS process in Figure 3. It guides the exploration
and optimization of the design space, driving the search toward solu-
tions with reduced hardware redundancy. Within this framework, each
state node represents an adjacency matrix. We define a swapping atomic
operation on the adjacency matrix, facilitating state transformations
during the search.

Hardware redundancy metric as MCTS reward. To reflect the
cone redundancy, we defined the post-synthesis circuit size (PCS). It
is calculated by dividing the post-synthesis area by the number of
nodes before synthesis. The rationale is that a larger PCS indicates
fewer components have been optimized out, implying less redundancy
in the synthetic circuit design. The overarching goal of the MCTS is
to maximize the PCS while preserving the validity of the circuit.

Action space. The action space for transforming the circuit design
during the MCTS process is defined by our proposed atomic swapping
operation. For State Si with A(i, j) = 1 and A(p, q) = 1, the new
state Si+1 can be obtained by simply swapping the parents of node
j and q, i.e., Si+1 with A(p, j) = 1 and A(i, q) = 1. Each atomic
action should be checked if it violates C. The advantage of this atomic
operation lies in its ability to ensure that the number of edges in the
graph remains unchanged, while also maintaining the out-degree and
in-degree of each node in Gval.

Selection and expansion. In the selection phase, the MCTS al-
gorithm traverses down the tree, selecting the most promising state
which also meets circuit constraints C to expand based on the UCB1
criterion [27]:

a = argmax
a

[
Q(S, a) +

√
2 ·

√
lnN(S)

N(S, a)

]
where Q(S, a) is the empirical mean reward of action a in state S,
N(S) is the total number of visits to state S, N(S, a) is the number of
times action a has been chosen in state S. This formula balances the
exploitation of known high-search reward actions with the exploration
of less-tried actions. During the expansion step, the MCTS algorithm
generates new child nodes by applying the atomic operation to the
current node.

Simulation and backpropagation. Due to our objective of identi-
fying the optimal state encountered during the search trajectory rather
than optimizing for terminal states, we modify the traditional MCTS
simulation and backpropagation mechanisms. In our approach, the
reward for each simulation is defined as the maximum state reward
Rewardmax encountered during that search path, rather than the
terminal state value. During backpropagation, we update Q(S, a) [27]
using the Rewardmax.

VII. EXPERIMENTAL RESULTS

Application of SynCircuit in our experiments. The register-
transfer level (RTL) stage offers maximum optimization flexibility
in VLSI flow. Recently, machine learning-based RTL-level Power,
Performance, and Area (PPA) prediction methods have been proposed,
which can directly predict the performance of designs without requiring
logic synthesis [6] [5] [28], thereby significantly accelerating the design
iteration process. However, the application of these methods is limited
by the insufficient availability of open-source RTL code.

Experiments objectives. In this experiment, our primary objective is
to explore the effectiveness of new synthetic circuits for PPA modeling
at the RTL level. Additionally, we are also interested in investigating
the differences between synthetic circuits and real designs from not
only the graph structure but also the logic redundancy perspectives.
The comprehensive evaluation for SynCircuit may help us gain more
insights into the digital circuit generative model.

A. Experimental Setup
Circuit design preparation. Firstly, we developed a dataset com-

prising 22 designs based on open-source RTL. The detailed dataset
information is provided in Table I. It encompasses a diverse range of
digital circuit modules, representing some of the high quality designs
available within the open-source community.

Source
Benchmark

#.
of Designs

Original
HDL Type

Design Scale (#K Gates)
{Min, Median, Max}

ITC’99[29] 6 VHDL {9, 19, 45}
OpenCores[30] 8 Verilog {2, 6, 35}
Chipyard[31] 8 Chisel {12, 19, 52}

TABLE I: Dataset composition and design size information.

Design label preparation. To obtain netlist labels including design
area, register slack (SL), worst negative slack (WNS), and total negative
slack (TNS), we employed Synopsys Design Compiler® 2021 with the
NanGate 45nm technology library. To align with real-world scenarios,
multiple parameters within the Design Compiler were adjusted, and a
set of the PPA values along the Pareto frontier were utilized as ground
truth labels.

Training-testing data splitting. We randomly selected 7 designs
from the dataset as the test set, while the remaining 15 designs were
used as the training set in the downstream PPA prediction task. To
prevent data leakage, all the graph generative models mentioned in
this paper were only trained on these 15 training designs.

Graph generative model baselines. We selected several represen-
tative and most closely related baselines, including GraphRNN [17],
DVAE [15], SparseDigress [32] and GraphMaker [25]. These 4
baselines all need to be adapted to the circuit generation task.
GraphRNN [17] and DVAE [15] are node ordering-based autoregressive



Model
1-Wasserstein distance W1 ↓ EĜ∼pθ

[
M(Ĝ)
M(G)

]
→ 1

Out Degree Cluster Orbit # Triangle ĥ(A, Y ) ĥ(A2, Y )

TinyRocket Core TinyRocket Core TinyRocket Core TinyRocket Core TinyRocket Core TinyRocket Core
GraphRNN [17] 1.03 0.762 0.935 0.136 1.94 0.978 0.016 0.0238 5.33 3.27 2.13 2.53
DVAE [15] 1.31 0.832 0.912 0.146 1.33 1.24 0.241 0.105 6.66 5.19 3.17 2.96
GraphMaker-v [25] 0.678 0.621 0.957 0.112 1.24 1.05 0.262 0.501 2.31 1.96 1.53 1.62
Sparse Digress-v [32] 0.598 0.652 0.972 0.135 1.21 0.953 0.163 0.312 4.89 4.32 2.56 2.13

SynCircuit w/o diff 0.373 0.323 0.925 0.0807 1.09 0.926 0.0501 0.760 0.629 0.361 0.561 0.321
SynCircuit w/ diff 0.236 0.226 0.876 0.0452 0.344 0.231 0.146 1.34 0.713 0.670 0.624 0.487

TABLE II: Evaluation for structural properties similarity with original realistic circuits, best results are in bold. Lower W1 and∣∣∣EĜ∼pθ

[
M(Ĝ)/M(G)

]
− 1
∣∣∣ reflect a better graph similarity with the realistic ones. All 4 baselines were adapted to generate directed circuit

graphs without violating the constraints.

generative approaches. These methods cannot be directly applied to
generate directed cyclic graphs. We have to break the cycles in the
training circuits and use the topological order of nodes as the sequence
for the model training and inference. During generation, edge directions
are automatically determined by the topological order. In the sequential
generation process, we introduced a validity checker for circuits to
ensure that the resulting digital design is valid. But since these two
models can only be applied on DAGs, the generated graph contains
no cycles which is very different from the real designs.

For GraphMaker [25] and SparseDigress [32], these are one-shot
approaches that ignore edge direction information, generating only
undirected graphs. We applied the Gravity-Inspired Graph Autoen-
coders [33] method to process the generated undirected graph by
assigning the direction for each edge. To ensure the validity of the
generated graphs by GraphMaker [25] and SparseDigress [32], we
must refine the parent edges in a specific node order. The synthesis
tool removed most part of the generated circuits, so these two baseline
models can only be used for comparing graph characteristics and cannot
support valid designs for downstream tasks.

SynCircuit setup. For our proposed graph generative model, we
set the diffusion steps to 9 and utilized a 5-layer MPNN. Both the
node attribute embeddings and hidden embeddings were set to 256.
In the circuit optimization phase, to accelerate the evaluation process,
we replaced the slow synthesis tool with a trained discriminator to
approximate the PCS. In the MCTS process, we set the number of
simulations to 500 and the maximum exploration depth to 10 for each
register cone. All these experiments were conducted on a platform with
an Intel(R) Xeon(R) Gold 6438Y+ processor and 8*4090 GPUs.
B. Experimental Results

1) Graph structural properties evaluation: To evaluate the similar-
ity of the generated graph structures with realistic ones, we follow
GraphRNN [17] and GraphMaker [25] and report distance metrics
for node out degree, clustering coefficient, and four-node orbit count
distributions. We use the 1-Wasserstein distance to model statistic
distributions from the original and generated graphs, respectively. A
lower W1 value indicates better similarity.

Beyond distribution distance metrics, we also directly compare
several scalar-valued statistics [25], [34]. Let M(G) be a non-negative
statistic; we report EĜ∼pθ

[
M(Ĝ)/M(G)

]
, where Ĝ is a generated

graph. A value closer to 1 indicates better performance. For the M
statistics, we choose triangle count, ĥ(A,X) [25], [34] and two-hop
correlations ĥ(A2, X). ĥ(A,X) reflects the correlation between graph
structure and node types.

The results are shown in Table II. We can see that our SynCircuit
has the best performance among 5 out of the 6 metrics. Benefiting from
the diffusion model and the out-degree guidance in the postprocessing
phase, the degree distribution of our synthetic circuits is more similar
to the real designs. This feature is important because the digital circuits
are indeed scale-free networks4 [35].

4A Scale-Free Network is a type of network characterized by a degree
distribution that follows a power law. This means that in such networks,
the probability P (k) that a node has k connections (or degree k) decreases
polynomially as k increases

SynCircuit w/o diff is an ablation study where we remove the
diffusion model and randomly construct edges when generating Gini

and P
(0)
E , but applying post-processing to ensure certain predefined

constraints. We observe that its performance is greatly inferior to the
complete SynCircuit, demonstrating the effectiveness of our designed
generative diffusion model.

2) Logic redundancy and timing evaluation: We employ Monte
Carlo Tree Search (MCTS) to optimize the register cones within Gval.
For comparison, we implement an ablation study of randomly altering
edge connections on Gval while still ensuring every step is valid. We
utilize the same number of simulations as MCTS and adopt the optimal
solution identified throughout the process as the results. The SCPR
enhancement is illustrated in Figure 4(a), demonstrating that MCTS
can significantly reduce logic redundancy.

Figure 4(b) displays the number of sequential cells saved during
the logic synthesis using different optimization techniques. We can see
that by introducing our MCTS-based refinement, the registers saved
in the netlist have been greatly improved over no optimization and
the optimization performance is also better than that using a random
optimization method.

Fig. 4: (a) Logic redundancy metric SCPR is calculated by dividing
the number of sequential cells in the synthesized netlist by the total
number of bits in sequential signals in the pre-synthesis HDL design.
Here we select the five Gval examples with the most significant logic
redundancy. The register ratio (SCPR) cannot even reach 20% if we
do not optimize Gval. After the MCTS optimization, the SCPR is
greatly improved and exceeds 50% in some synthetic circuits. (b)
The number distribution of registers preserved after logic synthesis.
The logic redundancy is greatly reduced by our proposed MCTS
optimization method.

Netlist timing statistics comparison We use two metrics to evalu-
ate the design’s timing characteristics: Worst Negative Slack (WNS)
and Total Negative Slack divided by the number of violated paths
(TNS/NVP).

• WNS represents the most severe timing violation in the design,
indicating the largest negative slack among all timing paths, which
points to the longest delay and the most critical bottleneck in
signal propagation.



Model
Register Slack WNS TNS Area

R → 1 MAPE ↓ RRSE ↓ R → 1 MAPE ↓ RRSE ↓ R → 1 MAPE ↓ RRSE ↓ R → 1 MAPE ↓ RRSE ↓
Basic training data (No-pseudo circuits) 0.70 27% 0.83 0.86 20% 0.83 0.81 50% 0.97 0.89 30% 0.62

GraphRNN [17] 0.70 27% 0.83 0.88 21% 0.83 0.80 54% 0.97 0.84 44% 0.75

DVAE [15] 0.69 29% 0.94 0.88 24% 0.86 0.78 50% 0.97 0.84 61% 0.86

SynCircuit w/o opt 0.72 24% 0.79 0.90 23% 0.85 0.80 48% 0.86 0.86 39% 0.72

SynCircuit w/ opt 0.77 16% 0.70 0.89 20% 0.80 0.97 45% 0.64 0.95 25% 0.34

(a) Basic training dataset contains 15 real designs. Lower |R− 1|, MAPE and RRSE reflect better model prediction performance.

Model
Register Slack WNS TNS Area

R → 1 MAPE ↓ RRSE ↓ R → 1 MAPE ↓ RRSE ↓ R → 1 MAPE ↓ RRSE ↓ R → 1 MAPE ↓ RRSE ↓
Basic training data (No-pseudo circuits) 0.52 34% 1.1 NA 52% 2.1 NA 67% 1.1 0.65 66% 1.3

GraphRNN[17] 0.52 34% 1.1 0.71 42% 1.7 -0.30 74% 1.1 0.51 77% 1.6

DVAE[15] 0.49 36% 1.3 0.75 77% 2.6 0.76 93% 1.1 0.70 86% 2.4

SynCircuit w/o opt 0.56 35% 1.2 0.65 47% 1.9 0.72 70% 0.85 0.63 62% 1.1

SynCircuit w/ opt 0.67 25% 0.76 0.87 34% 1.2 0.98 61% 0.63 0.95 36% 0.61

(b) Basic training dataset contains 5 real designs. Lower |R− 1|, MAPE and RRSE reflect better model prediction performance.

TABLE III: Model Performance on the Register Slack, WNS, TNS, and area prediction. The basic training dataset in (a) and (b) contains 15 and
5 real designs respectively. In (a) and (b), the augmentation datasets are added to the basic training set, each always with 25 pseudo-circuits,
generated from SynCircuit, GraphRNN [17], and DVAE [15]. R with NA means that the model prediction is the same for all testing designs

• The metric TNS/NVP provides the average negative slack per
violated path, reflecting the overall severity of timing violations
and offering insights into the distribution of delays.

From Figure 5, We observe that the graphs generated by
GraphRNN [17] and DVAE [15] exhibit very small WNS (critical
path slack) and TNS/NVP values, failing to capture the inherent delay
characteristics of circuits. In contrast, our SynCircuit demonstrates
a more similar distribution of the two metrics to real designs. This
suggests that SynCircuit is more effective in modeling the diverse
timing behaviors present in real circuits.

Fig. 5: Netlist statistics for the three synthetic datasets and real
benchmarks. The distributions of two statistic metrics: Critical Path
Slack (WNS) and the ratio of Total Negative Slack to the Violating Path
Numberare shown in (a) and (b), respectively. The dataset generated
by SynCircuit exhibits more similar statistics distributions to those of
the real designs compared to GraphRNN [17] and DVAE[15].

3) SynCircuit application in RTL tasks: In this part, we explore the
application of synthetic circuit generation for ML-based RTL-level PPA
prediction model, primarily referencing the overall design evaluation
methods (i.e., area, WNS, and TNS) proposed by MasterRTL [5] and
the fine-grained timing slack evaluation by RTL-Timer [28]. We employ
three metrics to assess model performance: correlation coefficient (R),
Mean Absolute Percentage Error (MAPE), and Root Relative Squared
Error (RRSE). Lower MAPE and RRSE values indicate better model
performance.

We randomly selected 5 and the full 15 training real designs to
create two basic training datasets. For each basic training dataset,
we augmented it with different synthetic datasets (three sets of 25
designs each), generated respectively by SynCircuit, GraphRNN [17],
and DVAE [15], to study how these synthetic designs affect model
performance.

The results are shown in Table III. We can see that in both
training settings, models trained on datasets augmented with Synthetic-
generated data consistently outperformed those trained solely on real
designs, achieving the best results across all metrics. And we have
more model performance gain when the basic training dataset contains
5 designs. The Register Slack MAPE is reduced by 10% in both basic
training settings. And we have a 30% area MAPE reduction in the 5
basic training dataset settings.

Notably, models augmented with DVAE [15]-generated and
GraphRNN [17]-generated data performed worse, regardless of the
training dataset size. This may indicate a significant gap between the
data generated by these baselines and the real designs due to logic
redundancy. As observed in Figure 5, the synthetic data generated
from GraphRNN [17] and DVAE [15] contain very few paths with
large delays. This discrepancy may have caused the model’s learning
to deviate from the normal timing features for Register Slack, WNS,
and TNS tasks.

We also included non-optimized circuits SynCircuit w/o opt (Gval)
as part of an ablation study. It can be observed that the excessive design
logic redundancy introduced may have adversely affected the model’s
predictive performance, rendering it inferior to scenarios involving
only real training circuits. This observation indirectly demonstrates
the importance of optimizing logic redundancy in generating synthetic
circuits that more closely resemble real-world designs.

VIII. CONCLUSION AND FUTURE WORK

Data-driven automation techniques have become increasingly preva-
lent in digital circuit design in recent years. Nevertheless, the avail-
ability of open-source circuits is often limited. To address this issue,
we propose the SynCircuit, an automatic digital circuits generation
framework. It consists of three stages: directed cyclic graph generation,
probability-guided postprocessing, and MCTS-based optimization. Our
experiments demonstrate that the designs generated by SynCircuit not
only exhibit structural properties that closely resemble those of real
designs, but also enhance model performance in ML-based power,
performance, and area (PPA) prediction tasks at the RTL early stage.
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