
Intelligent Circuit Design and Implementation with
Machine Learning

by

Zhiyao Xie

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Yiran Chen, Supervisor

Hai Li, Co-Supervisor

Jiang Hu

Jeffrey Derby

James Morizio

Dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the Graduate School of

Duke University

2022

ABSTRACT

Intelligent Circuit Design and Implementation with
Machine Learning

by

Zhiyao Xie

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Yiran Chen, Supervisor

Hai Li, Co-Supervisor

Jiang Hu

Jeffrey Derby

James Morizio

An abstract of a dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the Graduate School of

Duke University

2022

Copyright © 2022 by Zhiyao Xie
All rights reserved

Abstract

Electronic design automation (EDA) technology has achieved remarkable progress

over the past decades. However, modern chip design is not completely automatic yet

in general and the gap is not easily surmountable. For example, the chip design flow

is still largely restricted to individual point tools with limited interplay across tools

and design steps. Tools applied at early steps cannot well judge if their solutions

may eventually lead to satisfactory designs, inevitably leading to over-pessimistic

design or significantly longer turnaround time. While existing challenges have long

been unsolved, the ever-increasing complexity of integrated circuits (ICs) leads to

even more stringent design requirements. Therefore, there is a compelling need for

essential improvement in existing EDA techniques.

The stagnation of EDA technologies roots from insufficient knowledge reuse. In

practice, very similar simulation or optimization results may need to be repeatedly

constructed from scratch. This motivates my research on introducing more “intelli-

gence” to EDA with machine learning (ML), which explores complex correlations in

design flows based on prior data. Besides design time, I also propose ML solutions

to boost IC performance by assisting the circuit management at runtime.

In this dissertation, I present multiple fast yet accurate ML models covering a

wide range of chip design stages from the register-transfer level (RTL) to sign-off,

solving primary chip-design problems about power, timing, interconnect, IR drop,

routability, and design flow tuning. Targeting the RTL stage, I present APOLLO,

a fully automated power modeling framework. It constructs an accurate per-cycle

power model by extracting the most power-correlated signals. The model can be

further implemented on chip for runtime power management with unprecedented low

hardware costs. Targeting gate-level netlist, I present Net2 for early estimations on

iv

post-placement wirelength. It further enables more accurate timing analysis without

actual physical design information. Targeting circuit layout, I present RouteNet for

early routability prediction. As the first deep learning-based routability estimator,

some feature-extraction and model-design principles proposed in it are widely adopted

by later works. I also present PowerNet for fast IR drop estimation. It captures

spatial and temporal information about power distribution with a customized CNN

architecture. Last, besides targeting a single design step, I present FIST to efficiently

tune design flow parameters during both logic synthesis and physical design.

v

Acknowledgements

I would like to take this great opportunity to express my gratitude to everyone who

has helped me during my Ph.D. study. It is impossible for me to get this Ph.D.

degree without their tremendous help and support in these years.

I first thank my advisor Prof. Yiran Chen and co-advisor Prof. Hai (Helen) Li.

Five years ago, I was an undergraduate student with very limited research experience.

They offered me the precious opportunity to join their CEI lab at Duke. They have

provided me with so much priceless advice and support in both research and career

development. Prof. Chen not only always has unique research insights, but also gives

me full flexibility and strong support to explore new directions. He also managed to

set up multiple great collaborations with other excellent researchers for me.

Second, I want to thank all other committee members. Prof. Jiang Hu, who is

both my committee member and a perfect collaborator, has provided tremendous

great ideas and suggestions since my first research project. His expertise, patience,

and diligence always impress me. Prof. Jeffrey Derby taught me advanced digital

design and was on my committee since preliminary exam. Prof. James Morizio is

both my committee member and my teacher on VLSI design methodologies. I also

worked with him as the administrator of EDA tools at Duke.

Also, I would like to thank my internships mentors and managers. I thank Haoxing

(Mark) Ren, Yanqing Zhang, and Brucek Khailany in Nvidia Research. Besides being

a great mentor, Haoxing gave me many great ideas since the beginning of my Ph.D.

study. Brucek is a great manager and provides a good research environment. I

thank Min Pan, Anand Rajaram, and Aiqun Cao in Synopsys. I got familiar with

real industrial EDA tools with their help. I thank Xiaoqing Xu, Shidhartha Das,

and Brian Cline in Arm Research. Xiaoqing mentored me with great patience and

vi

provided a lot of learning advice. Shidhartha is such a knowledgeable, experienced,

and reliable mentor. I thank Jie Chen and Weibin Ding in Cadence. They provided

my first internship opportunity in the EDA industry. I cannot list everyone here, but

I thank all colleagues I have worked with in these companies.

In addition, I thank my other collaborators, Ellas Fallons, Weiyi Qi, Rongjian

Liang, Erick Carvajal Barboza, Guan-Qi Fang, Yu-Hung Huang, Shao-Yun Fang,

Huanrui Yang, Ang Li, Chen-Chia Chang, Jingyu Pan, and Tunhou Zhang. Also, I

hope to thank all members of our CEI lab at Duke University. I had a great time

working in this lab and enjoy the high diversity of our research backgrounds, which

makes many cross-discipline collaborations possible.

In summary, I am extremely honored and lucky to have worked with so many

excellent researchers, engineers, teachers, mentors, and friends. I am so glad that I

made the right choice to pursue a Ph.D. at Duke University five years ago, when my

undergraduate supervisor, Prof. Jun Fan contributed greatly to my decision.

Finally, I want to thank my mother Wenzhen Wu, my father Yong Xie, and my

wife Jia Li, who married me one month ago. They always support me. The Ph.D.

study is a long journey and I am so grateful to have them together with me.

vii

Contents

Abstract iv

Acknowledgements vi

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Power Modeling at RTL and Runtime 4

1.2 Net Length and Timing Modeling at Netlist 6

1.3 Fast IR Drop Modeling on Layout . 8

1.4 Early Routability Modeling on Layout 10

1.5 Design Flow Tuning . 11

1.6 Summary of Works on ML for EDA 13

2 Power Modeling at RTL and Runtime 15

2.1 Background . 15

2.2 APOLLO Methodology . 19

2.2.1 Automatic Training Data Generation 21

2.2.2 Features and Labels Collection 23

2.2.3 ML-Based Power Proxy Selection 24

2.2.4 Final Model Construction . 26

2.2.5 Multi-Cycle Power Modeling 27

2.3 Application of the Power Modeling Framework 29

2.3.1 Design-Time Power Analysis 29

viii

2.3.2 Runtime On-chip Power Meter 31

2.4 Evaluation . 33

2.4.1 Experimental Setup . 33

2.4.2 Accuracy of APOLLO . 36

2.4.3 Model Discussion . 39

2.4.4 Hardware Prototype of APOLLO-OPM 41

2.4.5 Application Scenarios . 42

2.5 Summary . 45

3 Net Length and Timing Modeling at Netlist 47

3.1 Background . 47

3.2 Methodology . 51

3.2.1 Problem Formulation . 51

3.2.2 The Overall Flow . 53

3.2.3 Node Features on Graph . 54

3.2.4 Edge Features . 55

3.2.5 GNN and Net2 Models . 58

3.2.6 Timing Prediction Method . 61

3.3 Evaluation . 65

3.3.1 Experimental Setup . 65

3.3.2 Net Length Prediction Result 68

3.3.3 Timing Prediction Result . 72

3.3.4 Runtime Comparison . 77

3.4 Summary . 79

4 Fast IR Drop Modeling on Layout 80

ix

4.1 Background . 80

4.2 Methodology . 82

4.2.1 Problem Formulation . 82

4.2.2 Feature Extraction . 83

4.2.3 Preprocessing by Decomposition 84

4.2.4 PowerNet Model . 87

4.3 Evaluation . 89

4.3.1 Experiment Setup . 89

4.3.2 Accuracy and Speed Comparison 90

4.3.3 IR Drop Mitigation in Design Flow 93

4.3.4 Why PowerNet Performs Better 94

4.3.5 Results Considering Other Factors 98

4.4 Summary . 99

5 Early Routability Modeling on Layout 100

5.1 Background . 100

5.2 Methodology . 102

5.2.1 Problem Formulation . 102

5.2.2 Feature Extraction . 105

5.2.3 #DRV Prediction . 107

5.2.4 DRC Hotspot Detection . 109

5.3 Evaluation . 111

5.3.1 Experiment Setup . 111

5.3.2 Overall #DRV Prediction . 112

5.3.3 DRC Hotspot Detection . 114

x

5.3.4 Ablation Studies . 115

5.4 Summary . 117

6 Design Flow Tuning 119

6.1 Background . 119

6.2 Methodology . 121

6.2.1 Problem Formulation . 121

6.2.2 Clustering by Similarity in Important Features 123

6.2.3 Model-less Sampling Based on Clusters 125

6.2.4 Approximate Samples . 126

6.2.5 Model-guided Sampling by Clustering 126

6.2.6 Dynamic Tree Depth . 127

6.3 Evaluation . 128

6.3.1 Experiment Setup . 128

6.3.2 Flow Tuning Performance . 129

6.3.3 Experiment Setup on Industrial Designs 133

6.3.4 Performance on Industrial Designs 135

6.4 Summary . 138

7 Conclusion 139

Bibliography 141

Biography 162

xi

List of Tables

2.1 Comparison among various power modeling approaches. The percent-
age numbers are hardware overheads measured in area. 15

2.2 Designer-handcrafted Testing Benchmarks 33

2.3 Comparisons with Baseline Methods 35

3.1 Notations Commonly Used in this Chapter 52

3.2 Pre-Placement Features for Timing Prediction 62

3.3 Number of Nets in Designs . 65

3.4 Accuracy comparison. (a) Net length prediction evaluated with long
nets identification. (b) Timing prediction evaluated with arc delay. . . 71

3.5 Pre-placement Path Slack Prediction Accuracy 75

3.6 Detailed Runtime Comparison on Representative Designs (In Seconds) 77

3.7 Synthesis Runtime Measurement (In Seconds) 78

4.1 Comparison Among Different IR Drop Estimators 81

4.2 Designs Used in Experiment . 89

4.3 Inference Time Comparison. 93

4.4 Performance on IR Drop Mitigation 93

4.5 Inference Accuracy in ROC AUC (0.01*) 97

4.6 Vector-Based Inference in ROC AUC (0.01*) 99

5.1 Circuit Designs Used in Experiment 111

5.2 #DRV Prediction Comparison . 112

xii

5.3 Hotspot Detection Comparison . 114

5.4 Hotspot Detection for FCN Variations and Other Alternative Methods 116

6.1 Methods Notation . 129

6.2 Rank Results with the Same Sample Cost 131

6.3 Standard Deviation of Samples . 133

6.4 Physical Design Parameters for Industrial Designs 134

xiii

List of Figures

1.1 An overview of my works presented in this dissertation. 3

2.1 APOLLO provides a design-time power simulator and a runtime on-
chip power meter (OPM) based on a consistent model. 18

2.2 Training data generation. (a) GA-based generation flow. (b) A diverse
set of training micro-benchmarks with a wide range of measured power. 21

2.3 Feature and label collection based on M RTL signals and N cycles of
simulation traces. 23

2.4 APOLLO model construction. (a) Model construction process. (b)
Penalty terms of MCP and Lasso. 26

2.5 Multi-cycle APOLLO — Label is yT , with a measurement window of
T cycles. Label at each interval is yτ , with selected interval of τ cycles. 27

2.6 Design-time power analysis flows. (a) Commercial analysis. (b) APOLLO-
based analysis. (c) APOLLO with emulator-assisted analysis. 30

2.7 OPM integration with the CPU design. 31

2.8 Per-cycle power accuracy vs. number of proxies for per-cycle power
prediction (Neoverse N1). 36

2.9 Evaluation of an APOLLO model with Q = 159 (Neoverse N1). . . . 37

2.10 T -cycle accuracy vs. window size (T) for multi-cycle prediction (Neo-
verse N1). — Q = 200 for Simmani, Q = 70 for APOLLO methods. . 38

2.11 Per-cycle power accuracy vs number of proxies for per-cycle power
prediction (Cortex-A77). 39

2.12 Sum of all absolute weights. 40

2.13 Variance inflation factors (VIF). 40

xiv

2.14 (a) Distribution of extracted proxies from Neoverse N1. (b) Trade-off
between the area overhead and accuracy (NRMSE) of the OPM. . . . 42

2.15 A portion (40,000 over 17 million cycles) of power estimation from the
APOLLO-integrated emulator-assisted power analysis (Neoverse N1). 43

2.16 Voltage droop analysis based on per-cycle power on Neoverse N1, show-
ing OPM prediction versus ground-truth (scaled to arbitrary units). . 44

3.1 Convert netlist to graph. (a) Example netlist. (b) Corresponding graph. 51

3.2 The net size and timing prediction flow. 53

3.3 Define edge features by partition results. 58

3.4 An example to illustrate timing prediction algorithm. 61

3.5 The correlation coefficient R between net length prediction and label.
Averaged over designs in each benchmark. 69

3.6 Examples on pre-placement slack prediction. 74

3.7 WNS (left) and TNS (right) of all designs. 76

3.8 WNS (left) and TNS (right) on only large designs. 76

4.1 Static and dynamic analysis on current. 81

4.2 Space decomposition for IR drop estimation. 86

4.3 Time decomposition for IR drop estimation. 86

4.4 PowerNet structure. 88

4.5 The CNN structure in PowerNet. 88

4.6 Accuracy comparison by ROC curve. Measured in 1×1 tiles granularity. 91

4.7 Visualization of IR drop estimation and ground truth. 91

4.8 MSE and Kendall ranking coefficient on tiles by IR drop. 92

xv

4.9 Effect of number of instants N on performance. 95

4.10 IR drop, power maps and maximum instant distribution of two regions
from D1. Instants number N = 50. 96

4.11 IR drop, power maps and maximum instant distribution of three re-
gions from D2. Instants number N = 50. 96

4.12 Power and IR drop of vector-based estimation. 98

5.1 Macros and DRC hotspot distribution. All macros are red rectangles.
Orange circles indicate regions with high density of DRC hotspots. . . 102

5.2 A 3D input tensor constructed by stacking 2D features, including (1)
pin density, (2) macro region, (3) long-range RUDY, (4) RUDY pins. 104

5.3 Feature extraction in physical design flow. 106

5.4 Input features for #DRV prediction. Red: macro region; Green: global
long-range RUDY; Blue: global RUDY pins. 109

5.5 FCN architecture for hotspot detection. 110

5.6 Trade-off between error with actually 1st-ranked placement and infer-
ence time in #DRV prediction. 113

5.7 Visualization of hotspot detection results. 115

6.1 Solution quality variance in parameter space. 119

6.2 Iterative refinement framework. 121

6.3 FIST framework. 125

6.4 An example of sampling by clustering. 127

6.5 Best solution rank with the same sample cost. 130

6.6 Sample cost to reach the same solution rank. 130

6.7 Best ADRS with the same sample cost. 132

xvi

6.8 Sample cost to reach the same ADRS. 132

6.9 Parameter tuning process on PE. Area (µm2) vs. setup TNS (ns). Red
and yellow are Pareto points. Black are hand-tuned baselines. 136

6.10 Parameter tuning process on RISC-V. Area (µm2) vs. setup TNS (ns).
Red and yellow are Pareto points. Black are hand-tuned baselines. . . 137

xvii

Chapter 1

Introduction

Integrated circuit (IC) is the foundation stone of the modern information society. Its

complexity has been continuously growing in past decades, from circuits with merely

hundreds of components to multi-billion-transistor processors or SoCs. Meanwhile,

new types of designs keep emerging, from microwatt IoT devices to neural network

accelerators [1]. On the other hand, the pace of process technology scaling by Moore’s

Law [2], a key enabler of performance gain, is evidently slowing down [3]. Driven by

insatiable market needs for generational performance improvements, design compa-

nies are in increasingly greater demand for experienced manpower and stressed with

unprecedented longer turnaround time. The nonrecurring engineering (NRE) cost as-

sociated with chip design also keeps skyrocketing accordingly [4]. Therefore, there is a

compelling need for essential improvement on design efficiency through new method-

ologies and design automation techniques. This motivates a closer examination of

existing design automation techniques.

The huge success of ICs in past decades largely hinged on the advance of electronic

design automation (EDA) techniques, which handle the exponentially increasing de-

sign complexity for circuit designers. However, despite the adoption of latest com-

mercial EDA tools, existing chip design flows are still not fully automatic in general,

and the gap is not easily surmountable. For example, design steps in the flow are

mostly restricted to individual tools or functions with very limited automatic coordi-

nation among them. Tools in early design stages cannot well judge if their solutions

may eventually lead to satisfactory final quality of results (QoR), and a poor early

1

solution cannot be detected until very late in the design cycle. Such disjointedness

in the flow is traditionally mitigated by two common workarounds. The first option

is to make pessimistic evaluations with heuristic methods, in order to ensure design

closure at downstream design stages. Despite providing a fast solution, this leads to

over-conservative designs with unnecessary circuit QoR loss. The second workaround

is to iteratively adjust early solutions with real feedbacks from downstream stages.

But considering each design iteration on complex designs may take days, the number

of allowed trials can be very limited due to the stringent time-to-market requirement.

As a result, manually explored solutions in the huge circuit design space with com-

plex correlations may be far from the optimal solution. In summary, this workaround

targets better design quality at the cost of extra turn-around time and human ef-

forts, without any guarantee on QoR improvement or design closure. While these

existing challenges have long been unsolved, the ever-increasing complexity of in-

tegrated circuits (ICs) leads to even more stringent design requirements and larger

solution spaces. Driven by the compelling need for better design efficiency, we need

fundamental changes in existing design methodologies!

The stagnation of existing design methodologies roots from their weak capability

of design knowledge extraction and reuse. Conventional EDA techniques may keep

constructing solutions from scratch even if similar simulations or optimizations have

already been performed previously, perhaps even repeatedly. To fundamentally im-

prove this, I believe more “intelligence” should be introduced into existing design

flows. This points to a main strength of machine learning (ML) – the capability to

extract complex correlations between two separated parts based on prior knowledge.

Such “ML for EDA” or “ML for hardware design” techniques have demonstrated

great potential in revitalizing existing design methodologies.

In this dissertation, I present multiple fast yet accurate ML for EDA methods,

2

[ASP-DAC’21]

Layout Placement Routing

Routability

RTL

Power Interconnect
[ICCAD’18]

IR Drop
[ASP-DAC’20, ICCAD’20][MICRO’21]

[ASP-DAC’20] Flow Tuning

Gate-Level Netlist

Timing
[TCAD’22]

Ground-truth at late design stage
Prediction at early/same design stage

(Best Paper Award)

Figure 1.1: An overview of my works presented in this dissertation.

which cover a wide range of chip design stages from the register-transfer level (RTL)

to sign-off, solving primary chip-design problems about power [5], timing [6], inter-

connect [7], IR drop [8, 9], routability [10], and design flow tuning [11]. Figure 1.1

shows a logical overview of my research.

Targeting the RTL stage, I present APOLLO [5], a fully automated power mod-

eling framework. It constructs a lightweight cycle-accurate power model by auto-

matically extracting most power-correlated RTL signals as inputs. The model can

be further implemented as an on-chip power meter for runtime power management.

It unprecedentedly achieves high accuracy, fine temporal resolution, and low hard-

ware implementation cost at the same time. Targeting gate-level netlist, I present

Net2 [7] for early estimations on post-placement wirelength of each individual net. It

further enables more accurate timing analysis [6] without actual physical design in-

formation. Targeting circuit layout, I present PowerNet [9] for fast dynamic IR drop

estimation on layouts. Both spatial and temporal information about current demand

is captured with a customized convolutional neural network (CNN) architecture. It

supports accurate cross-design estimations for both vertorless and vector-based IR

drop. I also present RouteNet [10] for early routability prediction. It supports the

routability prediction of mixed-size designs with different granularities. As the first

deep learning-based routability estimator, some feature-extraction and model-design

3

principles proposed in it are widely adopted by later works. Besides targeting indi-

vidual design steps, I finally present FIST [11] to efficiently tune design flow parame-

ters during both logic synthesis and physical design, optimizing the trade-off among

power, performance, and area. It learns parameters’ impact on design quality based

on prior data. In the remainder of this chapter, I will introduce each work, then

summarize other representative research efforts in ML for EDA.

1.1 Power Modeling at RTL and Runtime

Stringent energy-efficiency demands drive design decisions across the entire compute-

spectrum, ranging from embedded applications, mobile computing to data-centers.

As such, accurate power estimation is crucial for making prudent engineering trade-

offs not only during CPU microarchitecture design [12, 13, 14, 15] but also for runtime

power management. The requirements on power estimation differ according to the

target application. For instance, dynamic voltage and frequency scaling (DVFS)

[16, 17] is orchestrated by the system firmware and/or the operating system (OS),

and hence requires coarse-grained temporal resolution in power-tracing, where each

sample represents power for epochs that can be microseconds in duration.

In contrast, recent techniques for fast power management [18, 19] and voltage

boosting [20] require fine-grained temporal resolution - for instance, a complete volt-

age boosting operation in [20] occurs in tens of nanoseconds. Similarly, voltage-noise

effects such as Ldi/dt noise develops in <10 cycles in modern high-performance CPUs.

Therefore, quantifying the impact of fast voltage-noise and the efficacy of mitigation

features such as adaptive-clocking [21, 22] require fine-grained temporal resolution

in power-tracing [23, 24, 25], where a sample exists for every CPU cycle (per-cycle

temporal resolution).

4

Design-Time Power Modeling: For fine-grained power-tracing, CPU design

teams typically rely on industry-standard power analysis tools such as [26] to replay

simulation vectors at the RTL or gate-level with back-annotated parasitics. Power is

computed from the switching statistics of individual signal nets and the capacitive

load that they drive. This approach is very accurate and serves as the signoff stan-

dard, but it comes with a very high computational cost. It does not scale for the

analysis on long-running workloads and/or simulating the simultaneous execution of

multiple CPU cores.

An alternative approach relies upon FPGA-based netlist emulation [27] to address

the speed impact of power estimation. In this approach, a simulation trace is gener-

ated from FPGA, then the extracted switching statistics are processed using power

analysis EDA software [26] to obtain power traces. However, per-cycle power tracing

is still onerous using this approach due to the significant storage constraints on mod-

ern computer servers. Our own studies demonstrate storage requirements in excess

of 200GB for a 17-million cycle simulation, leading to infeasible execution time using

power analysis tools. Thus, this approach is typically restricted to coarse-grained

temporal resolution where power tracing is averaged over millions of CPU cycles.

Runtime Power Estimation: Previous works have demonstrated runtime re-

gression models using hardware performance monitoring event-counters to guide OS-

orchestrated DVFS [28, 29, 30]. These models average counter-values that accumulate

specific micro-architectural events, such as L2 cache misses and the number of retired

instructions, across thousands or millions of CPU cycles. However, these events typi-

cally exhibit poor correlations to per-cycle micro-architectural activity. Furthermore,

the process of averaging over long CPU cycles renders these approaches significantly

inaccurate when fine-grained power tracing is required.

Recently, RTL-based runtime power monitoring with on-chip power meter (OPM)

5

[31, 32, 33, 17, 34] has been proposed to improve temporal resolution at the expense of

dedicated hardware circuit. However, existing techniques struggle to simultaneously

achieve high resolution and low hardware area overhead. For example, the work in [31]

restricts area overhead to 1.5-4%, but its highest temporal resolution is 2500 clock

cycles. A recent work [34] improves resolution to 100 cycles, but with significant

area overhead (4-10%). Thus, there are undesirable trade-offs between accuracy,

speed, temporal-resolution, and on-chip hardware overhead that render the prior art

unsuitable for fine-grained power estimation.

In Chapter 2, I present APOLLO, a unified power modeling framework addressing

both the design-time and runtime challenges with a consistent model structure. The

centerpiece of APOLLO is a new power proxy selection technique based on minimax

concave penalty (MCP) regression. It enables per-cycle power tracing for benchmarks

executing over millions of CPU cycles. For runtime monitoring, it provides per-cycle

accurate power estimation with 0.2% area overhead. APOLLO is the first power

monitoring technique with cycle-accuracy and sub-1% area overhead. Moreover, the

proxy selection process in APOLLO is fully automated and thereby extensible to new

designs. Compared to PRIMAL [14], a recent machine learning approach, APOLLO

reaches similar accuracy but is orders of magnitude faster. APOLLO also signifi-

cantly outperforms Simmani [15], another state-of-the-art work, on both accuracy

and computation speed. Moreover, APOLLO achieves both fine-grained temporal

resolution and lower hardware overhead than [33], a recent OPM technique.

1.2 Net Length and Timing Modeling at Netlist

In modern VLSI design, logic synthesis plays a critical role by mapping design RTL

into netlists with logic gates. Previous studies [11] show that different logic synthesis

6

solutions can result in 3× difference in power and more than one clock cycle difference

in slack at the sign-off stage. As the design complexity keeps increasing, logic synthe-

sis may not generate the netlist with the highest quality, because it lacks a credible

prediction on the QoR of synthesized netlists at subsequent design stages like place-

ment and routing (P&R). For example, estimated slacks from the synthesis tool can

be largely different from sign-off static timing analysis (STA) results. To alleviate

such poor predictability at the early stage, more design iterations are required to

reach an optimized design quality, thus largely increase the overall turnaround time.

To improve the design predictability, a recent industrial trend among commer-

cial EDA flows [35, 36] takes an ambitious goal to explicitly address the interaction

between logic synthesis and layout. Commercial synthesis tools [37] provide increas-

ingly better support on physical-aware logic synthesis by directly integrating both

placement and optimization engines from the physical design tool [38] into its logic

synthesis process. Such a trend in the EDA industry has demonstrated the impor-

tance of predictability at early design stages and its large impact on the final chip

quality, but this solution is costly. Directly invoking placement and optimization

engines during synthesis can be highly time-consuming.

Besides invoking core engines at downstream design stages, in recent years, ML

techniques have been widely adopted to improve the predictability in the chip design

flow. However, a large portion of these ML methods only focus on post-placement

predictions. Predictions at earlier stages on netlist are more challenging due to the

absence of placement information. Existing estimators [39, 40, 41] on net length,

a fundamental design information related to both power and timing, still cannot

achieve very high accuracy. Recent ML techniques tend to only estimate the overall

wirelength of a netlist [41] or lengths of a few selected paths [42] for better accuracy,

rather than predicting the length of each individual net. However, during synthesis,

7

the knowledge of individual net sizes can help to identify potentially long-wire nets

in any path and guide transformations focusing on them. Also, due to the absence

of individual net length information, the wire load cannot be accurately estimated,

making accurate timing prediction also extremely challenging. To the best of our

knowledge, detailed pre-placement ML estimator on timing, one of the most impor-

tant design objectives, is still not available. In summary, individual net length and

timing are two important and correlated design objectives that are difficult to predict

before placement. In Chapter 3, I address the problem by a pre-placement prediction

flow with estimators on both net length and timing.

1.3 Fast IR Drop Modeling on Layout

Dynamic IR drop describes the deviation of the power supply level from its specifica-

tion caused by localized power demand and switching patterns. It must be restricted

in order for a circuit to meet its timing target and function properly. As such, it is

vitally important to verify if IR drop satisfies design constraints and identify con-

straint violation regions, a.k.a. hotspots. As chip complexity continues to grow, IR

drop evaluation becomes increasingly challenging.

In industrial designs, dynamic IR drop estimation is often obtained from simulation-

based commercial tools, which are accurate but very time-consuming. ML-based ap-

proaches [43, 44, 45, 46] have been explored to achieve faster estimation. These works

predict dynamic IR drop of each cell through features such as cell positions, timing

windows, path resistance, etc. with supervised machine learning techniques.

A major weakness shared by most previous works is that they are not “design-

independent”, i.e., transferable to new designs that are not seen in its training dataset.

They need to train a new model for each distinct design. In addition, most prior

8

works only focus on vector-based analysis, ignoring vectorless IR drop. For dynamic

IR drop, the peak IR drop in the design can be analyzed either using vectorless

analysis or vector-based analysis using simulation patterns from value change dump

(VCD) files. Vectorless IR drop analysis is highly desirable for IR mitigation during

physical design for two main reasons. First, for a large chiplet, vector-based IR

drop analysis requires a huge number of simulation patterns to cover most regions

and thus can be unbearably slow. Second, designers are unable to obtain accurate

power simulation patterns early in the design process. For large industrial designs,

multiple teams work on different RTL units in parallel and the overall simulation

patterns change throughout the design process. Vectorless IR drop provides a faster

and earlier estimation in this case. However, accurate estimation of vectorless IR

drop is more difficult than vector-based due to the increased diversity in switching

activity distribution.

In Chapter 4, I present a CNN-based method PowerNet, which provides a transfer-

able ML model for both vectorless and vector-based IR drop estimations. I emphasize

more on vectorless estimation, considering its higher difficulty and usability. Pow-

erNet addresses these challenges by its innovative preprocessed features and CNN

architecture. In previous works [46], design dependent features such as coordinates

and timing information of each cell are directly fed into the ML model. Since lo-

cations and timing do not directly cause IR drop, fitting a model on these features

directly tends to introduce the overfitting problem, making the model inaccurate

on unseen designs. Instead, design-dependent information should be preprocessed to

correlate with IR drop before feeding to ML models. It is known that IR drop directly

correlates with cell power consumption. Therefore, PowerNet carefully incorporates

these design-dependent features into power maps. Then it utilizes an innovative CNN

architecture to capture the maximum transient IR drop.

9

1.4 Early Routability Modeling on Layout

Every chip design project must complete routing without design rule violation before

tapeout. However, this basic requirement is often difficult to be satisfied especially

when routability is not adequately considered in early design stages. In light of this

fact, routability prediction has received serious attention in both academic research

and industrial tool development. Moreover, routability is widely recognized as a main

objective for cell placement.

In industrial designs, fast trial global routing is often employed for routability

prediction at placement stage [47]. The “fast” here is relative to full-fledged global

router that generates solutions for further detailed routing. Such trial global routing

is still too slow from the routability prediction point of view, as it is called many

times within placement engine. Probabilistic prediction [48, 49] and other fast al-

ternatives [50] have been developed. However, their sacrifice on accuracy is quite

significant and trial global routing is still the de facto standard despite its costly

runtime [47].

In addition to forecasting overall routability, one also needs to predict locations

of design rule checking (DRC) hotspots where routability optimization engines can

be applied to fix them. Evidently, predicting hotspot locations is much more difficult

than forecasting overall routability, which is often indicated by design rule violation

(DRV) count. In this case, even global routing is not accurate enough [51] due to

complicated design rules imposed upon design layout for manufacturing. Overall,

global routing is neither fast enough for overall routability forecast nor accurate

enough for pinpointing DRC hotspots.

To find accurate yet fast routability prediction approach, people explored machine

learning techniques. Multivariate adaptive regression spline (MARS) and support

10

vector machine (SVM)-based routability forecast without using global routing infor-

mation is proposed in [52]. However, this technique does not indicate how to handle

macros, which prevail in modern chip designs and considerably increase the diffi-

culty of routability prediction [53]. In [51], an SVM-based method is introduced for

predicting locations of DRC hotspots. It shows accuracy improvement compared to

global routing on testcases without macros. Cases without macros allow this method

to use a set of small regions in a circuit as a training set and predict routability of

other regions of the same circuit. Such convenience disappears when macros present,

as a large region (often entire layout) of a circuit needs to be “receptive” to the ML

model for accurate predictions.

In Chapter 5, I present a routability estimator named RouteNet to solve two

problems: 1. Fast routability forecast for cell placement in terms of the number of

design rule violations (#DRV) such that a few relatively routable placement solutions

can be identified among many candidate solutions; 2. Prediction of DRC hotspot

locations such that the few identified solutions can be proactively modified to prevent

design rule violations. In both problems, we will consider macros, which are prevalent

in modern industrial designs. The approach is built upon CNN, which has not been

investigated for routability prediction before this method is proposed.

1.5 Design Flow Tuning

Modern industrial chip design flows are immensely complex. A design flow might

have multiple steps, each step might have multiple functions and each function can be

configured with many parameters. Consequently, industrial flows may have hundred-

thousand lines of scripts and are configured with thousands of parameters.

The impact of parameter settings on overall design quality is phenomenal, thus

11

industrial design teams will tune flow parameters as best as they can. Flow parame-

ters are usually tuned manually based on designers’ experiences. Because industrial

design flows would take several hours or days to run on large designs, the manual

parameter tuning process can be very time-consuming, especially for novice design-

ers. Consequently, design turn-around time is stretched long or design quality is

compromised with an inadequate exploration of parameters.

Therefore, automatic design flow parameter tuning is highly desirable. However,

due to the difficulty of collecting vast amounts of design flow data for implementing

synthesis and physical design flows, there are few published methods in this area

before this work. A genetic algorithm (GA)-based flow tuning method is proposed in

[54], where genetic algorithm explores different parameter settings to find the optimal

one without learning the effect of different parameters. This would suffer from the

need to run more samples to find a good solution. The work of [55] then introduces

a customized learning approach to predict possible parameter settings for the next

sampling iteration. Both works are highly customized to a company’s in-house flow

without many details disclosed and thus difficult to generalize.

In Chapter 6, I present a Feature-Importance Sampling and Tree-Based (FIST)

method to conduct design flow parameter tuning. FIST learns the impact of param-

eters from previously well-explored designs and fully utilizes such information in its

sampling process. Some works in design space exploration (DSE) also introduced

prior knowledge transfer. For example, [56] improves genetic algorithm by guiding

DSE with expertise from IP authors. However, this technique requires human knowl-

edge, while FIST learns the prior knowledge automatically and transfers the learning

to new designs. Furthermore, FIST leverages an efficient ML model XGBoost [57] and

proposes a dynamic model adjustment method to overcome the overfitting problem

in the early stages of parameter tuning.

12

1.6 Summary of Works on ML for EDA

In recent years, ML for EDA or hardware design has become a trending topic [58,

59]. Besides works [5, 6, 7, 8, 9, 10, 11] presented in this dissertation, many other

research contributions on this topic also worth mentioning. We can observe ML

models being applied to almost all design stages of a typical VLSI design flow. For

high-level synthesis (HLS), models have been proposed for fast result estimation [60,

61] and design space exploration [62, 63]. Many power models [5, 14, 15, 64] are

also proposed in early design stages. At logic synthesis, ML models are proposed for

chip quality prediction [65, 66] and optimization [67, 68]. During physical design,

more works perform predictions or optimizations on almost all important design

metrics, including timing [69, 70], macro placement [71], routability [10, 72, 73, 74,

75], IR drop [9, 76, 77], clock tree quality [78], crosstalk [79], 3D integration [80],

etc. Also, many ML models have been developed for design verification [81, 82],

design for testability (DFT) [83], and lithography problems [84, 85, 86]. Besides

the methods applied at specific design stages, the design flow tuning [87, 11] also

attracted considerable attention in ML for EDA.

ML methods are of course not only limited to digital designs. For analog design,

similarly, various models have been developed for topology design [88, 89], device

sizing [90, 91], pre-layout estimation [92, 93], layout evaluation [94, 95], layout gen-

eration [96, 97, 98], and analog design testing [99].

Besides being a hot research topic in academia, ML-based estimators also gained

popularity in the EDA industry. Recent versions of commercial tools already support

the construction of ML models on delay [38] or congestion predictions [100], providing

improved PPA or faster convergence after invoking the ML models in their tools [38,

100]. In addition, EDA vendors have provided ML models for design space exploration

13

or design flow tuning, named DSO.ai [101] and Cerebrus [102].

Among all these ML applications targeting both digital or analog designs, almost

all popular ML techniques have been applied, covering supervised, unsupervised,

and reinforcement learning algorithms. In most recent works, a strong trend towards

neural network (NN)-based algorithms, especially deep learning techniques, can be

observed [59]. In summary, ML for EDA has an impressive impact in both EDA

academia and industry. We have strong reasons to believe ML models will play more

important roles in design automation in the future.

14

Chapter 2

Power Modeling at RTL and Runtime

2.1 Background

Table 2.1: Comparison among various power modeling approaches. The percentage
numbers are hardware overheads measured in area.

Methods (Hardware Demonstrated Model Temporal PC / Proxy Cost or
Overhead in Area%) Application Type Resolution Selection Overhead

[103, 13, 104, 105, 106]
Design-time

Analytical >1K cycles N/A Low
[64]

Proxies
>1K cycles

Automatic
High

[107, 108] software model
or no selection

Medium
[14]

Per-cycle
High

[109, 110, 111, 112, 113] Medium

[114] (300% overhead)
Design-time

Proxies
Per-cycle

Automatic
High

[115] (16% overhead)
FPGA emulation Medium[15] ∼100s cycles

[116] Per-cycle Manual+auto

[117, 118, 29, 119, 120, 16, 121]

Runtime monitor

Event >1K cycles
Manual Low[122, 123, 124, 125, 126, 30, 28]

counters
[127] ∼100s cycles

[32] (2-20%), [31] (1.5-4%)
Proxies

>1K cycles
Automatic Medium[33] (7%)

[34] (4-10%), [17] (7%) ∼100s cycles

APOLLO (0.2% overhead)
Design-time model

Proxies Per-cycle Automatic Low
Runtime monitor

Power is a primary design objective and power modeling is an extensively studied

topic. Table 2.1 summarizes representative power estimation approaches, which can

be categorized into design-time power models and runtime on-chip power meters.

Design-Time Power Models: Many design-time approaches [103, 105, 104, 13,

106] construct analytical models for micro-architectural power estimation by collect-

ing statistics from performance simulators [128, 129]. Wattch [103] is an architectural

15

dynamic power simulation tool using a linear model, and McPAT [105] integrates

power, area, and timing in a modeling framework. Each functional unit is charac-

terized and attributed a power value when activated. Multiple active units are then

added together to compute the overall power [25]. However, this approach cannot

handle internal variations in power consumption due to data- and control-dependent

variations in workload. Therefore, these models are preferably used as an average

over thousands or millions of CPU clock cycles. Additionally, inaccuracies have been

observed [130, 131, 106] for McPAT on new designs.

Design-time models on selected RTL power-proxies are employed to perform power

simulations. Early works [107, 113, 112] construct macro-models to abstract power

estimations for small circuit modules with thousands of gates. In recent years, ma-

chine learning (ML) techniques are exploited. Lee, et al. [110] adopt gradient boosting

and Kumar, et al. [111] apply a decision tree model to every component of a simple

microprocessor. PRIMAL [14] predicts per-cycle power by processing transitions of

all registers with the convolutional neural network (CNN). GRANNITE [64] makes

use of graph neural network [132] to estimate the average power of each workload.

Although the ML approach achieves significant speedup compared with accurate com-

mercial tools [26], it can be prohibitively expensive (computationally) for per-cycle

simulation on industry-standard CPU designs. Evidently, these techniques are in-

tended for simulation-level power-tracing and are too expensive for runtime on-chip

monitoring.

FPGA emulation [114, 15, 115, 116] is a popular approach to accelerating power

simulations for large designs. We use the term “emulation” in a broad sense to in-

clude techniques that use of FPGA at design-time. In reality, there are various ways

to do so, which may be named differently in other literature. Perhaps the first power

emulation work is [114], which has 300% hardware overhead. Another work [115] em-

16

ploys singular value decomposition (SVD), which can be computationally expensive.

Both [114] and [115] are demonstrated only at block-level designs. A microprocessor-

level application of FPGA emulation is Simmani [15], whose temporal resolution is

128 clock cycles. PrEsto [116] achieves cycle-accuracy, but its hardware cost is quite

significant, e.g., it consumes more than 50% of LUTs on Xilinx Virtex-5 LX330 to

simulate ARM Cortex-A8 processor design. Moreover, its proxy selection process is

not completely automated.

Runtime On-Chip Power Meters (OPMs): Analog power sensors [133, 134]

can provide accurate power estimation at runtime. However, they require ADCs

that consume a large area overhead. A popular runtime approach is to estimate

power dissipation according to performance counters [117, 29, 118, 120, 16, 121, 28,

123, 124, 126, 125, 30, 119]. Since these counters already exist in industrial-grade

microprocessor designs, they can be treated as free and the associated area overhead is

minimum. However, counter-based methods typically rely on architects’ knowledge

of a specific design to define representative hardware events. This limits existing

methods to well-studied microprocessors and hinders automatic migration to new

designs. For example, [121, 117, 29] exclusively targets Intel Pentium® processors,

[127] is exclusively aimed at the Qualcomm Hexagon 680 DSP, and both works of [123]

and [30] target ARM Cortex-A7 and Cortex-A15 processors. Moreover, counter-based

power monitors monitor micro-architectural events that manifest several cycles after

the causal trigger event. Therefore, they are poorly correlated with recent pipeline

activity and are therefore restricted to coarse-grained temporal resolutions.

Compared to counter-based techniques, proxy-based power monitors are much

more friendly to automation and applicable to multiple designs [31, 32, 33, 17, 34].

Existing proxy-based techniques suffer from the conflict between low silicon-area

overhead and fine-grained temporal resolution. Some of them [31, 32, 33] are coarse-

17

grained with the temporal resolution of thousands of cycles. Their area overhead

ranges from 1.5% to 20% over the baseline.

Recent methods [17, 34] improve temporal resolution to 100 cycles. To limit extra

overhead from improved resolution, they restrict proxies mostly to primary I/O sig-

nals of design modules at selected hierarchy level, significantly reducing the freedom

of proxy selection and the underlying power model. Even with this restriction, their

area overhead is still > 4% [17, 34]. In [135], a manually-designed digital power me-

ter technique is introduced to address voltage-droop in DSP engines. This technique

takes advantage of predictable dataflow patterns that are not available for general-

purpose CPUs. In [24], the authors describe a voltage-noise mitigation strategy that

combines power proxies with critical path monitors. The work does not formally

describe the creation or the accuracy of power proxies in detail. Further, it is unclear

whether the methodology is easily portable across designs.

APOLLO

Design-time
power

simulator

Runtime
power

monitoring
Simulation traces of RTL signals

Apollo

Offline
power

simulator

!"! ∗ $!

PMU

Selected CPU power proxies

Runtime
power

monitoringSimulation traces of RTL signals

Apollo

Offline
power

simulator

!"! ∗ $!

PMU

Selected CPU power proxies

Runtime
power

monitoring

Figure 2.1: APOLLO provides a design-time power simulator and a runtime on-chip
power meter (OPM) based on a consistent model.

Position of APOLLO: APOLLO is a unified RTL-stage power modeling frame-

work addressing both the design-time and runtime challenges within a consistent

model structure, as shown in Figure 2.1, with Neoverse™ N1 as an example. Al-

though proxy-based techniques have been intensively studied, APOLLO distinguishes

itself from previous methods by a new proxy selection technique based on the MCP

18

algorithm. Different from other fully-automatic signal selection methods [32, 15,

110, 31, 33, 113, 34, 17], the selection technique in APOLLO allows flexible selec-

tion from any combination of signals (unlike [32, 110, 34, 17]), performs supervised

selection (unlike [15]), reduces correlations between proxies (unlike [33]), and proves

to be scalable to a large number of candidate signals (unlike [31, 113]). In contrast

to [24], the APOLLO framework is a fully automated framework that simultaneously

achieves accurate power estimation with per-cycle temporal resolution and generates

low-cost silicon implementation with < 1% power/area overhead. This is not ob-

viously achievable by published previous works. Furthermore, APOLLO is proven

on commercial million-gate CPUs (Neoverse N1 and Cortex-A77), thus indicating

scalability to real-world applications.

2.2 APOLLO Methodology

The total power consumption in a CMOS circuit is contributed by switching and

leakage components. Leakage power is determined by the junction temperature and

the threshold voltage of transistors. Since it is relatively invariant to code-execution,

leakage power measurement is generally not relevant to runtime power management.

Similarly, leakage power can be easily estimated using EDA tools [26] at design-time.

Therefore, APOLLO focuses on modeling the switching component of the total power.

The switching component can be further broken down into dynamic power due to

code-dependent charging/discharging of gate/wire-capacitance, short-circuit power

during slow signal slews, and glitch power. In practice, power due to glitches and

the short-circuit power is much smaller than dynamic power [15], and all three com-

ponents correlate with signal transitions. The dynamic power at each cycle i can be

measured by the summation of power consumed at the capacitance of all toggling

19

gates and wires as

Power dyn[i] = 1
2V 2 ∑

g ∈ {toggling gates}
Cg (2.1)

Equation (2.1) does not include the “frequency” component since it is expressed in

per-cycle terms. While this approach has signoff-level accuracy, it is computationally

intensive and does not scale to workload-execution timescales on large designs with

fully annotated parasitics. Since toggling activities of gates are highly correlated with

each other, Equation (2.1) can be reasonably approximated by a simpler linear model

based on Q selected proxies as

Power dyn[i] ≈ 1
2V 2 ∑

j ∈ {Q power proxies}
w unscaled

j (2.2)

Note that the equation in (2.2) is a measure of the power-demanded by the CPU

from the power-delivery network (PDN) before it is modulated by the PDN response.

Hence, the voltage can be viewed as a constant, and by scaling the weights, we reach

the simpler final model as Equation (2.3). In equivalent terms, Equation (2.2) can

also be viewed as a measure of the CPU current demand.

APOLLO targets the high model accuracy with low computation and implemen-

tation cost by automatically identifying representative RTL proxies from a large

number of highly-correlated RTL signals and building a lightweight power model.

Given a design with M RTL signals SM , APOLLO selects a subset SQ ⊂ SM with

Q = |SQ| ≪ M , as power proxies, and Q is the number of proxies. Then it builds a

linear power estimator based on SQ. For per-cycle power tracing,

p[i] =
Q∑

j=1
wj · xj[i] for the i th clock cycle, (2.3)

where x1[i], x2[i], ..., xQ[i] ∈ {0, 1} are input features indicating the togglings or tran-

20

(a)

0 20 40 60 80
Generation

5

10

15

20

25

30

35

40

P
ow

er
(s

ca
le

d)

(b)

Figure 2.2: Training data generation. (a) GA-based generation flow. (b) A diverse
set of training micro-benchmarks with a wide range of measured power.

sitions of Q proxies in the i th clock cycle, w1, w2, ..., wQ ∈ R+ are trainable weights,

and p[i] is the predicted power of the same cycle.

Selecting power proxies SQ from SM with Q ≪ M can greatly accelerate power

simulation, reduce data volume for emulation-assisted power analysis, and lower hard-

ware cost for runtime OPM. The choice of Q controls the trade-off between accuracy

and efficiency. Although linear power models have been widely used in the past, our

proxy selection technique distinguishes APOLLO from previous methods.

Given N cycles of simulation traces, the N ground-truth labels y[1], y[2], ..., y[N] ∈

R+ are per-cycle power values generated from a commercial RTL power analysis

flow [26], where back-end parasitics are annotated to the RTL design but netlist-level

details are abstracted out for flow acceleration in our experiment. It shall be noted

that APOLLO applies to an arbitrary method of ground-truth power data collection.

2.2.1 Automatic Training Data Generation

The APOLLO framework starts with automatic training data generation for the tar-

get design as shown in Figure 2.2(a). Generated micro-benchmarks are then replayed

21

with EDA tools to generate power labels.

Previous automatic proxy selection methods [14, 15, 115, 33, 64] mainly adopt

three categories of training data: 1) random stimuli, 2) realistic workloads, 3) hand-

crafted ISA tests or micro-benchmarks. However, for 1), previous studies lack details

on how to automatically generate a large number of random stimuli with sufficient di-

versity for an arbitrary design. For 2), realistic workloads typically include redundant

patterns and cannot efficiently cover the full range of power consumption, especially

high power consumption scenarios. For 3), it is particularly challenging to generate

a diverse training set using manually-developed power benchmarks, even with expert

micro-architectural knowledge.

We circumvent these practical engineering challenges by auto-generating the train-

ing set of micro-benchmarks using a genetic algorithm (GA)-based framework [136]

that is micro-architecture agnostic. Our benchmark-generation flow starts with an

initial population of randomly generated micro-benchmarks (referred to as “indi-

vidual”) created with a constrained set of instructions. The average power of each

micro-benchmark is then measured using the EDA tool [26]. The ones with highest

power are selected as so-called “parents” that are then paired together (crossover)

and mutated to create “child” instruction sequences for the next generation and so

on. The power measurements of all generated micro-benchmarks are shown in Figure

2.2(b) across multiple generations. The GA-based optimization loop is primed to

generate the worst-case power-consuming benchmark, or a power-virus, as indicated

by the envelope of the scatter plot.

As the optimization converges to the worst-case power virus, successive gener-

ations favor higher power-consuming benchmarks. However, early generations nat-

urally favor those lower power-consuming benchmarks as the algorithm is yet to

identify higher power-consuming instruction sequences. A combination of low and

22

A

B

C

D

cycle0 cycle1 cycle2

Waveform from sim. trace

A design in RTL level.

Per-cycle Power: y0 y1 y2

A

B

C D

(a) Design RTL and simulation trace

y0

y1

y2…
……
…

Feature vectors Label

cycle0

cycle1

cycle2

A B C D
1 0 0 0

0 1 1 0

0 0 0 1

…
…

… y0

y1

y2…………
Feature vectors Label

cycle0

cycle1

cycle2

A B C D
1 0 0 0

0 1 1 0

0 0 0 1

…
…

…

(b) Feature and label

Figure 2.3: Feature and label collection based on M RTL signals and N cycles of
simulation traces.

high power-consuming benchmarks across generations naturally creates a rich diver-

sity of benchmarks spanning a large range (>5× ratio between the maximum and

minimum individuals) of power consumption.

2.2.2 Features and Labels Collection

Figure 2.3 shows the procedure to construct features from the RTL-simulation traces

and labels from power simulation results. As Equation (2.1) shows, per-cycle toggling

activities reflect the net transitions and directly correlate with power consumption.

At each cycle, for each RTL signal, either a rising or falling edge in the simulation

trace is set to 1 as features, while no toggling is set to 0. As such, each RTL signal

contributes to one element in the feature vector.

For M RTL signals and N cycles of simulation traces, the raw input feature vectors

are x ∈ {0, 1}N×M , and the input vectors with only Q selected proxies are denoted as

x ∈ {0, 1}N×Q. The corresponding label is N per-cycle power consumptions y ∈ RN

simulated with the EDA tool [26].

23

2.2.3 ML-Based Power Proxy Selection

Once raw features and labels are collected, we go through the steps in Figure 2.4(a)

to construct the APOLLO model. The key step is to select Q representative power

proxies. It starts with building a temporary linear power model p′ = ∑M
j=1 w′

j · xj

with all M RTL signals in raw input features. This linear model is not trained only

to minimize the prediction error in the training dataset. Instead, when minimizing

the prediction error during training, the model simultaneously shrinks all weights

w′
1, w′

2, ..., w′
M so that the majority of weights eventually become zero, i.e., the model

becomes sparse. Then only those RTL signals associated with non-zero weight terms

are selected as power proxies. This procedure is also referred to as pruning. Such

sparsity-inducing training is realized by applying a penalty term P in the loss function

to penalize weights. Equation (2.4) shows the loss function, which consists of both

the ordinary prediction error (L) measured in mean squared error and the penalty

term (P).

Loss = L+ P = 1
N

N∑
i=1

(y[i]− p′[i])2 +
M∑

j=1
Ppenalty(w′

j) (2.4)

The sparse linear model is constructed by adopting sparsity-inducing penalty

terms. The most widely adopted penalty term for sparsity is Lasso [137], defined as

PLasso(w′
j) = λ|w′

j| (2.5)

This Lasso penalty shrinks all weights at the same rate decided by the hyper-

parameter λ, which is the penalty strength. However, to ensure Q ≪ M , we need

to set a very large penalty strength λ such that the majorities of weights shrink to

zero. As a result, when most small weights shrink to zero and their associated terms

are pruned out, the weights of remaining terms are penalized too much to provide

accurate power predictions. Based on such an inaccurate model, the selected power

24

proxies are not representative enough.

To overcome the aforementioned limitation, APOLLO adopts the MCP [138] as

the penalty term, which is defined by

PMCP (w′
j, γ > 1) =

λ|w′

j| −
w′

j
2

2γ
if |w′

j| ≤ γλ

1
2γλ2 if |w′

j| > γλ

(2.6)

The hyper-parameter γ in MCP sets a threshold (γλ) between large and small

weights. Figure 2.4(b) visualizes both PLasso and PMCP with λ = 1 and γ = 3.

The absolute derivative of a penalty term indicates the weight shrinking rate during

training [139]. Since |∂PLasso/∂w′
j| = λ, all weights shrink at the same rate λ in

Lasso. In comparison, the absolute derivative of MCP penalty is given by

∣∣∣∣∣∂PMCP (w′
j, γ > 1)

∂w′
j

∣∣∣∣∣ =

λ− |w′

j |
γ

if |w′
j| ≤ γλ

0 if |w′
j| > γλ

(2.7)

Compared with the uniform shrinking rate for PLasso, large weights with values > γλ

in MCP do not shrink at all, since derivatives of their penalty terms are zero. For

weights with values < γλ, smaller weights shrink faster. As such, MCP leaves large

weights unpenalized and thereby benefits the prediction accuracy of the generated

power model. In our experiment, this MCP-based model is efficiently optimized

by adopting the coordinate descent method [140] and the proximity operator of

MCP [141]. The penalty strength λ can be adjusted to control the number of se-

lected proxies Q.

25

Linear model
with M signals

Selected Q
power proxies

APOLLO model
with Q inputs

Pruning:
MCP with

strong penalty

Relaxation:
Ridge

regression with
weak penalty APOLLO model

with Q inputs

Linear model
with M signals

Selected Q
power proxies

APOLLO model
with Q inputs

Pruning:
MCP with

strong penalty

Relaxation:
Ridge

regression with
weak penalty

(a)

𝛾𝜆−𝛾𝜆

(b)
Figure 2.4: APOLLO model construction. (a) Model construction process. (b)
Penalty terms of MCP and Lasso.

2.2.4 Final Model Construction

After power proxy selection by pruning with MCP, we have trained a temporary

model p′ = ∑M
j=1 w′

j ·xj with Q selected proxies SQ and corresponding non-zero weight

terms w′
j. This temporary model can already provide rather accurate predictions.

However, although MCP protects larger weights, many remaining weights are still

penalized by the large penalty strength λ to a certain extent. To further boost the

model accuracy, we train a new linear model p = ∑Q
j=1 wj · xj from scratch with only

selected power proxies SQ. In this new linear model, the ordinary L2 penalty, i.e.,

ridge penalty [142], is applied, with a much weaker penalty strength compared with

the λ used in the previous proxy selection step. This weak ridge penalty is applied

to reduce overfitting.

As shown in Figure 2.4(a), this step is named relaxation and generates the final

APOLLO power model. During the previous proxy selection step, to shrink most

weights to zero, the penalty term P dominates the loss, and the prediction error L is

less optimized. This relaxation can be viewed as a fine-tuning stage to better optimize

L. Since L2 is not sparsity-inducing, the number of proxies Q remains unchanged.

26

……
𝒚𝑻: Average Power over 𝑻 cycles

𝒚𝝉(1) 𝑻
𝝉

……

…

𝒚𝝉(2) 𝒚𝝉()

𝑵: Total number of cycles

…

Figure 2.5: Multi-cycle APOLLO — Label is yT , with a measurement window of T
cycles. Label at each interval is yτ , with selected interval of τ cycles.

2.2.5 Multi-Cycle Power Modeling

In previous subsections, we construct the APOLLO model for per-cycle power trac-

ing. Such fine-grained temporal resolution enables applications like voltage droop

mitigation. In this sub-section, we generalize the APOLLO model to larger time-

window sizes. Like Figure 2.5 shows, this multi-cycle model estimates the average

power over a time window with T cycles, which is chosen to be a power of two for

ease of efficient hardware implementation.

A straightforward multi-cycle solution is to directly use the average of T per-

cycle power predictions pT over the T -cycle window1. It uses the same per-cycle

model for any T . Such an approach captures details of individual clock cycles but

neglects correlations among different clock cycles. Alternatively, one can average

the transitions over T cycles and generate a T -cycle power estimation based on the

average toggling rate. However, this approach loses useful information such as cycle-

details that can be particularly helpful when T becomes large. In addition, the model

developed by this approach is dependent on the varying T . In Section 2.4.2, we show

that both the average-prediction and the average-input approaches fail to provide an

accurate and robust solution.

We introduce a multi-cycle estimation technique that overcomes the weakness of
1We use the superscript on a variable to denote the average of the variable over a timing window
with multiple cycles.

27

the aforementioned approaches. A time window of T is divided into multiple intervals

of τ cycles. The values of T and τ are selected such that T is integer multiples of

τ . An example is shown in Figure 2.5. During the model construction and training,

for each τ -cycle interval k, we measure both the average toggling activities xτ
1(k), ...,

xτ
M(k) ∈ R and the average power yτ (k) ∈ R over the τ cycles2. Based on these raw

inputs and labels, we execute the same training procedure as the per-cycle model

to select Q power proxies SQ with features xτ
1, ..., xτ

Q. The result is a τ -cycle model

denoted as APOLLOτ , whose weights are denoted as ω1, ..., ωQ. It is to be noted that

the construction of APOLLOτ is independent of T , and its performance is controlled

by selecting an appropriate τ value as a hyper-parameter before training.

At the inference stage, there are T
τ

intervals in a time window. As Figure 2.5

shows, the final prediction pT ∈ R at each T -cycle window is the average over these
T
τ

predictions from the APOLLOτ model:

pT = 1
T/τ

T/τ∑
k=1

pτ (k) , where pτ (k) =
Q∑

j=1
ωj · xτ

j (k) (2.8)

Here, the input xτ
j (k) ∈ R for each interval is a real number instead of a binary.

If directly implemented on hardware, this requires Q counters and multipliers like

previous OPMs [31, 32, 34, 17]. In contrast, the toggling in each cycle is a binary

number and thus the per-cycle model can be implemented by AND gates instead of

multipliers. To avoid multipliers for on-chip implementation of the multi-cycle model,

we rearrange the inference process in Equation (2.8) as below:

2We use parentheses and brackets to differentiate the indices of intervals and cycles.

28

Take the first interval pτ (1) when k = 1 as example:

pτ (1) =
Q∑

j=1
ωj · xτ

j (1) =
Q∑

j=1
ωj ·

1
τ

τ∑
i=1

xj[i] = 1
τ

τ∑
i=1

Q∑
j=1

ωj · xj[i]

Thus, pT = 1
T/τ

T/τ∑
k=1

pτ (k) = 1
T

T∑
i=1

Q∑
j=1

ωj · xj[i] (2.9)

In Equation (2.9), the weights are multiplied with binary numbers instead of

real numbers. This new inference process can be regarded as predicting T -cycle

average power according to per-cycle toggles. As such, it takes per-cycle details,

considers correlations among multiple cycles, and hence overcomes the drawbacks of

aforementioned approaches. Interestingly, τ is no longer needed in inference. By

setting T to be power of 2, the division in Equation (2.9) can be realized by directly

discarding the log2(T) lowest bits. Therefore, the on-chip implementation of this

multi-cycle model can reach low hardware overhead like the per-cycle model.

2.3 Application of the Power Modeling Framework

2.3.1 Design-Time Power Analysis

A typical conventional design-time power analysis flow is shown in Figure 2.6(a). It

generates simulation traces for all signals in VCD or FSDB file format through RTL

simulation, then performs power calculation with simulation tools using these traces.

Such a flow is very time-consuming. One major bottleneck is the last step of power

calculation, which is extremely slow for large designs.

To accelerate this process, we incorporate the APOLLO model into the flow as

29

Power Calculation
(20 cycles / hour)

Power

Simulation Traces
for All Signals

C++/RTL
Testbench

Design
RTLRTL Simulation

Power

(a)

APOLLO Model
(>1M cycles / sec)

Power
Estimation

C++/RTL
Testbench

Design
RTLRTL Simulation

Simulation Traces for
~100s Selected Signals

Power
Estimation

(b)

Simulation Traces for
~100s Selected Signals

Emulate Workload
on Design RTL

Power
Estimation

Simpoint
Binary

Design
RTL

GCC-Compile
Workload

APOLLO Model
(>1M cycles / sec)

Power
Estimation

on Platform

(c)

Figure 2.6: Design-time power analysis flows. (a) Commercial analysis. (b)
APOLLO-based analysis. (c) APOLLO with emulator-assisted analysis.

shown in Figure 2.6(b), where the number of signals to be traced is greatly reduced

and the last step of power calculation is replaced by APOLLO. APOLLO can infer

power for millions of cycles within seconds. This APOLLO-assisted power simulation

flow works well for cases where RTL simulation time is reasonable.

For long-running benchmarks, the RTL simulation step in Figure 2.6(b) becomes

an execution bottleneck. We propose to overcome this using an emulator-assisted

power analysis flow as shown in Figure 2.6(c). In this flow, millions of benchmark

cycles are emulated on a commercial platform [27] with dedicated hardware to gen-

erate million-cycle simulation traces in minutes. In the absence of APOLLO, the

power-simulation flow requires switching details of all nets to be dumped. For a large

industrial-scale design, this can easily exceed hundreds of GB leading to storage and

memory capacity issues during power analysis. Traditionally, this problem is circum-

vented by estimating power at a coarse-grained temporal resolution, e.g., thousands

of clock cycles. With APOLLO, the data is reduced by several orders of magnitude

by only collecting the toggling activities of Q power proxies, and a cycle-accurate

estimation for the emulator-assisted flow is enabled.

30

Figure 2.7: OPM integration with the CPU design.

2.3.2 Runtime On-chip Power Meter

APOLLO provides an accurate and fine-resolution runtime OPM with low hardware

cost. The OPM implements a linear model with Q power proxies as the input, which

is a binary vector at each cycle, e.g., x[i] ∈ {0, 1}Q. All weights are quantized into

B-bit fixed-point values, which can be configured to accommodate potential model

re-training using sign-off or hardware measurement power values.

The APOLLO-OPM is fully integrated with the microprocessor. Figure 2.7 shows

the OPM consists of three components, i.e., “interface”, “power computation” and “T-

cycle average”. The “interface” latches the input signals using the register interface

and then extracts per-cycle toggling activities as single-bit values for each power

proxy. The register interface minimizes the data path timing impact from OPM on

the original design. The “interface” takes power proxies, i.e., s1, s2[0 : 1], s3 and

s4 as inputs, which are further categorized into three cases: (1) 1-bit signal (s1 and

s4). A 1-bit toggle detector “XOR”s the monitored signal with its registered version

to determine whether a toggle occurred. (2) Bus signal (s2[0 : 1]). We set up 1-

bit signal interface for each bit of the bus. An extra OR gate determines whether

31

the entire bus signal toggles. (3) Gated clock signal (s3). A gated clock signal (s3)

toggles twice during one clock cycle. Instead of using a 1-bit toggle detector, we

automatically trace the clock enable signal (en), which is directly latched using a

flip-flop to determine whether gated clock signal toggles at the same cycle as other

power proxies.

The “power computation” component calculates the intermediate values from the

quantized weights, i.e., wj[0 : B], and per-cycle toggling values, i.e., x[j]. The bit

width of these power values is extended to B + ⌈logQ⌉ to ensure the full precision

addition. After intermediate values are computed on a cycle-by-cycle basis, a “T-

cycle average” component computes the average power over T cycles using flip-flops

and adders. The flip-flop reset is controlled by a T-cycle counter, which resets the

value of output, i.e., out, every T cycles. Similarly, the bit width of intermediate

values is extended to B + ⌈logQ⌉+ ⌈logT⌉ to guarantee full precision addition. The

output power value needs to be divided by T according to Equation (2.9). This is

realized by dropping the lowest log⌈T⌉ bits as T is set to be the power of 2.

The OPM structure in Figure 2.7 is applicable to both per-cycle and multi-cycle

power model, due to the linear model structure discussed in Equation(2.9). The

OPM is implemented with generic templates (configurable in B, Q and T) in C++

using the Catapult HLS tool [143] and synthesized into gate-level netlist using Design

Compiler [144].

The key to the low-cost implementation is two-fold. First, the APOLLO only

selects < 0.05% RTL signals as power proxies. Secondly, calculation of the per-cycle

power only requires a conditional accumulation of the proxy weights depending upon

whether they toggled or not. As such, only a set of AND gates and adders, instead of

multipliers, are needed for the computation. The hardware implementation cost of the

APOLLO model is much lower than previous approaches, such as Simmani [15]. Most

32

previous OPMs require a counter and multiplier for each proxy, which incurs a much

larger area cost. Furthermore, although APOLLO-OPM may include different sets

of trained weights from per-cycle and multi-cycle power model, they share the same

hardware structure, which allows greater flexibility and configurability compared to

previous studies.

2.4 Evaluation

2.4.1 Experimental Setup

Table 2.2: Designer-handcrafted Testing Benchmarks

Name dhrystone maxpwr_cpu dcache_miss saxpy_simd
Cycles 1222 600 654 1986
Name maxpwr_l2 icache_miss cache_miss daxpy
Cycles 1568 800 600 1600
Name memcpy_l2 throttling_1 throttling_2 throttling_3
Cycles 3000 1100 1100 1100

In our experiments, micro-benchmarks used in model training and testing are

kept strictly different and separate. Through the automatic training data generation,

> 1, 000 random micro-benchmarks are obtained in 4 days to cover a wide range of

average power consumption, among which around 300 micro-benchmarks are selected

to form the training set with a uniform power distribution. 20% of the training

data are selected to form a validation set for parameter tuning. Unlike the training

data, which are automatically generated, the testing data are from 12 representative

micro-benchmarks handcrafted by CPU designers corresponding to various use cases,

as shown in Table 2.2. They cover both low- and high-power consumption regions.

The three micro-benchmarks named ‘throttling’ reflect applying different throttling

33

schemes [145] to the microprocessor. The simulation trace lengths N for training and

testing are approximately 30,000 and 15,000 cycles on Neoverse N1, respectively.

All experiments are firstly performed on the Neoverse N1 [146, 147], a micro-

processor for a wide range of cloud-native server workloads executing at world-class

performance and efficiency. To verify the robustness of APOLLO on different designs,

we further test on Cortex-A77 [148], a high-performance energy-efficient micropro-

cessor targeting mobile and laptop devices. 5,000 cycles of training data and 2,000

cycles of testing data are generated for Cortex-A77. The numbers of RTL signals M

are > 5× 105 and > 1× 106 for Neoverse N1 and Cortex-A77, respectively.

The RTL simulation is performed using VCS® [149] and the ground-truth power

is simulated by PowerPro® [26] based on a commercial 7nm technology setup. All ML

models are implemented with Python v3.7. For baseline methods, CNN-based models

are based on Pytorch v1.5 [150], and other models are implemented with scikit-learn

v0.22 [151]. For APOLLO, we implement the MCP algorithm and the coordinate

descent algorithm with NumPy [152]. During training, the MCP regressor converges

within 200 iterations, with the threshold of unpenalized weights set to γ = 10. The

overall proxy selection and model training time of APOLLO and all baseline methods

are within three hours, which is affordable.

All accuracies are measured on the testing data. Metrics include the coefficient

of determination (R2) [153], the normalized root mean squared error (NRMSE), and

the normalized mean absolute error (NMAE), defined as follows. The ȳ is the average

over all N labels y[i].

NRMSE = 1
ȳ

√∑N
i=1(y[i]− p[i])2

N
, NMAE =

∑N
i=1 |y[i]− p[i]|∑N

i=1 y[i]

For experimental comparisons, it is difficult to exhaust the significant body of

34

Table 2.3: Comparisons with Baseline Methods

Works
Simmani PRIMAL PCA Lasso

APOLLO
[15] [14] [14] [33]

Proxies Selection K-means % % Lasso MCP
Pre-Processing Polynomial % PCA % %

ML Model Elastic Net CNN Linear Linear Ridge

previous researches for various target designs and application scenarios. Our solu-

tion is to compare the accuracy of APOLLO with representative approaches that

target the highest accuracy with a high level of acceptable computation complexity.

These complex non-linear methods [14, 15] prove to outperform simple linear mod-

els adopted in most runtime approaches. We also compare with a recent runtime

technique [33] which uses a sparsity-induced algorithm. Table 2.3 shows comparisons

with Simmani [15], PRIMAL [14], and Pagliari et al. [33]. For Simmani, signals are

clustered with K-means algorithm and power proxies are selected from different clus-

ters. After that, toggling activities of both the Q power proxies and the Q2 2nd order

polynomial terms are adopted as potential model features. The adopted elastic net

model is a linear model with a combination of both Lasso and Ridge penalties, where

the power measurement window size T is a hyperparameter tuned to improve model

accuracy.

PRIMAL [14] targets accurate design-time simulation on software with several

methods, among which the CNN produces best results and is adopted for compari-

son. It uses all flip-flop signals as input proxies without any selection. As the number

of flip-flops is at least one order of magnitude greater than typical values of Q, the

simulation/emulation cost of PRIMAL is much higher than APOLLO. Moreover, the

use of CNN makes it impractical for runtime OPM. Another method proposed by

PRIMAL [14] is principal components analysis (PCA). It shall be noted that dimen-

35

sion reduction techniques like PCA still require the toggling activities of all candidate

signals as the initial input during inference. This is computationally expensive and

fundamentally different from proxy selections. Pagliari et al. [33] adopt Lasso regres-

sion, the most widely-used sparsity-inducing method, for proxy selection and model

construction. For previous methods considering only flip-flop signals as input fea-

tures, to avoid underestimation of their accuracy, we implement them with all RTL

signals as input features for a fair comparison. This is expected to generate better

accuracy than limiting proxies only to flip-flop signals.

2.4.2 Accuracy of APOLLO

Figure 2.8: Per-cycle power accuracy vs. number of proxies for per-cycle power
prediction (Neoverse N1).

For per-cycle power estimation, APOLLO is compared with other methods in

Figure 2.8, which measures the trade-off between Q and corresponding prediction

accuracy on Neoverse N1. The previous Lasso-based method [33] and Simmani [15]

are also applied to the per-cycle estimation for a fair comparison. Both CNN in

PRIMAL and the PCA model are represented by horizontal lines since their Q = M

in this comparison. APOLLO achieves NRMSE < 10% and R2 > 0.95 with Q ≈ 150,

36

which is less than 0.03% of total RTL signals in Neoverse N1. It shows similar NRMSE

when comparing PRIMAL with APOLLO at Q = 500. In contrast, the NRMSE of

Simmani and Lasso is higher than 12% even with Q = 500. This explains why

the previous Lasso-based method [33] and Simmani [15] restrict their applications to

coarse-grained temporal resolution.

We provide a detailed evaluation of the APOLLO model with Q = 159, which

obtains NRMSE = 9.4% and R2 = 0.95. Figure 2.9 illustrates prediction p and label

y as power traces on the 15, 000-cycle testing dataset, covering all 12 handcrafted

micro-benchmarks. APOLLO’s prediction overlaps well with the ground truth for

distinctive patterns from different benchmarks. We also measured the accuracy in

NRMSE and NMAE for each individual micro-benchmark. The NMAE is less than

10% for all benchmarks.

dhr
ysto

ne

ma
xpw

r_c
pu

dca
che

_m
iss

sax
py_

sim
d

ma
xpw

r_l2

icac
he_

mis
s

cac
he_

mis
s

dax
py

me
mcp

y_l2

thro
ttlin

g_1

thro
ttlin

g_2

thro
ttlin

g_3

Figure 2.9: Evaluation of an APOLLO model with Q = 159 (Neoverse N1).

The APOLLO method can enable relative power comparisons across microarchi-

tecture configurations, since it leads to generally unbiased power predictions that

neither consistently over-estimate nor under-estimate a microarchitecture. Such un-

biased predictions originate from the rich diversity in our automatically generated

training data, covering both low- and high-power benchmarks of each design. As

Figure 2.9 shows, averaged predicted and ground-truth power are close for all test-

37

benches on Neoverse N1. The averaged ground truth is 16.9 and the prediction is 16.8,

showing merely 0.6% difference (similar for Cortex-A77). Thus, microarchitectural

comparisons can be made easily if the relative difference in the power consumption

exceeds this small error bar.

Figure 2.10: T -cycle accuracy vs. window size (T) for multi-cycle prediction (Neo-
verse N1). — Q = 200 for Simmani, Q = 70 for APOLLO methods.

Figure 2.10 estimates power over measurement windows with T cycles. Previ-

ous multi-cycle model Simmani [15] is trained and validated for different T values

{4, 8, 16, 32, 64}. APOLLO in Figure 2.10 stands for the simple average over T per-

cycle predictions. The green dotted line means predictions of various T values are

all averaged from the same per-cycle APOLLO model. In comparison, several multi-

cycle APOLLOτ models with interval sizes τ = T = {4, 8, 16, 32, 64} are trained.

Results show that τ = 8 provides the best accuracy. We thus choose τ = 8 for

multi-cycle model and the dotted line is from APOLLOτ (τ = 8) for all T values.

Notice that Q = 200 for Simmani, while all APOLLO-based models keep Q = 70.

In Figure 2.10, the simple average of per-cycle APOLLO is already more accurate

than Simmani for all T values using around one-third of proxies. The multi-cycle

APOLLOτ with τ = 8 further improves NRMSE by 5%. This supports our claim

in Section 2.2.5, indicating that both simple average of per-cycle model (τ = 1) and

38

directly averaging inputs for any T (τ = T) fails to provide the most accurate and

robust solution.

To verify that APOLLO generalizes well on different designs, we measure the per-

cycle accuracy on Cortex-A77. The comparisons are shown in Figure 2.11. Similar

to the trend in Figure 2.8, APOLLO achieves NRMSE = 8% when Q ≈ 300, which is

less than 0.03% of total RTL signals in Cortex-A77, while Simmani and Lasso show

NRMSE > 10% with Q = 500. In addition, APOLLO obtains comparable NRMSE

with the CNN in PRIMAL when Q = 500.

Figure 2.11: Per-cycle power accuracy vs number of proxies for per-cycle power
prediction (Cortex-A77).

2.4.3 Model Discussion

We provide insights into APOLLO’s high-quality predictions from two additional

perspectives. First, with the same Q, the MCP adopted by APOLLO allows large

weights compared with the Lasso. This is verified in Figure 2.12, which reports the

summation of all Q absolute weights in each model. Second, the correlation among

the selected power proxies can jeopardize the generalization of models. Figure 2.13

shows the average variance inflation factor (VIF) [154], which quantifies the correla-

tion among proxies for each method. APOLLO shows a much lower VIF than Lasso

39

Figure 2.12: Sum of all absolute
weights.

Figure 2.13: Variance inflation fac-
tors (VIF).

regression. By shrinking weights with different rates, the MCP tends to treat corre-

lated RTL signals differently so that correlated ones are not selected simultaneously

as proxies. Another observation is that Simmani also achieves low VIF by selecting

power proxies from different clusters. However, since the clustering-based selection is

unsupervised, the correlation between power proxies and the label is not as directly

optimized as APOLLO. Simmani is not covered in Figure 2.12 as it is not a linear

model and its weights are not comparable with APOLLO/Lasso.

We further categorize the Q APOLLO-extracted proxies based on the RTL signal

properties: 1) determine whether a proxy is a gate clock signal; 2) for a non-clock

RTL signal, determine which functional unit it belongs to. Figure 2.14(a) shows the

distributions of the 159 power proxies for Neoverse N1 CPU based on the aforemen-

tioned RTL signal properties. 39 power proxies are gated clock signals, which means

APOLLO captures the major contributor, i.e., clock network, of the dynamic power

consumption. Furthermore, with the APOLLO model, the weights of the gated clock

signals provide useful insights into the power-hungry clock gating structure, which

sets guidelines for designers to further optimize clock power. APOLLO model also

captures significant power contributors, such as “Vector Execution” (19 out of 159),

40

“Issue” (36 out of 159), and “Load Store” (28 out 159). These power proxies are

critical indicators to enhance the throttling schemes and mitigate CPU maximum

power consumption [145].

2.4.4 Hardware Prototype of APOLLO-OPM

We synthesize the APOLLO model as an OPM under the same target frequency and

7nm technology as Neoverse N1 CPU. The model accuracy is measured in NRMSE

and the cost is quantified by area overhead. The trade-off between accuracy and area

normalized by the total gate area of Neoverse N1 is shown in Figure 2.14(b). By

varying the number of selected proxies Q and the number of bits B used for weight

quantization, such trade-off curve is explored to help determine appropriate values

for Q and B. Although we are exploring the area and accuracy trade-off using a

per-cycle power model, our automated OPM generation accommodates the average

power computation over T cycles and the only extra hardware cost is one B+⌈logQ⌉+

⌈logT⌉-bit flip flop and adder. To evaluate the accuracy of this implementation, we

simulate our hardware solution with the 15,000-cycle testing data of Neoverse N1.

According to Figure 2.14(b), both Q and B have a considerable impact on accuracy

and area. For all Q values, the accuracy loss is high for B < 9 and becomes negligible

when B > 10. Thus, our strategy is to keep B ≈ 10 and vary Q to generate different

solutions. Specifically, with 10-bit weights, the quantization leads to < 0.1% NRMSE

increase compared with the APOLLO model on software at design-time. For an OPM

with B = 10 and Q = 159, its total gate area is only 0.2% of the gate area of Neoverse

N1. It has a latency of 2 cycles.

OPM overheads are analyzed using physical implementation estimations with the

overall Neoverse N1 CPU, for the OPM placement region at a central location within

41

(a)

Normalized Area
Overhead of OPM

0.4%

0.3%

0.2%

0.1%

M
easured N

RM
SE of O

PM
 (%

)

Num of Proxies (Q) Num of B
its

 (B
)

(b)

Figure 2.14: (a) Distribution of extracted proxies from Neoverse N1. (b) Trade-off
between the area overhead and accuracy (NRMSE) of the OPM.

the CPU floorplan, bounded as illustrated in Figure 2.1. Individual proxies routed

from different blocks to the centralized OPM require buffering that incurs area and

power overheads. On the Neoverse N1 CPU, we budget a single clock cycle to account

for the latency of routing multiple proxies to the OPM by registering all inputs at

the OPM interface (Figure 2.7), at the expense of an extra cycle latency.

Driving the proxies to the centralized OPM requires high-strength buffers that

contribute an additional 0.4% power overhead. The OPM circuitry itself consumes

0.5% power overhead, leading to an overall power overhead of 0.9% compared to the

baseline CPU power at 3GHz in a commercial 7nm technology. In comparison, the

reported power overheads of all previous proxy-based runtime monitors are 1.9 −

14% [32], 2.7− 4% [31], 5.7% [33], 10% [34], and 4.7% [17]. The total area overhead

remains negligible (< 0.5%).

2.4.5 Application Scenarios

Design-Time Power Introspection We described in Section 2.3.1 how the APOLLO

model can be integrated into an emulator-assisted workload simulation framework.

By only recording the toggle trace of Q = 150 power proxies, the size of a simulation

42

Po
w

er
 (S

ca
le

d)

Timing window index (unit: 1 clock cycle)

Figure 2.15: A portion (40,000 over 17 million cycles) of power estimation from the
APOLLO-integrated emulator-assisted power analysis (Neoverse N1).

trace with N = 17 million cycles on Neoverse N1 is reduced to only 1.1 GB. The

entire trace is generated on Palladium® Z1 emulation platform [27] within 3 minutes.

This capability enables accurate generation of power trace spanning >10M proces-

sor cycles within minutes, enabling unprecedented design-time power introspection.

Figure 2.15 illustrates this in the power trace generated for the “hmmer” benchmark

from the SPEC2006 on the Neoverse N1. We show only a portion (40,000 cycles)

of the whole trace to illustrate distinct transitions in the CPU power and current

demand.

Achieving this using EDA tools is computationally infeasible for industry-scale

CPU designs. We estimate the inference time on one billion cycles, covering 1/3 of

a second in chip runtime for the 3GHz Neoverse N1. With a linear model, APOLLO

inference only takes one minute with Q < 500. In comparison, the CNN model in

PRIMAL takes months and the PCA takes around one week, since both algorithms

do not perform proxies selection. As for Simmani, since it takes approximately Q2

polynomial terms as input, its inference time can increase quadratically with Q. It

may take Simmani days for inference of a billion cycles when Q = 1000.

Runtime Proactive Ldi/dt Mitigation Using the APOLLO-OPM’s per-cycle

estimation capability, it is possible to predict Ldi/dt voltage-droop events ahead of

43

0.946

PowerPro Ground-Truth Per-Cycle ∆𝑰 Reading (Log Scale)

O
PM

 P
er

-C
yc

le
 ∆
𝑰R

ea
di

ng
 (L

og
 S

ca
le

)

Figure 2.16: Voltage droop analysis based on per-cycle power on Neoverse N1,
showing OPM prediction versus ground-truth (scaled to arbitrary units).

time before their actual occurrence at a low cost3. We intend to develop this further

in our future work, but here we provide a brief conceptual description of how this can

be realized using the OPM. The differentiation (di/dt) operator in continuous time is

equivalent to the differencing (∆I) in discrete time. We plot both the OPM readings

on Neoverse N1 and the ground truth ∆I samples (scaled to arbitrary units) from

PowerPro [26] in a scatter plot in Figure 2.16. Note that the plot is in log-scale to

cover a wide data range with visibility to details, magnifying the uncorrelated samples

that are actually small in magnitude. The Pearson’s correlation [155] between OPM

and the ground truth reaches 0.946, indicating a high correlation.

The points in the bottom-right and the top-left quadrants indicate samples where

OPM estimations depart significantly from the ground truth. The signal magnitudes

recorded in these quadrants are near the origin (indicating small-magnitude delta

3In [23], authors describe an online training approach where a voltage-emergency signature is
dynamically learned to predict future noise events. This approach requires a checkpoint and
recovery mechanism for initial failures when no signature has been learned. This approach is
onerous to implement in industrial CPU designs. Correctness in presence of corner cases is
difficult to guarantee.

44

current) as a consequence of the OPM accuracy. Points in the top-right quadrant

indicate cycles where there is an increased current demand relative to the previous

cycle. Such cycles are typically precursors to voltage-droop events. The bottom-left

quadrant indicates a drastic reduction in current demand leading to potential voltage-

overshoots. For the samples in deep droop and overshoot regions, APOLLO OPM

correlates well with the ground truth. This indicates that the OPM can accurately

estimate CPU current transients, and thus enable circuit-level mitigation schemes

such as adaptive-clocking to engage prior to the development of voltage-droop.

Proactive droop mitigation using proxies has been proposed in prior art [24, 135].

In [24], authors describe a combination of pipeline event indicators and digital power-

proxies for droop-event indication. However, the technique for creating this proxy

is not formally described. The work of [135] describes proactive mitigation on the

Hexagon DSP engine. DSP engines are data-plane dominated, in contrast with CPUs

that are control-plane dominated. As such, manual design for CPU power-proxies is

significantly harder, particularly when fine-grained temporal resolution is necessary.

2.5 Summary

Power introspection is increasingly important in modern high-performance CPU de-

signs, for both design-time optimization and runtime management. This has partic-

ular significance in many-core infrastructure SoCs in ultra-scaled technology nodes.

Within a unified framework, APOLLO bridges an important technology gap by pro-

viding both cycle-accurate design-time power simulation and low-overhead on-chip

power metering. We demonstrate that by monitoring < 0.05% RTL signals, the

OPM achieves R2 > 0.95 with <1% area/power overhead when integrated with the

Neoverse N1 CPU core.

45

The future research can be focused on two directions. Firstly, the margin re-

duction can be further developed and quantified using proactive Ldi/dt mitigation

with OPM. Secondly, the APOLLO design-time model can be translated into higher

abstraction models (C/C++ instead of RTL), thereby integrating performance sim-

ulation with power-tracing. Ultimately, the APOLLO capability may enable the

development of new mechanisms for smarter power and thermal management in fu-

ture SoCs. The framework is extensible to diverse compute engines and is therefore

a compelling addition to the microarchitects’ toolbox.

46

Chapter 3

Net Length and Timing Modeling at

Netlist

3.1 Background

Net Length Estimation: For state-of-the-art semiconductor manufacturing tech-

nology nodes, interconnect is a dominating factor for integrated circuit (IC) per-

formance and power, e.g., it can contribute to over 1/3 of clock period [42] and

about 1/2 of total chip dynamic power [156]. Interconnect characteristics are af-

fected by almost every step in a design flow, but not explicitly quantified and op-

timized until the layout stage. Therefore, previous academic studies attempted to

address the interconnect effect in design steps prior to layout, e.g., layout-aware syn-

thesis [157, 158]. To achieve such a goal, an essential element is to enable fast yet

accurate pre-layout net length prediction, which has received significant research at-

tention in the past [41, 42, 39, 40, 159, 160, 161]. Some works [39, 40] pre-define

numerous features describing each net, then a polynomial model is built by fitting

these features. The work of [41] estimates wirelength by artificial neural networks

(ANN), but it is limited to the total wirelength on an FPGA only, which is easier to

estimate than individual net length. The mutual contraction (MC) [159] estimates

net length by checking the number of cells in every neighboring net. The intrinsic

shortest path length (ISPL) [160] is an interesting heuristic, which finds the shortest

path between cells in the net to be estimated, apart from the net itself. The idea in

47

[161] is similar to [160] in measuring the graph distance between cells in the netlist.

The recent work [42] on wirelength prediction can only estimate the wirelength of

an entire path instead of individual nets, and it relies on the results from virtual

placement and routing.

Although net length prediction has been extensively studied previously, we notice

a major limitation in most works. That is, they only focus on the local topology

around each individual net with an over-simplified model. In other words, when

estimating each net, usually their features only include information from nets one or

two-hop away. The big picture, which is the net’s position in the whole netlist, is

largely absent. However, a placer normally optimizes a cost function defined on the

whole netlist. It is not likely to achieve high accuracy without accessing any global

information. Some previous models indeed attempt to embrace global information

like the number of 2-pin nets in an entire circuit [39, 40], or a few shortest paths [160],

but such information is either too sketchy [39, 40] or still limited to a region of

several hops [160]. Since the global or long-range impact on individual nets is much

more complex than local circuit topologies, it can hardly be captured by simple

models or models with only human-defined parameters that cannot learn from data.

To solve this, we propose a new approach, called Net2, based on graph attention

network [162]. Its basic version, Net2f , intends to be fast yet effective. The other

version, which emphasizes more on accuracy and is denoted as Net2a, captures rich

global information with a highly flexible model through circuit partitioning.

Recently, deep learning has generated a huge impact on many applications where

data is represented in Euclidean space. However, there is a wide range of applica-

tions where data is in the form of graphs. Machine learning on graphs is much more

challenging as there is no fixed neighborhood structure like in images. All neural

network-based methods on graphs are referred to as graph neural networks (GNN).

48

The most widely-used GNN methods include graph convolution network (GCN) [163],

graphSage (GSage) [164], and graph attention network (GAT) [162]. They all con-

volve each node’s representation with its neighbors’ representations, to derive an

updated representation for the central node. Such operation essentially propagates

node information along edges and thereby topology pattern is learned.

Similarly, in EDA, circuit designs are embedded in Euclidean space after place-

ment, which inspired many CNN-based methods [10, 46, 9]. But before placement, a

circuit structure is described as a graph and spatial information is not yet available.

Till recent years, GNN is explored for EDA applications [83, 165]. The work in [83]

predicts observation point candidates with a model similar to GSage [164]. Graph-

CNN [165] predicts the electromagnetic properties of post-placement circuits. This

method is limited to very small-scale circuit graphs with less than ten nodes. Overall,

GNN has great potential but is much less studied than CNN in EDA. Based on GAT,

the fast version of our Net2 is 1000× faster than placement, and the accurate version

of Net2 significantly outperforms plug-in use of existing GNN techniques.

Timing Estimation: In digital circuit design, timing is a primary design ob-

jective that needs to be considered since very early design stages. A fast and ac-

curate pre-placement timing estimator can essentially benefit design automation by

providing early and high-fidelity feedback to synthesis solutions or during the timing-

driven placement. However, accurate timing estimation is extremely challenging be-

fore placement, largely due to the absence of wire length information. It is highly

difficult to estimate the impact from wires when locations of all cell instances have

not been fixed. In some commercial tools [38], the timing engine ignores or under-

estimates the wire load before placement. As a result, they fail to correlate well with

the post-placement timing report.

ML techniques are also proposed for timing prediction. But due to aforementioned

49

challenges, almost all existing ML-based timing estimators [69, 166, 70, 167] are only

applied after placement for sign-off timing analysis. Barboza et al. [69] reduce the

pessimism in the pre-routing timing report from current commercial tools. The work

of [166] makes predictions with its incremental STA tools and [70] predicts sign-off

timing based on non-SI (signal integrity) analysis. Besides these timing estimators,

some ML-based flow tuning methods [11] optimize their flow for better timing. They

typically treat the design as a black box by training one separate model for each

design, and only predict the overall quality like WNS (worst negative slack) with-

out providing any detailed timing predictions on each net or path. Compared with

our method which predicts the delay at every individual net, this type of black-box

predictions are significantly more coarse-grained, less challenging, and apply to fewer

scenarios.

In this work, we propose to address the absence of wire information and provide

an accurate pre-placement timing estimator with our knowledge from net length

estimation. Both features and predictions of our net size estimator Net2 are selected

as input to timing prediction. Different from a representative timing estimator [69],

which incorporates both gate and wire delays to a net and does not differentiate

multiple input pins of the same cell, we estimate the delay of every individual cell arc

and net arc. To accomplish this, in our timing estimator, we construct two separate

timing models for cell arc and net arc with different input features.

50

…

…

…

…

…

…

…

…

…

…

A

B

C

D

E

F

G

H I

J

K

n1

n2
n3

n4

n5

n3
D G H

n5
G J K

n1
D A B C

n4
H I

n2
D E F

G

HD

D

E F
G J

K

A
B

C

I

(a) (b)

Figure 3.1: Convert netlist to graph. (a) Example netlist. (b) Corresponding graph.

3.2 Methodology

3.2.1 Problem Formulation

The major target in this work is to predict the size of each net with pre-placement

features. The net length Lk of each individual net nk is the label for training and

prediction. The net length is the half perimeter wirelength (HPWL) of the bounding

box of the net after placement. The features of each net are based on the connec-

tion information derived from the circuit netlist. These features include information

about each analyzed net’s driver, sinks, fan-in size, fan-out size, and the number

of neighbors. In addition, our method directly processes the netlist as a graph to

capture global information of the whole circuit design.

We define terminologies of relevant features with the example in Figure 3.1, and

commonly-used notations throughout this paper are all summarized in Table 3.1.

Figure 3.1(a) shows part of a netlist, including five nets {n1, n2, n3, n4, n5} and 11

cells {cA, cB, ..., cK}. Now we focus on net n3, which touches 3 cells {cD, cG, cH}

and is referred to as a 3-pin net. Its driver is cell cD; its sinks are cells {cG, cH}.

We denote the area of n3’s driver cell as a3
dri. Net n3’s fan-ins N3

in = {n1, n2} ; its

51

Table 3.1: Notations Commonly Used in this Chapter

Notation Description Notation Description Notation Description

nk net or node Ok node features P [cH] cell partition IDs
{cG, cH} cells Eb→k edge features M [nk] node partition IDs
ak

dri driver’s area N (nk) 1-hop neighbors Nk
in, Nk

out fan-in/fan-out nets
h

(t−1)
k , h

(t)
k GNN embeddings deg(nk) degree of net |Nk

in|, |Nk
out| fan-in/fan-out size

W (t), θ(t) learnable weights Lk net length label g(), σ() activation functions
C2.A⇒C2.Z timing arc C2.A pin A of cell C2 std(), µ() std deviation, mean
ckb or cbk cell on nb → nk \ exclude from list [||] concat to one list
nb → nk directional edge Timef/a timing estimator Net2f/2a net size estimator

fan-outs N3
out = {n4, n5}. Its fan-in size is 2, denoted as |N3

in| = 2. Its fan-out size

(number of sinks) is 2, denoted as |N3
out| = 2. Every net can have only one driver

but multiple sinks. Thus, the number of cells = 1 + |N3
out| = 3 for this net. Net

n3’s one-hop neighbors include both its fan-in and fan-out: N (n3) = N3
in ∪ N3

out =

{n1, n2, n4, n5}. The number of its neighbors is also known as the degree of n3:

deg(n3) = |N (n3)| = 4.

To apply graph-based methods, we convert each netlist to one directed graph.

Different from most GNN-based EDA tasks, net length prediction focuses on nets

rather than cells. Thus we represent each net as a node, and use the terms node and

net interchangeably. For each net nk, it is connected with its fan-ins and fan-outs

through their common cells by edges in both directions. The common cell shared by

both nets on that edge is called its edge cell. For example, in Figure 3.1(b), net n3

is connected with nets n4 and n5 through its sinks cG and cH ; it is connected with

nets n1 and n2 through its driver cD. The edges through edge cell cG is denoted as

n3 → n5 and n5 → n3. The edge cell cG can also be referred to as c35 or c53. We

differentiate edges in different directions because we will assign different edge features

to n3 → n5 and n5 → n3.

52

Netlist

Clustering

Placement

Net2a / Net2f
using GAT

Pre-placement
timing Post-placement

timing
Timea / Timef

using RF

Net size

Features

Figure 3.2: The net size and timing prediction flow.

An important concept throughout this paper is global and local topology infor-

mation. We use the number of hops to denote the shortest graph distance between

two nodes on a graph. The information of each net refers to its number of cells and

driver’s area. Local information includes the information about the estimated net

itself, or from its one to two-hop neighboring nets. In contrast, global information

means the pattern behind the topology of the whole netlist or the information from

nets far away from the estimated net nk. Here we define the ‘far away’ of global

information as at least three-hop away from the analyzed net. This is beyond the

scope of several previous methods [159, 40]. By performing clustering/partitioning,

the global information can incorporate the information from the whole netlist, reach-

ing the furthest net. The range of neighbors that can be accessed by each model is

referred to as the model’s receptive field.

3.2.2 The Overall Flow

Figure 3.2 shows the overall pre-placement flow for both individual net size and

timing predictions. It is applied before layout and predicts post-placement design

53

objectives. Prediction results can benefit optimization and evaluation for both syn-

thesis and placement. For our net length estimator Net2, we develop a fast version

and an accuracy-centric version named Net2f and Net2a, respectively. As Figure 3.2

shows, both versions of Net2 extract features directly from the netlist, while Net2a

further captures global information by performing clustering on the circuit netlist.

As for timing prediction, we also provide both accurate and fast versions of timing

estimators, named Timea and Timef . The dashed blue arrows in Figure 3.2 mean

the arrows only hold for accuracy-centric versions of our methods, like Net2a and

Timea. It indicates that the clustering/partitioning information is only utilized by

Net2a and Timea, providing higher accuracy at the cost of extra runtime for clus-

tering. Besides features used by net size prediction, the pre-placement timing report

from commercial EDA tools is also used as the input. The timing estimators also

utilize the information from net size predictions as important input features.

3.2.3 Node Features on Graph

Algorithm 1 shows how we build a directed graph and generate features for each

node with a given netlist. On average, a net with more large cells tends to be longer.

Thus, the most basic net features include the net’s driver’s area, fan-in and fan-out

size {|Nk
in|, |Nk

out|, ak
dri}. Feature ∑

aall is the sum of areas over all cells in nk. It

is calculated by including the drivers of all nk’s fan-outs in line 5, which are the

sinks of nk. Besides these basic features, we capture the more complex impact from

neighbors. As shown in line 3, we go through all neighbors of nk to collect their fan-in

and fan-out sizes. The summation ∑ and standard deviation s() of these neighboring

information are added to node features Ok in line 6.

54

Algorithm 1 Graph Generation with Node Features
Input: Basic features {|Nk

in|, |Nk
out|, ak

dri}, net length label Lk,
the fan-in nets Nk

in and fan-out nets Nk
out of each net nk.

Generate Node Features:
1: for each net nk do
2: inin = [], inout = [], aall = [ak

dri], outin = [], outout = []
3: for each net ni ∈ Nk

in, each net no ∈ Nk
out do

4: inin.add (|N i
in|) ; inout.add (|N i

out|) ; outin.add (|N o
in|)

5: outout.add (|N o
out|) ; aall.add(ao

dri)
6: Ok = {|Nk

in|, |Nk
out|, ak

dri,
∑

aall,
∑

outin, ∑
outout,

∑
inin,∑

inout, std(outin), std(outout), std(inin), std(inout)}
Build Graph:

1: Initiate a graph G. Each net is a node.
2: for each net nk do
3: For node nk in G, set Ok as node feature, Lk as label.
4: for each net nb ∈ Nk

in ∪Nk
out do

5: Add directed edge nb →nk.
Output: Graph G with node features O and label L.

3.2.4 Edge Features

In Algorithm 1, node features Ok include up to two-hop neighboring information.

The receptive field of the GNN method itself depends on the model depth, which

is usually two to three layers. Thus the model can reach as far as four to five-hop

neighbors, which is already more than previous works. To achieve a good trade-

off between accuracy, speed, and computation cost, our fast-version model Net2f

adopts this conservative and efficient setting to reach as far as five hops. But for the

accuracy-centric Net2a, it goes way beyond that to capture more global information

from the whole graph.

To capture global information, we use an efficient multi-level partitioning method

hMETIS [168] to divide one netlist into multiple clusters/partitions. The partition

method minimizes the overall cut between all clusters, which provides a global per-

spective. In this paper, we use the terms partition and cluster interchangeably. We

55

denote the partition result as M . Each net nk is assigned a cluster ID M [nk], which

denotes the cluster it belongs to. To capture more information, on the same netlist,

we also build a hyper-graph HGc by using cells as nodes, such that we can also as-

sign cells to clusters. In HGc, each hyper-edge corresponds to a net. Similarly, the

partition result on HGc is denoted as P . Each cell ck is assigned a cluster ID P [ck].

Notice that HGc is only used to generate cluster ID for each cell.

Cluster IDs are not directly useful by themselves. What matters in this context

is the difference in cluster IDs between cells and nets. Algorithm 2 shows how the

cluster information is incorporated into GNN models through novel edge features

F0, F1, F2, f3. The most important intuition behind this is: for a high-quality place-

ment solution, on average, the cells assigned to different clusters tend to be placed

far away from each other.

In Algorithm 2, we design the edge features to quantify the source node’s contri-

bution to the target node’s length. The contribution here means the source net is

“pulling” the edge cell far away from other cells in the target net. The edge features

measure such “pulling” strength. When the edge cell is “pulled” away, the target net

results in a longer length. In Algorithm 2, for edge nb →nk, function measureDiff

measures the difference in assigned clusters between node nb and every other neigh-

boring node no, which indicates the distance between cbk and cok. If the distance

between edge cell cbk and every other cell cok in nk is large, it means cbk is placed far

away from other cells in net nk. In this case, edges features F0, F1, F2, f3 are large.

That is why edge features imply how strong the edge cell is “pulled” away from the

target node.

Figure 3.3 shows an example of Algorithm 2 using the netlist same as Figure 3.1.

The number on each cell or net is the cluster ID assigned to it after partition. Figure

3.3 measures the edge features of edge n5 →n3, representing how strongly edge cell

56

Algorithm 2 Define Edge Features on Graph
Input: Cell cluster ID P [ck] for each cell ck, net cluster ID M [nk] and the

neighbors N (nk) of each net nk. Directed graph G.
1: function measureDiff(cbk, nb, cok, no)
2: f0 = 1− (P [cbk] == P [cok])
3: Pb = [P [c] for c ∈ nb] // cluster IDs for nb’s cells
4: Po = [P [c] for c ∈ no] // cluster IDs for no’s cells
5: Pb_not_o = Pb\Po // IDs in Pb but not in Po

6: Po_not_b = Po\Pb // IDs in Po but not in Pb

7: f1 = |Pb_not_o|
|Pb| + |Po_not_b|

|Po| // percent of different IDs
8: f2 = 1− (M [nb] == M [no])
9: return [f0, f1, f2]

10: end function
11:
12: for each net nk do
13: for each net nb ∈ N (nk) do
14: F0 = [], F1 = [], F2 = []
15: Cell cbk is the edge cell on nb →nk

16: Other neighbors Nk
other = N (nk)\{nb}

17: for each net no ∈ Nk
other do

18: Cell cok is the edge cell on no →nk

19: f0, f1, f2 = measureDiff (cbk, nb, cok, no)
20: F0.add(f0) ; F1.add(f1) ; F2.add(f2)
21: f3 = 1− (M [nb] == M [nk])
22: Eb→k = {∑

F0, µ(F0),
∑

F1, µ(F1),
∑

F2, µ(F2), f3}
23: Set Eb→k as the feature of edge nb → nk in G.
Output: Graph G with edge features E.

cG is pulled by n5 from both cells {cD, cH} in n3. To calculate this, we measure the

distance between cG and cH by measureDiff(cG, n5, cH , n4) in Algorithm 2; and the

distance between cG and cD by measureDiff(cG, n5, cD, n1) and measureDiff(cG,

n5, cD, n2).

Take measureDiff(cG, n5, cH , n4) as an example to show how it measures

distance between cG and cH . As shown in the line 2 of Algorithm 2, feature f0

measures the difference in cG and cH ’ cluster IDs, f0 = 1 − (P [cG] == P [cH]) =

1− (3 == 3) = 0. Feature f1 measures the difference in all cells between n5 and n4.

57

…

…

…

…

…

…

…

…

…

…

0

8

8

1

1

3

3

3 3

6

3

n1 = 2

n2 = 1
n3 = 2

n4 = 1

n5 = 1

n3 = 2
1 3 3

n5 = 1
3 6 3

n1 = 2
1 0 8 8

n4 = 1
3 3

n2 = 1
1 1 3

f0 = 0
f1 = 1/3
f2 = 0

f0 = 1
f1 = 2
f2 = 1

f0 = 1
f1 = 1
f2 = 0

D G

H

G
f3 = 1

Figure 3.3: Define edge features by partition results.

As shown from line 3 to 7, P5 = [3, 6, 3] and P4 = [3, 3]. Then P5_not_4 = [6] and

P4_not_5 = []. They are normalized by the number of cells |P5| = 3 and |P4| = 2, in

order to avoid bias toward nets with many cells. Thus, f1 = 1
3 + 0

2 = 1
3 . Feature f2

measures the difference between n5 and n4, f2 = 1− (M [n5] == M [n4]) = 1− (1 ==

1) = 0. As this example shows, we only measure whether cells / nets have the same

cluster IDs, and the order of IDs does not matter.

After measuring the difference in cluster ID between cG and all other cells in

n3, for the edge n5 →n3, F0 = [1, 1, 0]; F1 = [2, 1, 1
3]; F2 = [1, 0, 0]. f3 measures

the difference between n5 and n3, f3 = 1. This example shows how we incorporate

global information from partition into edge features. Actually, we generate multiple

different partitioning results M , P by requesting different number of clusters. That

results in multiple different {F0, F1, F2, f3}. All these different edge features are

processed in line 22 and concatenated together as the final edge features Eb→k.

3.2.5 GNN and Net2 Models

This section introduces how GNN models are applied on the graph G we build. GNN

models are comprised of multiple sequential convolution layers. Each layer generates

a new embedding for every node based on the previous embeddings. For node nk with

58

node features Ok, denote its embedding at the tth layer as h
(t)
k . Its initial embedding

is the node features h
(0)
k = Ok. Sometimes the operation includes both neighbours

and the node itself, we use nβ to denote it: nβ ∈ N (nk) ∪ {nk}. In each layer t,

GNNs calculate the updated embedding h
(t)
k based on the previous embedding of the

node itself h
(t−1)
k and its neighbors h

(t−1)
b |nb ∈ N (nk).

We show one layer of GCN, GSage, and GAT below. Notice that there exist

other expressions of these models. The two-dimensional learnable weight at layer t

is W (t). In GAT, there is an extra one-dimensional weight θ(t). The operation [||]

concatenates two vectors into one longer vector. Functions σ and g are sigmoid and

Leaky ReLu activation function, respectively.

On GCN (with self-loops), F (t)
GCN [163] is:

h
(t)
k = σ(

∑
nβ∈N (nk)∪{nk}

akβW (t)h
(t−1)
β)

where akβ = 1√
deg(k) + 1

√
deg(β) + 1

∈ R

On GSage, F (t)
GSage [164] is:

h
(t)
k = σ(W (t)[h(t−1)

k || 1
deg(k)

∑
nb∈N (nk)

h
(t−1)
b])

On GAT, F (t)
GAT [162] is:

h
(t)
k = σ(

∑
nβ∈N (nk)∪{nk}

akβW (t)h
(t−1)
β)

where akβ = softmaxβ(rkβ) over nk and its neighbors,

rkβ = g(θ(t)⊺[W (t)h
(t−1)
β ||W (t)h

(t−1)
k]) ∈ R

Here we briefly discuss the difference between these methods. GCN scales the

contribution of neighbors by a pre-determined coefficient akβ, depending on the node

degree. GSage does not scale neighbors by any factor. In contrast, GAT uses learn-

59

able weights W , θ to firstly decide node nβ’s contribution rkβ, then normalize the

coefficient rkβ across nk and its neighbors through a softmax operation. Such a learn-

able akβ leads to a more flexible model. For all these GNN methods, the last layer’s

output embedding h
(t)
k is connected to a multi-layer ANN.

The node convolution layer of the Net2 is based on GAT, considering its higher

flexibility in deciding neighbors’ contribution akβ. Thus node convolution layer is

F (t)
GAT . In the final embedding, we concatenate the outputs from all layers, instead of

only using the output of the final layer like most GNN works. This is a customization,

by which the embedding includes contents from different depths. The shallower ones

from the first few layers include more local information, while the deeper ones from

the last few layers contain more global information. Such an embedding provides

more information for the ANN model at the end and may lead to better convergence.

The idea of combining shallow and deep layers has inspired many classical deep

learning methods in Euclidian space [169, 170], but it is not widely applied in GNNs

for node embeddings. After three layers of node convolution, the final embedding for

each node is [h(1)
k ||h

(2)
k ||h

(3)
k]. Without partitioning, this is the embedding for our fast

solution Net2f .

In order to utilize edge features, here we define our own edge convolution layers

E as customization. For each directed edge nb →nk, we concatenate both target and

source nodes’ features [Ok||Ob] together with its edge features Eb→k as the input of

edge convolution. Combining node features when processing edge features enables E

to distinguish different edges with similar edge features. The output embedding is:

ek_sum =
∑

nb∈N (nk)
W2W1[Ok||Eb→k||Ob]

ek_mean = 1
deg(k)ek_sum

The two two-dimensional learnable weights W1 and W2 can be viewed as applying

60

a two-layer ANN to the concatenated input. We choose two-layer ANN rather than

one-layer here because the input vector [Ok||Eb→k||Ob] is long and contains hetero-

geneous information from both edge and node. We prefer to learn from them with a

slightly more complex function. After the operation, both ek_sum and ek_mean are on

nodes. Then, we add an extra node convolution using the output from edge convolu-

tion as input. This structure learns from neighbors’ edge embeddings eb_sum, eb_mean.

h
(e)
k = F (e)

GAT ([ek_sum||ek_mean], [eb_sum||eb_mean])

Inspired by the same idea in Net2f , we combine the contents from all layers for our

accurate solution Net2a. Its final embedding is [h(1)
k ||h

(2)
k ||h

(3)
k ||ek_sum||ek_mean||h(e)

k].

For both Net2f and Net2a, their final embeddings are then connected to an ANN.

3.2.6 Timing Prediction Method

This section introduces our timing prediction method in detail. The timing estimator

is constructed and applied to directly predict the delay of each individual timing

arc. Then based on the inference result, we further obtain arrival time, required

arrival time, and slack of each circuit node by traversing the graph with predicted

delay values. Similar to the Net2 model, we provide both fast and accuracy-oriented

versions for timing prediction, named Timef and Timea, respectively.

Figure 3.4: An example to illustrate timing prediction algorithm.

61

Table 3.2: Pre-Placement Features for Timing Prediction

For each cell arc (C2.A⇒C2.Z in cell C2, for example)
Pre-placement delay of the arc itself: C2.A⇒C2.Z
Source pin information: capacitance, slew, slack at C2.A
All net-size-relevant features of the following net: net N2
Predicted size of previous net: net N1

For each net arc (C2.Z⇒C4.A in net N2, for example)
Source pin information: max capacitance, slew, slack at C2.Z
Sink pin information: capacitance at C4.A
All net-size-relevant features of the net: net N2
Predicted size of the following net: net N3

We take the simplified circuit in Figure 3.4 to demonstrate our timing estimator,

which predicts the delay of every timing arc. The timing arc, as the basic component

of a timing path, can be categorized into cell arc and net arc. Each cell arc is between

an input pin and output pin of a cell, and each net arc is between the driver pin and

load pin of a net. Considering their different properties, in our timing estimator,

two separate timing prediction models are constructed to handle these two types of

timing arcs. For each timing arc, we denote the pin from which it originates as the

source pin, and the pin at which it ends as the sink pin. For example, the timing arc

C2.A⇒C2.Z means a cell arc from source pin C2.A to the sink pin C2.Z.

For each cell, the cell-arc timing model predicts the post-placement delay of all its

cell arcs. Take cell C2 in Figure 3.4 as an example, the model predicts delays of both

C2.A⇒C2.Z and C2.B⇒C2.Z. This is essentially different from the timing model in

a representative post-placement timing estimator [69], which assumes the delays of

all cell arcs in the same cell are the same. This approximation in [69] may lead to

inaccuracies, considering the input slews and diffusion capacitances seen by input pins

of the same cell can be different. Our observation in experiments shows the cell delays

62

at C2.A⇒C2.Z and C2.B⇒C2.Z can differ a lot and thus distinguishing all cell arcs

helps to achieve higher accuracy. Similarly, for each net, the net-arc timing model

predicts the post-placement delay of each net arc. In net N2, for example, there are

two net arcs C2.Z⇒C4.A and C2.Z⇒C3.B. In addition, our timing estimator takes

the worst delay between rising and falling as the ground truth, without constructing

separate models for rising and falling edges. This avoids doubling the required timing

models and simplifies the timing analysis through traversals.

Table 3.2 summarizes selected features for cell arcs and net arcs, with examples

on C2.A⇒C2.Z and C2.Z⇒C4.A in Figure 3.4, respectively. All these features in

Table 3.2 are from two main sources, as summarized below.

• All relevant slew, delay, and slack information from the pre-placement timing

report.

• All relevant net and cell information that can be derived from the netlist. It

includes the global information captured by performing clustering on the netlist.

Both cell-arc and net-arc models are constructed based on the existing timing

report and the netlist information used in net size prediction. We can also view

the prediction procedure as improving the inaccurate pre-placement timing report by

incorporating net size information into our ML-based timing model. Specifically, a

detailed explanation of all selected features is elaborated as follows.

• Pre-placement delay: Although the pre-placement timing report fails to

evaluate wire load accurately for delay measurement, it still shows a generally

acceptable correlation with ground truth. Thus the pre-placement delay of

the predicted cell arc itself is adopted as an important input feature. Notice

that the pre-placement delay of net arcs is set to zero in some commercial

63

layout tools [38], thus the delay of the net arc itself is not used as a feature of

C2.Z⇒C4.A.

• Capacitance at the input pin of cells: For the same type of cell, the

capacitance at the cell input pin is usually proportional to the cell’s driving

strength. For cell arcs, a larger capacitance at each arc’s source pin indicates the

larger driving strength and thus smaller delay. For net arcs, a larger capacitance

at each arc’s sink pin indicates a higher load seen by the wire.

• Pre-placement slew at the source pin: The slew, or named transition time,

also significantly affects the delay. Thus the pre-placement slew at the source

pin of both types of arcs is adopted as features.

• Detailed net size information: The net size of net N2 is a determining

factor of the delay. For both cell and net arcs in this example, it is directly

proportional to the wire load seen by the C2.Z pin. A larger wire load at C2.Z

takes longer to charge/discharge, leading to a larger cell-arc delay. For the net

arc, the net size is also proportional to the wire length from C2.Z to C4.A. For

the fast timing estimator Timef , both node features and Net2f -predicted size

of the net N2 are included as features. For the accurate version Timea, besides

using predictions from Net2a, the clustering-related information of this node is

also included as features.

• Brief net size information: For the cell arc like C2.A⇒C2.Z, its previous

net N1 affects the input slew at the source pin C2.A. For the net arc like

C2.Z⇒C4.A, its following net N3 affects where cell C4 is placed, and thus

affects the distance between C2.Z and C4.A. Since their impact on the arcs is

less than the net N2, we only adopt the brief net size information, which is

corresponding net size estimators’ predictions on these nets as features.

64

Based on extracted features of the two different types of timing arcs, we develop

one cell-arc model and one net-arc model, both based on the random forest (RF) algo-

rithm [171]. Tree-based ML algorithms are good at handling largely distinct types of

features, which include slew, delay, capacitance, cell/net number, and clustering infor-

mation in this case. Instead of directly predicting the ground-truth post-placement

delay of each arc, our model is actually trained to predict the incremental delay,

which is the difference between pre-placement and the ground-truth post-placement

timing. Then the final predicted delay is the summation of both pre-placement delay

and the prediction of the incremental delay. This strategy, not adopted in previous

ML-in-EDA works [69], helps the model to directly capture wire-load-induced delay

based on the pre-placement timing report.

3.3 Evaluation

3.3.1 Experimental Setup

Table 3.3: Number of Nets in Designs

Benchmark Design # Net Design # Net Design # Net

ISCAS’89 s13207 4 K s35932 31 K s38417 26 K
s38584 18 K s5378 4 K s9234_1 4 K

ITC’99
b14 22 K b15 12 K b17 40 K
b18 115 K b19 225 K b20 39 K
b21 39 K b22 58 K

Faraday DMA 42 K DSP 73 K RISC 98 K

OpenCores

systemcaes 13 K wb_dma 6 K systemcdes 4 K
des 6 K ethernet 71 K mem_ctrl 10 K
pci 25 K spi 4 K tv80 13 K

usb_funct 24 K vga_lcd 106 K wb_conmax 87 K

ANUBIS DLX 19 K ALPHA 41 K FPU 36 K
mor1k 178 K OR1200 847 K

Gaisler leon2 835 K leon3mp 640 K netcard 551 K

65

To thoroughly validate our algorithms, we constructed a comprehensive dataset

by including 37 different designs with largely varying sizes. All 37 designs are syn-

thesized with Synopsys Design Compilier® [144] in 45nm NanGate Library [172],

and then placed by Cadence Innovus™ v17.0 [38]. When testing ML models on each

design, we train the model only on the other 36 designs in the dataset to prevent

information leakage. Thus, all accuracy numbers measure the performance on new

designs completely unseen to the existing model. These accuracies reflect how well

the model generalizes to each of the 37 designs in our dataset. The detail of each

design is shown in Table 3.3. They are collected from various benchmarks, includ-

ing ISCAS’89 [173], ITC’99 [174], ANUBIS [175], and other selected designs from

Faraday, OpenCores and Gaisler in the IWLS’05 [176]. To ensure all designs in the

experiment are representative, we discard tiny designs with less than 3K nets. As

shown in Table 3.3, the size of these designs ranges from 4K to 800K nets. We set

the clock period of all designs to be 1.5ns and thus most designs result in a nega-

tive worst slack. This mimics a common design scenario where designers target high

performance and rely on the timing estimator to address negative slacks on critical

paths.

All GNNs are built with Pytorch 1.5 [150] and Pytorch-geometric [177]. The

partition on graphs is performed by hMETIS [168] executable files. The RF models

are developed based on the random forest regressor in scikit-learn [151]. The experi-

ment is performed on a machine with a Xeon E5 processor and an Nvidia GTX 1080

graphics card.

Hyper-parameter values are decided during parameter tuning. This is accom-

plished by testing combinations of hyper-parameters on a much smaller validation

dataset constructed for parameter tuning. This smaller validation dataset may com-

prise netlists only from one benchmark like ITC’99, in order to make the testing

66

faster and allow us to test how well the model generalizes on other designs in the

whole dataset. Here we introduce the best hyper-parameters after parameter tuning.

They target to achieve a good trade-off between bias and variance, making the model

sufficiently flexible while not too complex. For all GNN methods, we use three layers

of GNN with two layers ANN. The attention head number of GAT is two. The size

of each node convolution output is 64. The size of edge convolution output is twice of

the input size [Ok||Eb→k||Ob]. The size of the first-layer ANN is the same as its input

embedding, and the size of the second-layer ANN is 64. A batch normalization layer

is applied after each GNN layer for better convergence. Because of the difference

in graph size, each batch includes only one graph, and the training data is shuffled

during training. We use stochastic gradient descent (SGD) with a learning rate 0.002

and momentum factor 0.9 for optimization. GNN models converge in 250 epoches.

For all RF models in timing prediction, we set the number of tree-based estimators

to be 80 and the maximum depth of each estimator to be 12. Other parameters are

left the same as default settings.

When partitioning each netlist, we generate seven different cell-based partitions

P by requesting the number of output clusters to be the number of cells divided by

100, 200, 300, 500, 1000, 2000, and 3000. Because different partitions are generated

in parallel, the overall runtime depends on the slowest one. Similarly, we generate

three net-based partitions M by requesting the cluster number to be the number of

nets divided by 500, 1000, and 2000. These cluster numbers are achieved by tuning

during experiments, which provides good enough coverage over different cluster sizes.

Representative previous methods MC [159], ISPL [160], and Poly [40] are im-

plemented for comparisons. As for traditional ML models, besides the polynomial

model proposed in previous work [40], we implement a three-layer artificial neural

network (ANN) model using node features O. Here we summarize the receptive field

67

of all methods. MC is limited to one-hop neighbors, while Poly and ANN can reach

two-hop neighbors. The receptive field of ISPL varies among different nodes. Ac-

cording to [160], ISPL for most nets is within several hops. In comparison, all GNNs

and Net2f can access five-hop neighbors. Net2a measures the impact from the whole

netlist.

We evaluate our methods with various metrics, including mean absolute error

(MAE), correlation coefficient R, and coefficient of determination R2. Given a list

of ground-truth labels {yi} and corresponding predictions {pi} with length N , these

metrics are defined below. The ȳ and p̄ represent the average of labels and predictions,

respectively.

R =
∑N

i=1(yi − ȳ)(pi − p̄)√∑N
i=1(yi − ȳ)

√∑N
i=1(pi − p̄)

MAE =
∑N

i=1 |yi − pi|
N

R2 = 1−
∑N

i=1(yi − pi)2∑N
i=1(yi − ȳ)2

In addition, for classification tasks, we evaluate the accuracy with Receiver Oper-

ating Characteristic (ROC) curve, measured based on true positive rate (TPR) and

false positive rate (FPR). For classification tasks, a threshold is applied to turn the

raw prediction into binary. A higher threshold will lead to higher TPR, but also

higher FPR; otherwise the vice. The ROC curve thus indicates the trade-off between

TPR and FPR when varying the threshold, and a larger area under curve (AUC)

indicates higher accuracy. The AUC ranges from 0 to 1, with AUC = 0.5 indicating

the accuracy of random guessing.

3.3.2 Net Length Prediction Result

We first measure the correlation between prediction and ground truth on all nets in

each netlist in Figure 3.5, with a classical criterion used in many net length estimation

68

(a) 20 bins generated according to labels.

(b) 20 bins generated according to predictions.

Figure 3.5: The correlation coefficient R between net length prediction and label.
Averaged over designs in each benchmark.

works [40, 160, 161]. For each netlist, we firstly calculate a range of net length [L0%,

L95%]. It means from the shortest net length to the 95 percentile largest net length.

The top 5% longest nets are excluded to prevent an extraordinarily large range.

Then the calculated range is partitioned into 20 equal bins, and the average of both

predictions and labels in each bin is calculated. After that, the correlation coefficient

R between these 20 averaged predictions and labels is measured and reported. To

make fair comparisons, we calculate the range [L0%, L95%] and define such 20 bins

using both labels and predictions, as shown in Figure 3.5(a) and 3.5(b), respectively.

Figure 3.5 reports the correlation coefficient averaged over designs from the same

benchmark. In addition, the ‘Average All’ bars in Figure 3.5 show the averaged R

over netlists from all 37 designs.

Figure 3.5(a) and 3.5(b) show highly similar trend of averaged accuracy, indicating

that Net2a > Net2f > GCN/GAT > ANN. The correlations of GNN methods are

significantly higher than previous methods with a limited receptive field including

MC, ANN, ISPL, and Poly. Then Net2f outperforms GAT and GCN with its residual

69

connection. By capturing the global information, Net2a performs the best on all

benchmarks, with an average accuracy R = 0.964.

Besides correlation, we also measure the quality of net length estimators by how

well they identify long nets in each circuit. Longer nets generally tend to contribute

more wire load, and thus leaves a larger space for improving both wire-induced delay

and the total wirelength. We believe identifying long nets is helpful for timing-related

operations including timing-driven placement. Table 3.4(a) shows the accuracy in

identifying the top 10% longest nets. For each netlist, the 10% longest nets are

labeled as true, and the accuracy is measured in ROC curve’s area under curve

(AUC). Models capturing only one or two-hop neighbors, like MC and Poly, perform

the worst. On average, ISPL outperforms MC and Poly with AUC ≈ 0.69. Notice

that for large designs with more than 500 thousand nets, our implemented ISPL

takes days of runtime, which is much slower than placement and too time-consuming

in our experiment. Thus, we denote ‘N/A’ for these designs in Table 3.4(a) and

omit them when measuring the average accuracy for ISPL. Using our proposed node

features, the ANN achieves AUC ≈ 0.73. In comparison, graph methods like GCN

(AUC ≈ 0.78) and GAT (AUC ≈ 0.77) perform significantly better by learning with

a larger receptive field reaching five-hop neighbors. By combining shallow and deep

embeddings, Net2f achieves AUC ≈ 0.82. Net2a achieves AUC ≈ 0.90 by learning

more global information from clustering on edge features with its edge convolution

layer. The trend Net2a > Net2f > GAT > ANN clearly decompose the contribution

of different component of our ML algorithm. The good accuracy can be attributed

to convolution of node features introduced in GAT, our customization of residual

connections in Net2f , and the global information in Net2a.

Besides the average accuracy over all designs, we also count the average accuracy

over 8 large designs with more than 100 K nets in Table 3.4. These large designs

70

Table 3.4: Accuracy comparison. (a) Net length prediction evaluated with long nets
identification. (b) Timing prediction evaluated with arc delay.

Design
(a) Long Nets Identification Accuracy (AUC%) (b) Arc Delay Prediction Accuracy

MC ISPL Poly ANN GAT GCN Net2f Net2a
report- onlyTime Timef Timea
timing

R R2 R R2 R R2 R R2

s13207 51.6 70.7 51.8 77.8 81.0 80.5 82.1 89.0 1.00 1.00 0.99 0.98 1.00 0.99 1.00 1.00
s35932 71.6 79.5 72.5 73.8 77.7 76.8 81.8 88.8 0.94 0.85 0.95 0.91 0.95 0.91 0.97 0.94
s38417 74.0 81.0 73.0 71.0 72.0 74.9 78.4 85.5 0.99 0.97 0.98 0.94 0.99 0.97 0.99 0.98
s38584 68.8 86.2 71.0 81.2 80.1 82.2 85.8 91.4 0.98 0.95 0.99 0.96 0.99 0.97 0.99 0.98
s5378 64.5 79.8 67.4 64.8 74.7 80.7 79.0 87.8 1.00 0.99 0.99 0.96 1.00 0.99 0.99 0.98

s9234_1 67.5 68.5 64.0 69.9 77.5 81.0 80.2 91.6 1.00 0.99 0.99 0.96 1.00 0.99 0.99 0.98
b14 70.5 77.9 71.3 74.8 74.7 76.3 81.2 90.8 0.92 0.74 0.92 0.85 0.94 0.87 0.95 0.90
b15 67.9 65.5 67.3 71.7 73.0 72.3 78.3 88.5 0.98 0.92 0.97 0.92 0.97 0.94 0.98 0.96
b17 72.4 69.0 66.3 74.0 70.2 75.5 78.7 88.8 0.96 0.87 0.95 0.89 0.97 0.93 0.97 0.95
b18* 73.2 69.1 72.4 70.6 71.9 75.4 78.9 89.6 0.96 0.88 0.96 0.91 0.96 0.90 0.98 0.95
b19* 72.0 69.2 69.4 65.3 71.8 76.0 76.5 88.6 0.96 0.86 0.92 0.83 0.92 0.73 0.97 0.93
b20 74.2 77.5 71.6 75.2 72.4 75.9 83.8 91.8 0.92 0.78 0.93 0.86 0.95 0.89 0.96 0.93
b21 74.8 76.6 73.3 77.4 75.0 78.1 84.8 92.2 0.92 0.77 0.93 0.86 0.95 0.90 0.96 0.92
b22 73.7 76.5 72.4 75.4 75.4 77.6 85.2 90.2 0.91 0.74 0.92 0.85 0.94 0.88 0.95 0.90

DMA 59.3 65.4 62.1 68.1 70.8 75.8 78.1 89.3 0.91 0.74 0.92 0.84 0.92 0.84 0.94 0.89
DSP 67.2 71.3 65.9 67.6 67.3 72.2 74.0 88.8 0.90 0.72 0.90 0.81 0.91 0.83 0.94 0.88
RISC 68.4 67.4 65.8 70.0 67.5 68.0 72.5 88.3 0.94 0.84 0.95 0.89 0.95 0.89 0.97 0.93

systemcaes 75.5 63.5 78.9 71.8 68.3 72.3 80.7 89.5 0.90 0.69 0.90 0.81 0.94 0.87 0.95 0.91
wb_dma 53.4 51.6 46.0 72.3 84.2 75.9 88.9 93.4 0.97 0.90 0.97 0.94 0.98 0.95 0.98 0.96

systemcdes 39.3 66.5 56.0 79.8 86.7 86.9 89.6 95.8 0.98 0.92 0.97 0.90 0.98 0.93 0.99 0.98
des 55.9 50.6 60.9 59.5 79.0 79.6 81.1 88.5 0.97 0.89 0.95 0.88 0.97 0.93 0.98 0.95

ethernet 65.6 67.0 65.7 66.5 78.8 76.4 80.5 85.1 0.84 0.58 0.85 0.73 0.89 0.79 0.91 0.83
mem_ctrl 57.6 61.8 57.7 64.6 77.8 75.8 80.5 88.6 0.98 0.92 0.97 0.93 0.98 0.95 0.98 0.96

pci 70.7 69.3 71.2 71.6 79.3 75.8 82.2 91.3 0.97 0.89 0.94 0.87 0.97 0.94 0.98 0.96
spi 57.0 57.4 49.6 65.6 77.3 79.7 82.7 88.1 0.98 0.94 0.98 0.95 0.99 0.97 0.99 0.97

tv80 74.2 63.9 71.6 66.3 68.9 68.6 74.4 87.3 0.96 0.87 0.96 0.91 0.97 0.93 0.97 0.94
usb_funct 69.6 68.6 70.9 72.7 77.5 73.1 79.7 92.8 0.95 0.86 0.95 0.91 0.96 0.92 0.98 0.95
vga_lcd* 67.2 55.1 77.5 79.9 86.3 88.2 88.7 93.4 0.73 0.38 0.83 0.71 0.85 0.69 0.88 0.76

wb_conmax 42.6 72.2 44.0 56.9 66.7 70.1 71.4 88.5 0.94 0.81 0.94 0.88 0.94 0.87 0.96 0.92
DLX 71.1 73.1 59.2 73.0 79.5 80.6 82.8 91.0 0.94 0.81 0.93 0.87 0.95 0.90 0.97 0.94

ALPHA 63.6 75.6 71.4 79.9 81.4 78.9 85.8 92.2 0.91 0.74 0.93 0.85 0.94 0.88 0.96 0.91
FPU 61.6 82.7 63.9 74.5 71.7 74.3 80.4 89.9 0.98 0.95 0.97 0.93 0.98 0.94 0.99 0.97

mor1k* 71.3 62.1 82.0 85.1 86.4 86.7 89.1 94.6 0.33 -0.20 0.56 0.22 0.48 0.10 0.60 0.27
OR1200* 67.9 N/A 84.1 82.7 89.0 90.1 93.8 96.1 0.53 0.10 0.80 0.48 0.75 0.35 0.81 0.51

leon2* 67.2 N/A 83.1 90.2 92.4 94.2 94.9 97.0 0.05 -0.25 0.55 0.27 0.70 0.43 0.80 0.65
leon3mp* 69.8 N/A 80.4 82.1 80.5 81.1 82.4 89.2 0.50 -0.09 0.52 -0.47 0.62 0.30 0.74 0.50
netcard* 73.7 N/A 80.6 73.1 80.5 80.2 84.0 90.1 0.35 -0.33 0.55 -0.05 0.58 0.30 0.71 0.49
Large (*) 70.3 63.9 78.7 78.6 82.4 84.0 86.0 92.3 0.55 0.17 0.71 0.37 0.73 0.48 0.81 0.63Average
Average 66.1 69.1 67.9 72.9 76.9 78.0 82.0 90.4 0.86 0.70 0.89 0.78 0.91 0.82 0.94 0.87

71

are marked with asterisks (*). The accuracy trend Net2a > Net2f > GAT > ANN

remains the same for large designs. Also, the accuracy in net length prediction does

not degrade when measured on large designs only.

3.3.3 Timing Prediction Result

For timing estimators, we first evaluate the accuracy in predicting the delay of each

timing arc. Table 3.4(b) measures the delay of all arcs in the same netlist with both

correlation coefficient R and coefficient of determination R2. For a biased estimator,

which means its predictions are consistently higher or lower than the ground-truth

labels, it may achieve high R but much lower R2 if it well correlates with the label.

In Table 3.4(b), the report_timing is the pre-placement timing report from the

timing engine from a representative commercial tool1. Before placement, due to

the absence of wire length information, the timing engine tends to underestimate

wire load in its timing report. As a result, the reported delay values of all arcs are

consistently smaller than the ground-truth post-placement report. In other words,

the pre-placement report is biased towards more optimistic predictions, which is

especially undesired in timing analysis since it under-estimates timing violations.

Such a bias is reflected in its low averaged R2 = 0.70, but the bias does not affect the

correlation R = 0.86. When averaged over all 37 designs, the fast timing estimator

Timef is 0.05 higher in R and 0.12 higher in R2 than the report from the commercial

EDA tool. The accurate version, Timea, further achieves R = 0.94 and R2 = 0.87.

The improvement in R means both Timef and Timea not only fix the bias in pre-

placement timing reports but also improve the correlation.

In Table 3.4(b), to analyze the contributions from different features, we also in-

1According to the license agreement, we should not disclose the name of vendor’s tool when making
direct comparisons with it.

72

clude an extra baseline named ‘onlyTime’, referring to only using timing-related

features listed in Section 3.2.6 as input features of the timing model. This baseline

measures whether timing input features alone are enough for accurate timing estima-

tions. This ‘onlyTime’ outperforms the report_timing with R = 0.89 and R2 = 0.78,

but is still less accurate than Timef , and the gap is even larger compared with Timea.

This gap shows the contribution purely from the net-length-related predictions. In

addition, we further measured the accuracy of a timing model using the ground-truth

net-length as an input feature. The averaged accuracy turns out to be R = 0.98 and

R2 = 0.96. This can be viewed as an upper limit of the current Timef/a model,

assuming perfect net length predictions are available.

We observe that the arc-delay prediction accuracy in Table 3.4(b) is lower for

large designs with more than 100 K nets, like leon2, netcard, and OR1200. But as

our analysis of Table 3.4(a) has demonstrated, net length prediction accuracy for

large designs is not worse than average. Our study shows that in these large designs,

there are much more very-long nets, which cause dominating wire-induced incremen-

tal delay. It means the gap between pre-placement and pose-placement timing is

significantly larger and more difficult to predict, thus an inaccurate net length esti-

mation causes a larger penalty to timing prediction accuracy. This is validated by

the poor accuracy of ‘report_timing’ by the commercial tool on these large designs.

Although our Timea performs not as well on large designs, it more significantly out-

performs the commercial tool baseline on large designs. As Table 3.4(b) shows, Timea

outperforms ‘report_timing’ by 0.08 (= 0.94 - 0.86) in correlation R when averaged

over all designs, while by as large as 0.26 (= 0.81 - 0.55) in R for large designs.

Based on the prediction on all delay arcs, we perform the PERT [178] traversal,

which is widely used in STA, to measure the arrival time, required arrival time, and

slacks. Figure 3.6 shows predictions versus labels on calculated slacks for both pre-

73

Figure 3.6: Examples on pre-placement slack prediction.

74

placement timing report and the estimator Timea. Eight representative designs are

presented, and each subplot measures all slacks in the netlist. Similar to the trend

of arcs delay, slacks from the pre-placement timing report are consistently higher

than ground-truth, thus are biased towards optimism. For each design in Figure 3.6,

the timing estimator Timea achieves a much higher accuracy when measured in R2

and absolute errors. Both averaged and median accuracies on slack prediction over

all 37 designs are shown in Table 3.5. The averaged accuracy is more affected by

less accurate predictions thus the median accuracy is higher. The trend in accuracy

remains the same, showing Timea > Timef > report_timing. On average, the Timea

achieves high R2 = 0.91, indicating that high correlation and low bias are achieved

simultaneously. Its mean absolute error is 0.11ns, which reduces the error in pre-

placement timing report by more than 50% and is less than 10% of the clock cycle.

Table 3.5: Pre-placement Path Slack Prediction Accuracy

report_timing Timef Timea

Error R2 Error R2 Error R2

Mean 0.38 ns 0.39 0.16 ns 0.86 0.11 ns 0.91
Median 0.18 ns 0.77 0.07 ns 0.95 0.05 ns 0.97

According to all slacks calculated by traversing delay predictions, we can easily

measure the total negative slack (TNS) and worst negative slack (WNS) of each

netlist. The TNS and WNS of all designs are presented in Figure 3.7. For the small

portion of netlists with all slacks positive, we set the WNS to the lowest positive slack

and leave the TNS to be zero. Each point in Figure 3.7 represents the TNS/WNS

of one netlist. The estimator Timea maintains its high accuracy in TNS and WNS

prediction. Considering this correlation is measured on all designs and each testing

design is completely unseen by the model, the result proves that the performance of

Timea is robust on all 37 tested designs in our experiment.

75

Figure 3.7: WNS (left) and TNS (right) of all designs.

OR1200netcard

leon3mp

leon2

mor1kx

b18

b19

leon2

netcard
OR1200

leon3mp

mor1kx
b19

b18vga_lcd

vga_lcd

Figure 3.8: WNS (left) and TNS (right) on only large designs.

To show our timing model’s performance on large designs more clearly, we pick

those 8 largest designs with more than 100K nets and only show the TNS/WNS

predictions on these designs in Figure 3.8. The arrow with design name text in

Figure 3.8 points to the prediction from Timea, and the corresponding evaluation

from report_timing shares the same ground-truth in the x-axis. Compared with

other designs, WNS/TNS of large designs is more negative. The estimation from

report_timing is close to ground-truth for designs ‘b18’ and ‘b19’, but significantly

more optimistic for designs ‘vga_lcd’, ‘netcard’, ‘OR1200’, and ‘leon2’. In compari-

son, our Timea gives rather accurate predictions to all these large designs.

76

3.3.4 Runtime Comparison

Table 3.6: Detailed Runtime Comparison on Representative Designs (In Seconds)

Design # Net Place Partition
Net2f Net2a Net2f Net2a Timef Timea Timef Timea

Infer Infer Speedup Speedup Infer Infer Speedup Speedup
b15 12 K 30 1.6 0.03 0.03 1K× 18× 0.08 0.08 0.3K× 18×
b21 39 K 128 7.1 0.05 0.05 2.6K× 18× 0.25 0.27 0.4K× 17×

mor1k 178 K 1174 64.8 0.11 0.25 11K× 18× 0.97 1.1 1.1K× 18×
netcard 551 K 5517 313 0.48 1.0 11K× 18× 2.9 5.8 1.6K× 17×
leon3mp 640 K 7180 283 0.54 1.0 13K× 25× 3.8 5.9 1.7K× 25×
OR1200 847 K 11353 427 0.67 1.5 17K× 26× 5.8 9.4 1.8K× 26×

leon2 835 K 11544 428 0.67 1.4 17K× 27× 5.0 9.8 2.0K× 26×

Table 3.6 shows the runtime of placement, net length estimators Net2f/2a, and

timing estimators Timef/a. We report the runtime separately for multiple represen-

tative designs, which cover a large range of design sizes from 12K to 800K nets in

the netlist. For a fair comparison, the runtime of placement includes the placement

algorithm only, without any extra time for file I/O, floorplanning, or placement op-

timization. The inference of Net2f/2a requires one Nvidia GTX 1080 graphics card,

and other runtimes are performed with CPU only.

As Table 3.6 shows, Net2a takes slightly longer inference time than Net2f for its

extra edge convolution layer. The overall runtime of Net2a includes both partition and

inference. Partitioning contributes the majority of Net2a’s runtime. Net2a is more

than > 15× faster than placement. The runtime of Net2a can be potentially improved

by using coarser but faster partition P and M , especially on larger designs. Without

partition, Net2f is > 1000× faster than placement. For timing estimators, similarly,

Timea takes longer inference time than Timef since it takes more input features. The

Timea is > 15× faster and the Timef is > 1000× faster than the placement for not-

too-small designs. The runtime comparison between different designs in Table 3.6

shows that the speedup of Net2f/2a and Timef/a is more significant for larger designs.

77

It validates the scalability of our method.

Table 3.7: Synthesis Runtime Measurement (In Seconds)

Traditional Synthesis Placement Partition
167 128 9.4

Physical-aware Synthesis Physical-aware Synthesis
(with Fast Placement) (with Complete Placement)

282 414

Besides comparisons with placement, to gain more insights on the whole VLSI

design flow, we also evaluate the runtime of both traditional logic synthesis and

physical-aware synthesis from an industry-standard commercial synthesis tool2 in

Table 3.7. It is measured on the design b21. As introduced, physical-aware synthesis

explicitly addresses the interaction between synthesis and layout with the cost of

extra runtime. The commercial synthesis tool we use offers two options for physical-

aware synthesis, one using a fast placement method and the other using the complete

placement to provide feedback on the backend implementations. As shown in Ta-

ble 3.7, the two versions of physical-aware logic synthesis take 115 and 247 more

seconds than traditional logic synthesis. This extra runtime is close to the time spent

on placement. This verifies our claim that compared with ML-based solutions, the

physical-aware synthesis is more time-consuming.

As for the model training time, it takes around 30 minutes to train the Net2a

model, and less than 10 minutes to train the RF-based timing estimator Timea.
2According to the license agreement, we should not disclose the name of vendor’s tool when making
direct comparisons with it.

78

3.4 Summary

In this chapter, we first present Net2, a graph attention network method customized

for individual net length estimation. It includes a fast version Net2f which is 1000×

faster than placement, and an accuracy-centric version Net2a which extracts global

information and significantly outperform all previous net length estimation methods.

Based on net length predictions, we further develop a pre-placement timing estimator,

which achieves significantly better correlations with ground truth compared with the

pre-placement timing report from commercial tools.

79

Chapter 4

Fast IR Drop Modeling on Layout

4.1 Background

IR drop describes the deviation of a power supply level from its specification that

occurs when current flows through power grids. It must be restricted in order for

a circuit to meet its timing target and function properly. As design and manufac-

turing technologies advance, the increased current load further exaggerates IR drop

violations, which become a critical concern for both VLSI design and test [179]. Note

that the power supply noise (PSN) is sometimes also loosely referred to as IR drop.

But the PSN actually comprises both Ldi/dt and the IR drop [180]. The Ldi/dt,

or named voltge droop component is an inductive effect caused by rapid current

changes through power grids. This chapter focuses only on the IR drop problem,

without considering the Ldi/dt.

In order to meet IR drop constraints, designers need to estimate and mitigate IR

drop throughout design stages from placement to signoff in multiple iterations. It may

also be measured during post-silicon verification. Obtaining an accurate estimation of

IR drop through simulation-based commercial tools is very time consuming [181, 46].

Thus, IR drop mitigation guided by frequent IR drop simulations is computationally

costly and hampers the overall design turnaround time. To speed up this process,

a fast yet accurate IR drop estimator becomes a critical need, and ML techniques

provide promising solutions.

IR drop estimators can be classified into two major categories, based on whether

80

Average current

Dynamic current

Figure 4.1: Static and dynamic analysis on current.

they estimate static IR drop or dynamic IR drop. Figure 4.1 shows a comparison

between the average current and dynamic current in one clock cycle [182]. The static

IR drop analyses in most commercial tools only measure the average current drawn

from power grids without considering switching activities [181, 182]. It is widely

used to identify the weakness of a power delivery network (PDN) at an early design

stage when switching vectors are not available. There have been many traditional

methods for fast power grids analysis [183, 184, 185, 186]. In contrast, dynamic IR

drop captures the peak transient current value based on switching activities. Thus,

it is a more strict constraint and much more difficult to predict [182]. The significant

difference between static and dynamic IR drop leads to distinctive problem settings

and corresponding ML solutions.

Table 4.1: Comparison Among Different IR Drop Estimators

ML Methods Model Design Independent
[43] (ITC 12) Linear Regression No
[44] (VTS 14) SVM No
[187] (ATS 17) Clustering Unsupervised
[45] (VTS 18) ANN No
[46] (ICCAD 18) XGBoost No
PowerNet Max-CNN Yes

Our work named PowerNet focuses on the estimation of dynamic IR drop. Related

ML-based IR drop estimators are summarized in Table 4.1. These prior works [43,

44, 45, 46] are not “design-independent”, i.e., transferable to new designs that are

81

not seen in its training dataset. Here we require the new design to be different from

training designs at the netlist level. Thus the following examples are not viewed as

cross-design: 1) Models trained and tested with different layout implementation of the

same netlist. 2) Models trained and tested on multiple designs, which appear in both

training and testing set. As a result, previous works require training a new model for

each distinct design. Some work [43] even dedicates one model for every single cell.

Training a new model with new labels entails a long simulation and training time,

which defeats the original purpose of fast estimation. The only exception is [187],

which is based on unsupervised learning and does not learn any previous knowledge.

4.2 Methodology

4.2.1 Problem Formulation

This work aims at detecting locations of IR drop hotspots. Hotspots are regions

where IR drop is greater than a specified threshold. To estimate IR drop, every

design is tessellated into an array of tiles, each of which is an l × l square. The tile

size l controls the granularity of our solution. In this way, a design with the size

of W × H is represented as a w × h matrix, where w = W/l and h = H/l. The

IR drop at each tile is the mean value of IR drop of all cells within it. Then IR

drop for the whole design is IR ∈ Rw×h. The ground-truth IR is also referred to

as label in this paper. As for input features, different types of power dissipation

values are calculated for each tile. We refer to each w × h power matrix as a power

map. Essentially, power maps are the distribution of power density. PowerNet F

tries to give the closest estimation F ∗ on IR based on all G different power maps

{Pmap1 ... PmapG}.

82

F : {Pmap1 ∈ Rw×h... PmapG ∈ Rw×h} → Rw×h

F ∗ = arg min
F

Loss(F ({Pmap1... PmapG}), IR).

4.2.2 Feature Extraction

According to Ohm’s Law, excessive IR drop can be caused by either high current or

high resistance. As is typical in state-of-the-art VLSI design, we assume a uniform

power grid in the power delivery network (PDN), which means the resistance distri-

bution across a whole design is also rather uniform. Thus in PowerNet, we choose

not to spend extra time calculating resistance for each cell. For designs with a non-

uniform PDN, each cell’s power value can be scaled by its resistance. The influence

of resistance is further elaborated in Section 4.3.5. When resistance is considered

consistent, current becomes the only key issue in IR drop estimation. Since local

power consumption is proportional to local current, PowerNet utilizes cell power as

its input features.

For each cell c, we do not exhaust all possible features that seem to be relevant,

which make the model too complex and overfit. Instead, we select features that

prove to provide essential information for IR drop estimation. Hard macros are not

included. Below are the details of all features and the labels extracted from them:

• Power: Three types of power values are extracted, including internal power

(pi), switching power (ps), and leakage power (pl).

• Signal arrival time: The minimum and maximum signal arrival times to the

cell within a clock cycle are extracted, denoted as tmin and tmax, respectively.

• Coordinates: The cell locations after placement are extracted, including min

and max x axis (xmin, xmax), and min and max y axis (ymin, ymax).

83

• Toggle rate: It (rtog) describes how often output changes with regard to a

given clock input.

• IR drop: It (ir) measures the difference between the nominal supply voltage

and the actual voltage arrived at each cell.

All of the above features are scalar values. For these power types, internal power

pi means power dissipated by capacitance internal to each cell; switching power ps is

power dissipated by the load capacitance at the output of the cell; leakage power pl,

which is relatively small in the experiment, is consumed by unintended leakage that

does not contribute to function. Based on these basic power types, we can generate

more power information for each cell:

psca = (pi + ps) ∗ rtog + pl , pall = pi + ps + pl

Both psca and pall reflect the overall power dissipated by cells, but psca scales the

overall power by toggle rate of each cell. PowerNet learns to combine the total power

from these different sources of power dissipation.

4.2.3 Preprocessing by Decomposition

After power is extracted, the IR drop seen at each cell is not just simply proportional

to its own cell power but also depends on its neighborhood due to both spatial and

temporal current distributions. Spatially, local current is proportional to the sum of

power demand of all cells in a local region. Hence, the power of neighboring cells also

contributes to IR drop of the analyzed cell. We amortize cell power into grid tiles

by a space decomposition. This also motivates us to adopt a CNN model in Pow-

erNet, which is inherently designed for learning scalable two-dimensional patterns.

Even when considering spatial information, a region with high overall power demand

84

Algorithm 3 Preprocessing by Decomposition
Input: {pi, ps, pl, tmin, tmax, xmin, xmax, ymin, ymax, rtog} for every cell c. Design
width W , height H, cell number C and clock cycle T . Tile size l and time window t.
Preprocess:

1: w = W/l, h = H/l, N = T/t
2: Set Pi, Ps, Psca, Pall ∈ {0}w×h, {Pt[j] ∈ {0}w×h | j ∈ [1, N]}
3: for each cell c ∈ [1, C] do
4: psca = (pi + ps) ∗ rtog + pl

5: pall = pi + ps + pl

6: xn = ⌊(xmin/l)⌋, xx = ⌈(xmax/l)⌉, yn = ⌊(ymin/l)⌋, yx = ⌈(ymax/l)⌉
7: s = (xx − xn) ∗ (yx − yn)
8: Set mask M ∈ {0}w×h, M [xn : xx][yn : yx] = 1
9: Pi += M ∗ pi/s, Ps += M ∗ ps/s, Psca += M ∗ psca/s, Pall += M ∗ pall/s

10: for each int j ∈ [1, N] do
11: if tmin < j ∗ t and tmax > j ∗ t then
12: Pt[j] += M ∗ psca/s

Output: Power maps Pi, Ps, Psca, Pall ∈ Rw×h,
Time-decomposed power maps {Pt[j] ∈ Rw×h | j ∈ [1, N]}

may still not be IR drop hotspot. This case arises when cells in the region do not

switch at the same time. Such asynchronous switching disperses voltage drop into

a larger timing window. As a result, maximum dynamic IR drop, i.e. the highest-

transient voltage drop, can still be low. PowerNet measures such influence by time

decomposition during preprocessing.

Algorithm 3 shows our preprocessing method. It generates power maps based on

cell information. For each design, two types of power maps are generated. The first

type includes {Pi, Ps, Psca, Pall}. They only go through spatial decomposition and

do not carry timing information. The second type {Pt[j] ∈ Rw×h | j ∈ [1, N]} goes

through both a space decomposition and a time decomposition.

As illustrated in Figure 4.2, space decomposition (Lines 6 to 9) amortizes cell

power into any grid tiles occupied by the cell. Assume the regular squares are grid

tiles and grey rectangles are cells. P1 to P5 are cell power. For the leftmost highlighted

tile, its power equals P1 + P2 + P3 + P4/3 + P5/2. The long cell with power P4 only

85

l	𝜇𝑚l	𝜇𝑚

P1 P2

P3 P4

P5

Figure 4.2: Space decomposition for IR drop estimation.

contributes one-third of its power to that of the highlighted tile, because altogether

it overlaps with three tiles. Similarly, in line 6 to 9, each cell contributes p/s, where

s is the number of overlapping tiles.

Figure 4.3: Time decomposition for IR drop estimation.

Lines 10 to 12 perform time decomposition. Every power map Pt[j] corresponds

to one time instant j ∗ t. For each cell at j ∗ t, it contributes power to a corresponding

power map Pt[j] only when j ∗ t falls between its signal arriving time [tmin, tmax]. In

other words, only cells that can possibly switch at that instant are considered. Figure

4.3 demonstrates the mechanism. Vertical dashed lines are measured instants 1 ∗ t to

j ∗ t, and horizontal bars are the signal arrival time intervals of cells. In this example,

only cells 1 and 3 will be counted for Pt[j] and no cells are counted for Pt[1].

86

Algorithm 4 Training of PowerNet
Input: IR drop label IR ∈ Rw×h, power Pi, Ps, Psca, Pall ∈ Rw×h, time-decomposed
{Pt[j] ∈ Rw×h | j ∈ [1, N]}, input window size k = 2 ∗ kh + 1, kh means half size.

1: function getInput(j, x, y)
2: Stack features I = {Pi, Ps, Psca, Pall, Pt[j]} ∈ Rw×h×5

3: Ix,y = I[x− kh : x + kh + 1][y − kh : y + kh + 1] ∈ Rk×k×5

4: return Ix,y

5: end function
6:
7: Initiate CNN model f : Rk×k×5 → R, Loss function J
8: for epoch ∈ [1, Nepoch] do
9: for x ∈ shuffle ([1, w]), y ∈ shuffle ([1, h]) do

10: omax = 0
11: for each j ∈ [1, N] do
12: Ix,y = getInput (j, x, y)
13: oj = f(Ix,y)
14: if omax < oj then
15: omax = oj

16: *Gradient Descent f -= ∇J(omax, IR[x, y])
Output: Trained CNN model f : Rk×k×5 → R

4.2.4 PowerNet Model

Algorithm 4 shows how PowerNet F handles power maps with its CNN model f . For

each training epoch, it iterates through every tile (x, y) in training designs. For every

tile, it crops k× k input windows surrounding it from all relevant w× h power maps

by the function getInput.

As shown in Lines 11 to 12 and Figure 4.4, for all N time-decomposed power maps

{Pt[j] ∈ Rw×h | j ∈ [1, N]}, they are processed separately by the same CNN model,

together with all other common power maps Pi, Ps, Psca, Pall. Hence, the input to

the CNN is {Pi, Ps, Psca, Pall, Pt[j]} in Line 2. It results in a total of N CNN outputs

{oj | j ∈ [1, N]}. Then, the maximum output omax = Max({oj | j ∈ [1, N]}) is the

prediction result for the analyzed tile. This maximum structure highlights the only

instant that leads to the peak IR drop. It guides CNN f to learn such a pattern.

87

.	.	.	
.	.	.	

.	.	.	
.	.	.	

Decomposed	Power

o1

oj

oN

append

MaxCNN
omax

𝑃",	𝑃#,	𝑃#$%,	𝑃%&&

{𝑃(𝑗 	|	𝑗 ∈ [1, 𝑁]}

𝑃(𝑗

𝑃(𝑁

𝑃(1

Figure 4.4: PowerNet structure.

#	Features

Conv(3)	+	Pool	+	BN

K

C	=	16

Conv(3)	+	BN

C	=	16

Linear

1

Conv(3)	+	Pool	+	BN

Conv(3)	+	BN

C	=	8 C	=	8

Linear

Figure 4.5: The CNN structure in PowerNet.

Details of the CNN model f in PowerNet is shown in Figure 4.5. There are four

convolutional layers, two pooling layers and two fully connected layers. Size of con-

volution kernels is given in parentheses. The C under each tensor gives the number

of kernels defined in each convolutional layer. This CNN structure and hyperparame-

ters like N , k are tuned based on the performance during cross-validation. Choosing

larger input k, more layers or kernels turns out to reduce model generalization and

slow down the prediction, while a simpler structure underfits the data. Batch normal-

ization (BN) [188] is applied to accelerate model convergence. Adam method [189]

is used for optimization. We adopt the mean absolute error between prediction and

label (L1 loss) as loss function.

88

4.3 Evaluation

4.3.1 Experiment Setup

Table 4.2: Designs Used in Experiment
Design D1 D2 D3 D4 MD1 MD2
cells (million) 1.7 0.81 2.0 1.9 1.7 2.4
Hotspot Portion 5.6% 7.7% 3.1% 3.1% 0.65% 0.50%

In our experiment, we use six industrial designs in a sub-10nm technology node

(Table 4.2) with an IR drop hotspot threshold of 56mV , 6% of the supply voltage

(0.94V). Features and IR drop labels are extracted after clock tree synthesis (CTS).

Though tested at the CTS stage, PowerNet can also be applied to other stages. We

perform vectorless analysis and use results from a commercial IR drop analysis tool as

labels. We train the models and measure their accuracy on D1 to D4, then mitigate

the IR drop of MD1 and MD2 with the estimation from PowerNet. When testing

estimation accuracy on D1 to D4, the ML model is trained only on data from the other

three designs. It ensures that the tested design is totally unseen to the corresponding

model, which eliminates the possibility of information leakage between the testing

and training datasets.

We implemented CNN and tree-based XGBoost models similar to [46] as a com-

parison with PowerNet. Similar to [46], two types of features are extracted, named

cell features and map features. Cell features are one-dimensional and map features

are two-dimensional. For each cell c, cell features include its signal arrival time, co-

ordinates, capacitance, unscaled overall cell power pall, toggle rate rtog and cell type.

The current of each cell is not included because it is not available in our design flow.

Since voltages at different regions are all close to the supply voltage, current can be

viewed as proportional to power. Then, local maps of both unscaled overall power

89

pall and rtog around it are constructed as its map feature. Notice that compared

with PowerNet, only one type of power pall is used. For the tree-based XGBoost

model, all map features and cell features are directly used as model input. To fit

into XGBoost, the two-dimensional map features are flattened into one dimension.

For the CNN model, map features firstly go through three convolutional layers, each

with 25, 25 and 50 filters. Then, the output of convolutional layers together with

all cell features are fed into three fully connected layers, each with 512 neurons. A

0.4 dropout rate [190] is applied. Other hyper-parameters like optimizer or learning

rate of baselines are carefully tuned for their best performance. They are trained and

tested on the same designs as PowerNet for model comparison.

All algorithms are implemented in Python. CNN-related models are built on

PyTorch 1.0 [191]. For PowerNet, we set tile size l = 1 µm, number of measured

instants N = 50, and an input window size k = 31 in the experiment. Both training

and testing are implemented on an 8-core CPU machine with 100 GB memory and

one NVIDIA Tesla V100 GPU.

4.3.2 Accuracy and Speed Comparison

Figures 4.6 shows the performance on different designs when measured in 1× 1 tiles.

PowerNet achieves AUC higher than 0.9 for all designs. On average, the AUC for

CNN, XGBoost and PowerNet are around 0.83, 0.84 and 0.93. Sometimes hotspots

shown in 5l×5l tile already provide sufficient information. In this case, measurements

can be performed by tessellating both predictions and labels with a larger tile in

5l × 5l. In this case IR ∈ R w
5 × h

5 . For 5 × 5 tiles, in our experiment, their AUC are

around 0.86, 0.86 and 0.96. PowerNet’s improvement in accuracy is 9%.

Figure 4.7 shows visualizations of both ground truth and the prediction results

90

Figure 4.6: Accuracy comparison by ROC curve. Measured in 1×1 tiles granularity.

D4_Est D4_IRD3_Est D3_IR

D2_Est D2_IR

D1_Est

D1_IR D4_Est D4_IRD3_Est D3_IR

D2_Est D2_IR

D1_Est

D1_IR

Figure 4.7: Visualization of IR drop estimation and ground truth.

from PowerNet. Only subsets of each design containing IR drop hotspot regions are

displayed. Red color indicates higher values while blue corresponds to lower values

and white means zero values. The white blocks in ground truth are usually the

regions without any cells placed. The comparison shows that PowerNet can capture

most IR drop hotspots.

Besides ROC curves, which reflect how well models recognize hotspots, we also

91

Figure 4.8: MSE and Kendall ranking coefficient on tiles by IR drop.

measured how models fit and rank tiles according to their IR drop values in Figure 4.8.

The metrics are mean squared error (MSE) and Kendall rank coefficient [192] τ ∈

[−1, 1] between the estimation and ground-truth IR values for all tiles. A higher

value of τ implies a more accurate ranking of tiles based on IR drop. The MSE

and rank coefficients of PowerNet are consistently better than those of other ML

methods. Note that a high MSE may be largely contributed by a consistent bias for

all inferenced tiles, which means the model always gives a higher or lower prediction

for all tiles in one design. In this case, it can still identify those higher-IR tiles or

most serious hotspots if it ranks the IR value of tiles accurately.

The runtimes of the commercial IR drop analysis tool and ML inferences are

measured on a design with around two million cells. Results are shown in Table 4.3.

PowerNet achieves a 30× speedup over the commercial tool. For a fair comparison,

the 2.5 hour for the commercial tool only includes analysis time. Its overall runtime

is more than 4 hours. Other ML methods are even faster than PowerNet, but are

less accurate. PowerNet is slower than the baseline ML methods because its CNN f

generates N outputs oj for each tile.

92

Table 4.3: Inference Time Comparison.

Method Commercial Tool PowerNet CNN XGBoost
Time 2.5 hour 5 min 1.5 min 1.5 min

4.3.3 IR Drop Mitigation in Design Flow

We also integrated PowerNet into a design flow to mitigate the IR drop of MD1 and

MD2. Based on PowerNet’s estimation, we enhanced the local power grid (PG) in

hotspot regions. Notice that the hotspot portions of MD1 and MD2 are much lower

than D1 to D4 in the training set. This is because MD1 and MD2 were already close

to tapeout and most serious IR drop problems were already fixed, making further IR

drop mitigation even more challenging.

Table 4.4: Performance on IR Drop Mitigation

Design MD1 Violated # All Hotspot
Cell Hotspots IR (mV) IR (mV)

Before Mitigate 22185 5092 26.4 66.6
After Mitigate 17052 3778 26.0 62.3
Improvement 23% 26% 0.4 4.3

Design MD2 Violated # All Hotspot
Cell Hotspots IR (mV) IR (mV)

Before Mitigate 31097 3627 31.4 62.2
After Mitigate 23941 2489 31.0 59.6
Improvement 23% 31% 0.4 2.6

Table 4.4 shows the IR drop mitigation result. We only add very thin PG straps

(0.04 µm) at the PowerNet-estimated hotspots. This is the simplest and most basic

fixing method. We choose such conservative fixing method to prevent occupying too

many routing resources. “All IR” and “Hotspot IR” mean the averaged IR drop

values among all tiles and all hotspots. After PG enhancement, the averaged IR

drop for all tiles improves only 0.4 mV, which indicates that the modification on PG

is very small. In comparison, when measured only on hotspots, IR drop improves

93

4.3 mV and 2.6 mV. It shows that PG enhancement is effective at the right places.

With such a limited amount of modification in PG, 23% of IR drop violation cells or

around 30% of hotspots are mitigated.

4.3.4 Why PowerNet Performs Better

We highlight four weaknesses of previous CNN and XGBoost baseline models that

prevent them from outperforming PowerNet. First, unnecessary features can confuse

ML models. If cell coordinates and time information are used as features but do

not directly correlate with IR drop, a model can overfit to designs in the training

set. Other features such as cell capacitance can be redundant when power is already

provided. To verify this, we implemented an XGBoost model without cell coordi-

nates or time information, and its averaged 1 × 1 tiles AUC improved from 0.84 to

0.865. When we further removed cell capacitance from features, the averaged AUC

remained at 0.865. Second, different feature formats make the model inefficient. No-

tice that cell features are one dimensional but map features are two dimensional. For

XGBoost, map features must be converted into one dimension, which loses spatial

information. For CNN, cell features must be provided through a fully connected

layer. In such an unusual CNN structure, cell features tend to be overwhelmed by

more than 10,000 outputs from the 50 channels in the last convolutional layer. In

comparison, PowerNet only uses two-dimensional features. Third, power information

may not be fully utilized. When only overall power Pall is chosen as a feature, the

rich information from other power types Pi, Ps, Psca is lost. Advanced ML models like

CNN are complex enough to learn patterns from different power types. Fourth, time

information is not well incorporated or captured. Baselines do not have features like

the time-decomposed power maps in PowerNet to measure the worst transient local

IR drop.

94

53 50250 80

Figure 4.9: Effect of number of instants N on performance.

Figure 4.9 isolates the contribution of including both time decomposition and

multiple power types in variations of PowerNet. Average inference AUC accuracy

over D1 to D4 is plotted on the Y-axis and the X-axis shows the number of sampled

time instants. A higher N means sampling more time instants and generating more

corresponding power maps Pt[j] within a given clock period T . For any region, more

power maps better approximate its actual transient power. The “N=0” indicates

no time-decomposed power is adopted at all. As expected, the time-decomposed

power maps improve accuracy by capturing transient IR drop. When N > 50, the

improvement in accuracy by increasing N diminishes. Baseline models also differ

from PowerNet by only using maps of features (Pall and rtog) instead of {Pi, Ps, Psca,

Pall}. This variation is indicated as red and green marks in Figure 4.9, where time-

decomposed power maps Pt[j] are kept the same for both variations. In addition to

the 2.5% accuracy improvement from time decomposition, adopting multiple types

of power improves accuracy by more than 2%.

Figures 4.10 and 4.11 show how the combination of space decomposition and time

decomposition helps to explore the potential correlation between power maps and IR

drop. It presents the visualization of IR, different power maps and maximum instant

95

!"[27]

'(

!"[20]

!*+, !,--

'(

./,0 ∈ {.34 … .53} '(./,0 ∈ {.57 … .58}
Figure 4.10: IR drop, power maps and maximum instant distribution of two regions
from D1. Instants number N = 50.

!"#$[40] #$[20]

#*+, #,--!"

./,0 ∈ {.34 … .56} ./,0 ∈ {.84 … .96}!"

Figure 4.11: IR drop, power maps and maximum instant distribution of three
regions from D2. Instants number N = 50.

distribution for the local regions from both D1 and D2. Maximum instant refers to

the time instant j selected by maximum structure (oj = omax). The areas of interest

are highlighted by black squares. They all contain strong IR drop hotspots. For both

D1 and D2, it’s difficult to observe much correlation in hotspots between their {Pall,

Psca} and IR. That indicates training models without any time-decomposed power

maps Pt[j] can be difficult.

However, the correlation becomes much more clear when power maps Pt[j] are

96

provided. In D2, Pt[40] and IR share many common hotspots patterns in highlighted

areas. In this case, o40 = f({Pi, Ps Psca, Pall, Pt[40]}) is likely to accurately predict

these common hotspot regions. However, another power map, Pt[20], does not share

as much hotspot patterns with IR. Its output o20 may be less accurate. Consider-

ing that Pt[20] is much weaker than Pt[40] for most tiles in hotspot regions, we can

reasonably assume o40 > o20, or even omax = o40. This is verified by the maximum

instant distribution. For every tile, we checked which instant is selected by the maxi-

mum structure. For almost all tiles at hotspot regions in D2, their omax ∈ {o35...o40}.

Pt[40] indeed contributes more information than Pt[20]. It is the contribution of

the more accurate Pt[40] instead of Pt[20] at these hotspot regions that finally gets

captured by the maximum structure.

Similarly, for D1, the highlighted region on the right correlates well with Pt[20],

and region on the left correlates with Pt[27]. Maximum instant distribution shows

that omax ∈ {o18...o21} for most grids in the right region and omax ∈ {o24...o27} for

most tiles in the left region. Then the maximum structure will take ot[20] for grids on

the right and ot[27] for tiles on the left. In this way, the hotspots caused by transient

power at different instants can all be captured.

Table 4.5: Inference Accuracy in ROC AUC (0.01*)

ML Methods D1 D2 D3 D4 Ave
PowerNet (1× 1 tiles) 92.1 95.4 91.4 92.6 92.9
PRNet (1× 1 tiles) 92.4 95.5 90.5 93.6 93.0
PowerNet (5× 5 tiles) 95.4 96.7 94.8 97.0 96.0
PRNet (5× 5 tiles) 95.7 96.8 93.2 97.5 95.8

97

𝑃"##𝐼𝑅
Figure 4.12: Power and IR drop of vector-based estimation.

4.3.5 Results Considering Other Factors

We measured the distribution of resistance in our benchmark design. Take D1 for

example, the standard deviation in resistance across the whole design is only 2.8Ω,

0.6% of its average resistance. For such a uniform distribution, we chose not to

spend extra time calculating per-cell resistance. However, we did implement another

variation of PowerNet where each cell’s power is scaled with resistance, denoted as

“PRNet” in Table 4.5. “Ave” means accuracy averaged over all four designs. On

average, the resistance-scaled PowerNet shows similar accuracy to the original one.

This demonstrates that using per-cell resistance as a feature is not necessary for

designs with uniform PDNs. By scaling power with resistance, “PRNet” can be

further applied to designs with non-uniform PDNs.

We also measured PowerNet’s performance on vector-based IR drop. The Pow-

erNet architecture remains exactly the same, but cell power and IR drop are now

collected when the commercial tool simulates IR drop with given simulation pat-

terns. Figure 4.12 shows the vector-based power map Pall and label IR. Unlike the

vectorless case in Figure 4.10 or 4.11, the power of a portion of activated cells is

significantly higher than the others. As we mentioned, the correlation between power

and IR drop value turns out to be very strong, which largely reduced the estimation

difficulty.

We perform vector-based estimation on four other industrial designs VD1 to VD4.

98

All models and procedures are the same as the vectorless case, except using cell power

and IR drop from vector-based simulation. Table 4.6 shows vector-based estimation

accuracy. As expected, all methods provide better estimation than vectorless sce-

nario. But PowerNet still gives the best accuracy for every single design. The 1% to

2% improvement should not be underestimated when accuracy is already very high.

To a certain extent, boosting accuracy from 98% to 99% means reducing half of the

errors.

Table 4.6: Vector-Based Inference in ROC AUC (0.01*)

ML Methods 1× 1 tiles 5× 5 tiles
VD1 VD2 VD3 VD4 VD1 VD2 VD3 VD4

XGBoost 97 98 98 96 99 97 98 97
CNN 96 93 95 95 98 92 97 96
PowerNet 98 98 99 97 100 98 100 98

4.4 Summary

In this chapter, we present a CNN-based dynamic IR drop estimator. Unlike existing

ML works, our model is general and transferable to new designs. We validate the

high accuracy of our approach on multiple industrial designs. It takes an order of

magnitude less estimation time than commercial tools and significantly outperforms

state-of-the-art ML methods in both vector-based and vectorless IR drop scenarios.

The IR drop mitigation tool guided by our model reduces IR drop by more than 20%

with very limited PG modification.

99

Chapter 5

Early Routability Modeling on Layout

5.1 Background

Design rule checking (DRC) verifies whether a specific layout meets the constraints

imposed by the technology node for manufacturing. DRC violations can only be

precisely measured after routing finishes, when the room for fixing DRC violations

(DRVs) has become very limited. Besides mitigating DRVs manually, one option is

engineering changing order (ECO), which tries to complete unrouted and partially

routed nets while maintaining existing wires as much as possible. Another alternative

is to delete part of existing wires and reroute them. But it is difficult for these minor

post-routing modifications to fix all violations for layouts with poor routability. As

a result, designers have to trace back to earlier stages, change their layout solution

accordingly, and start a new design iteration. It can take many iterations to reach a

DRV-clean layout, leading to a very long turnaround time.

To improve layout routability, a much better solution is to avoid DRVs with

preventive measures in a proactive manner. This heavily relies on early routability

prediction, which is difficult since the behavior of placement and routing engines

in modern EDA tools is highly complex and rather unpredictable. One possible

solution is to develop some fast trial routing algorithms, but it is hard to achieve

ideal accuracy and speed at the same time. Another promising research direction

nowadays is to learn from prior data by developing data-driven routability estimators

with machine learning (ML) algorithms. A main strength of ML methods is the

100

automatic extraction of complex correlations between separated design steps based

on prior knowledge. Once the ML model has been trained, it can produce routability

predictions in a very short time, without constructing solutions from scratch.

For routability prediction, there are different prediction granularities according

to application scenarios. Some coarse-grained predictions only evaluate the overall

routability of the whole layout. Such routability is usually measured with the total

number of DRC violations, also named DRV count (#DRV). Another similar met-

ric is the total number of nets with DRC violations, also named violated net count.

Such a coarse-grained prediction evaluates the whole layout and enables the identi-

fication of more routable layout solutions among many candidates. In comparison,

fine-grained routability prediction tries to pinpoint the detailed locations with DRC

violations. This supports modifying the layout at early stages to proactively prevent

DRC violations.

Data-driven routability estimators are initially constructed with traditional ML

models, including support vector machine (SVM)-based estimator [52, 51], multivari-

ate adaptive regression spline (MARS)-based estimator [52, 53], and artificial neural

network (ANN)-based estimator [193, 194]. These ML models typically only process

a limited number of input features. For fine-grained routability prediction on DRV

locations, traditional ML methods are applied to make decisions based on a small

cropped region with limited features from the layout. Such a small input region

strongly limits the receptive field (the field visible to the model) of these traditional

ML methods. As a result, they cannot capture the global information from a larger

region of the layout. For example, the nets spanning a large region can largely affect

the routability, thus should be captured by the model.

Another important global impact is from macros in mixed-sized designs. This is

illustrated in Figure 5.1, showing the distribution of DRC hotspots on a benchmark

101

Macros DRC	hotspot

Figure 5.1: Macros and DRC hotspot distribution. All macros are red rectangles.
Orange circles indicate regions with high density of DRC hotspots.

circuit with macros. The orange circles in Figure 5.1 indicate a strong tendency for

hotspots to aggregate at the small gap between neighboring macros. The remaining

small number of hotspots, indicated by blue dashed circles, also locate sparsely around

the edges of some macros. To detect DRC hotspots more precisely, such distribution

pattern has to be captured, which requires global information about neighboring

macros. In summary, a layout with macros is much less homogeneous than that

without macros. Such homogeneity implies resemblance among different regions of a

chip layout. Thus mixed-size designs with macros must have a much larger region,

often entire layout, as a single training sample, in order for the routability estimator

to capture the global view.

5.2 Methodology

5.2.1 Problem Formulation

We aim at solving two problems: 1. Early forecast of overall routability; 2. The

prediction of DRC hotspot locations. In problem 1, the routability of a placement is

102

evaluated by its DRV count denoted as #DRV. The task is to fit a function f#DRV

that estimates ground-truth DRV count of a placement. In applications, f#DRV is

employed to select a few placements with relatively low #DRV from many candidate

placement solutions. In problem 2, DRC hotspots mean the specific locations with

high density of DRVs. The task is to find a function fhotspot that detects most DRC

hotspots in a placement. RouteNet solves problem 1 without performing any routing

while its solution to problem 2 uses global routing as a feature. Since problem 2 is

performed on a few relatively routable designs, its runtime constraint is less tight

than problem 1. In both tasks, the informative features about placements are input

and DRV information is the prediction target. The ground-truth DRV information

is also referred to as label.

To evaluate routability in terms of design rule violations, a layout (or placement

solution) is tessellated into an array of grid cells, each of which is an l × l square.

Then, a rectangular layout with size W ×H is divided into w × h grid cells, where

w = W/l and h = H/l. In our experiments, l is set to be the height of standard cells.

After design rule checking, the location and area of all DRC violations are re-

ported. The overall DRV count for the ith placement solution is recorded as yi ∈ N.

The density of DRV is calculated at a grid-level granularity. The DRV density in

each grid cell is a summation of contributions from all violations covering this grid

cell. As a result, for the ith placement with w × h grid cells, its DRV density is a

two-dimensional matrix Yi ∈ Rw×h. When the density of violations in a grid cell is

higher than a threshold ϵ, this grid cell is labeled as a DRC hotspot. Existence of

DRC hotspots is a Boolean matrix Vi ∈ {0, 1}w×h, where Vimn = 1(Yimn > ϵ) for grid

cell (m, n).

Similar to DRV density, densities of different informative features are calculated

as the input of RouteNet. The jth feature of ith placement is Xij ∈ Rw×h. If F

103

F=4	(#Features)

h=800

w⨯h⨯F Input	Tensor

(1) (2)

(3) (4)

F=4	(#Features)

h=800

w⨯h⨯F Input	Tensor

(1) (2)

(3) (4)

F=4	(#Features)

h=800

w⨯h⨯F Input	Tensor

(1) (2)

(3) (4)
(1) (2) (3) (4)

Figure 5.2: A 3D input tensor constructed by stacking 2D features, including (1)
pin density, (2) macro region, (3) long-range RUDY, (4) RUDY pins.

different features are generated, the input for the ith placement is Xi ∈ Rw×h×F .

Such Xi is constructed by stacking all two-dimensional features {Xij | j ∈ [1, F]}

together in a third dimension as shown in Figure 5.2. Inputs for the two problems

are not exactly the same. For example, since #DRV prediction starts early, global

routing information is not included its input X#DRV
i . The two problems are formally

stated as follows.

Problem 1 (#DRV prediction). Find an estimator f ∗
#DRV of DRV count in a

placement:
f#DRV : X

(#DRV)
i ∈ Rw×h×F1 → yi ∈ N

f ∗
#DRV = arg min

f
Loss(f(X(#DRV)

i), yi)

Problem 2 (Hotspot prediction). Find a detector f ∗
hotspot of hotspots. It reports

locations of all DRC hotspots in a placement:

fhotspot : X
(hotspot)
i ∈ Rw×h×F2 → Vi ∈ {0, 1}w×h

f ∗
hotspot = arg min

f
Loss(f(X(hotspot)

i), Vi)

104

5.2.2 Feature Extraction

Figure 5.3 shows the input features extracted at different layout stages. One impor-

tant feature we choose adopt is RUDY (Rectangular Uniform wire DensitY). It is

employed as an input feature to our RouteNet as it partially correlates with routing

congestion, is fast to obtain and can be directly represented as images that dovetail

with RouteNet.

Given a cell placement, RUDY of a net is obtained by uniformly spreading the

wire volume of this net into its bounding box. For the kth net with bounding box

{xk
min, xk

max, yk
min, yk

max}, its RUDY at location (x, y) is defined as

wk = xk
max − xk

min, hk = yk
max − yk

min

ck =

1 x ∈ [xk

min, xk
max] , y ∈ [yk

min, yk
max]

0 otherwise

RUDY k(x, y) ∝ ck wk + hk

wk × hk

RUDYs of all K nets are calculated and superimposed on top of each other to

provide a rough estimation of routing congestion as

RUDY (x, y) =
K∑

k=1
RUDY k(x, y)

Here is a detailed description of all features in Figure 5.3:

• Macro: After floorplanning, the locations of all macros are fixed. Several

features about macro are extracted: 1) The region occupied by macros. 2) The

density distribution of macro pins in each metal layer.

• Global cell & global RUDY: After global placement, cell locations become

available and then RUDY is calculated. Features calculated at this stage are

105

Global	Cell
Global	RUDY

Detailed	Placement

Global	Placement

Floorplanning

Global	Routing

Detailed	Routing
Verification

Macro

Cell
RUDY

GR	Congestion

DRC	Violation

Physical	Design	Flow Features Estimation

#DRV

Detect	Hotspot

TR	CongestionTrial	Routing

Figure 5.3: Feature extraction in physical design flow.

denoted by global cell and global RUDY. After detailed placement, the informa-

tion from global cell and global RUDY are recalculated by refined cell locations,

denoted as cell and RUDY.

• Cell: For both global cell and cell, two features are extracted: 1) The density

distribution of cells. 2) The density distribution of cell pins.

• RUDY: For both global RUDY and RUDY, three features are calculated: 1)

Long-range RUDY. 2) Short-range RUDY. 3) RUDY pins.

The original RUDY feature is decomposed into long-range and short-range

RUDY. Long-range RUDY is from nets covering a distance longer than a thresh-

old. Similarly, short-range RUDY is for nets shorter than this threshold. Such

decomposition is due to a stronger correlation between long-range RUDY and

DRV than the shorter one. To further capture such effect, RouteNet uses

another feature named RUDY pins. It is similar to pin density, while the con-

tribution of each pin equals the long-range RUDY of the net it connects to.

106

• Congestion: Two types of congestion are generated by placement and routing

tool. The trial global routing, also denoted as trial routing, can be performed

at the end of detailed placement. It produces an estimation of routing conges-

tion, named TR congestion. Compared with it, the full-fledged global routing

generates a more detailed congestion map, named GR congestion.

• DRC violation: This is the prediction target and the label for training

RouteNet. Its density is calculated in the same way as all other features. Most

DRC violations only occupy very small regions.

For the ith placement, all above F features Xij ∈ Rw×h are calculated indepen-

dently and then combined together as one input tensor Xi ∈ Rw×h×F .

5.2.3 #DRV Prediction

As an early routability forecast, the #DRV prediction by RouteNet is performed

before detailed placement starts. Details are shown in Algorithm 5. In order to

convert #DRV prediction to an image classification task, both input features and

prediction target are preprocessed.

The range of #DRV is broad for different placements of the same design. At

this early stage, two placements with a slight difference in #DRV may not have

substantially different patterns in their features, especially when routing information

is absent. As a result, RouteNet can wrongly capture such minor difference if the

exact #DRV is used as label. To avoid this, we group placements into four #DRV

levels, referred to as c0, c1, c2, c3, respectively, where c0 corresponds to the class of

placements with the least #DRV and c3 corresponds to class with the most #DRV.

For all CNN models pretrained on dataset ImageNet, the dimension of input

image Xi is fixed to be 224× 224× 3. This means the input images have 224× 224

107

Algorithm 5 Algorithm of RouteNet for #DRV Prediction
Input: Number of training placements: N ; Features: {Xi ∈ Rw×h×3 | i ∈ [1, N]};

Targets: {yi ∈ R | i ∈ [1, N]}.
Preprocess:

1: for each int i ∈ [1, N] do
2: Resize Xi ∈ Rw×h×3 into X#DRV

i ∈ R224×224×3

3: Find 25%, 50%, 75% quantizes of yi: q1, q2, q3
4: for each int i ∈ [1, N] do
5: Ci ← 0
6: for each int t ∈ [1, 3] do
7: if yi > qt then
8: Ci ← t, break
9: Form dataset {(X#DRV

i , Ci)|i ∈ [1, N]}
10: Training set {(X#DRV

i , Ci) | Ci = 0 or Ci = 3}
Training:

1: Get pretrained ResNet18 fRes : R224×224×3 → R1000

2: Replace output layer, s.t. f#DRV : R224×224×3 → R
3: Choose MSE as loss function, SGD for optimization
4: Train f#DRV with preprocessed dataset for ∼30 epoches

Output: f#DRV estimating #DRV level

pixels and 3 channels (RGB). To utilize such pretrained model, the original input

tensor Xi ∈ Rw×h×F needs to be resized into X#DRV
i ∈ R224×224×3. To accomplish

this, three features (macro, global long-range RUDY, global RUDY pins) are firstly

selected to construct 3-channel input tensor in Rw×h×3. We choose them because

they intuitively contain more global and general information than feature like pin

density. After that, the 3-channel input is resized into R224×224×3 by interpolation.

Figure 5.4 shows visualizations of preprocessed input, (a)(b) and (c)(d) are different

placements with different levels of #DRV for two benchmark circuits.

After the preprocessing step, transfer learning is applied to a pretrained 18-layer

ResNet. The output layer is replaced to produce a single score. During the fine-tuning

process, the weights in every layer are changeable. Mean Square Error (MSE) is used

as loss function and Stochastic Gradient Descent (SGD) is used for optimization.

108

(a) matrix_mult_b:	c0 (b) matrix_mult_b:	c3

(c) edit_dist:	c0 (d) edit_dist:	c3

(a) matrix_mult_b:	c0 (b) matrix_mult_b:	c3

(c) edit_dist:	c0 (d) edit_dist:	c3

Figure 5.4: Input features for #DRV prediction. Red: macro region; Green: global
long-range RUDY; Blue: global RUDY pins.

The dataset is randomly split into the training set and the validation set. For the

training set, all data in classes c1 and c2 are removed, only classes c0 and c3 are kept.

That is, only placements in highest #DRV or lowest #DRV levels will be used for

training. Such removal proves to give better results than keeping all four classes.

5.2.4 DRC Hotspot Detection

Different from #DRV prediction, hotspot detection is more like an object detection

task. The output can no longer be a simple score value or vector. Instead, we make

it a two-dimensional density map, directly reflecting the existence of all hotspots in

a placement. In this case, the size of output equals circuit size fhotspot(Xi) ∈ Rw×h.

FCN enables such function format and accepts input with different w, h. As a result,

different designs can be used for training and inference on exactly the same model.

Figure 5.5 shows the FCN architecture. It accepts input tensor with size Rw×h×F

and produces a two-dimensional Rw×h output. In this structure, a shortcut directly

connects the 2nd layer to the 7th layer, providing a shorter path from input to output.

Two POOL layers downsize feature maps from h × w to h
4 ×

w
4 in the front, then

two TRANS layers upsample the size back to h × w. Strides of kernels in CONV

and TRANS layers are set to 1 and 2, respectively. The kernel sizes are indicated

109

F 32 64 32 16

Conv(9) Pool

Conv(7)
Trans(9)

32

Conv(5)

16

Conv(3)

4

Trans(5)

1

Conv(9)
Conv(7) Pool

Shortcut

Figure 5.5: FCN architecture for hotspot detection.

by the number in parentheses, ranging from 3 to 9 grid cells. Such pooling structure

and large kernel size substantially enlarge the regions receptive to each grid cell in

output. Compared with previous methods capturing features within a small region,

more neighboring or global information is available for FCN and the result function

fhotspot will be more complex.

During the training process, the DRV density Yi is used as label. DRV density

is clipped by a threshold c in Equation (5.1) to reduce the dominating effect of a

few grid cells with very high DRV density. Batch normalization [188] is applied to

accelerate convergence in training. The Adam method [189] is used for optimization.

The loss function is defined by a summation of pixel-wise Euclidean distance and L2

regularization in Equation (5.2),

Y clip
imn

= min(Yimn , c) (5.1)

Loss =
N∑

i=1

w∑
m=1

h∑
n=1
||fhotspot(Ximn)− Y clip

imn
||2 + λ||W ||2 (5.2)

where λ is regularization coefficient and W denotes all weights in FCN. By adding

such L2 norm into loss function, all weights are forced to decay towards zero. As a

result, it reduces unnecessary weights and avoids overfitting.

110

5.3 Evaluation

5.3.1 Experiment Setup

Table 5.1: Circuit Designs Used in Experiment

Circuit Name #Macros #Cells #Nets Width (µm) #Placements
des_perf 4 108288 110283 900 600
edit_dist 6 127413 131134 800 300
fft 6 30625 32088 800 300
matrix_mult_a 5 149650 154284 1500 300
matrix_mult_b 7 146435 151614 1500 300

Five designs from ISPD 2015 benchmarks [195] are used in the experiment. Ta-

ble 5.1 shows their basic information. The shapes of all five designs are squares,

whose sizes range from 800 µm to 1500 µm. Please note that the square shape of

designs is not required. RouteNet accepts rectangular circuit design in any size. For

each circuit design in our experiment, at least 300 different floorplans are generated

by placing macros at different locations with the “obstacle-aware macro placement”

algorithm [196]. Though placed differently, macros all tend to locate near the chip

boundary in order to leave plenty of space at chip center region, where routing demand

tends to be high. Then, each floorplan is placed and routed by Cadence Encounter,

a previous version of Cadence Innovus [38]. The DRC violation information for each

layout is recorded as label.

Both #DRV prediction and hotspot detection methods of RouteNet are tested on

all five designs. When each design is tested, the machine learning model is trained

only on data from the other four designs. This ensures that the tested design is totally

unseen to the corresponding model, which eliminates the possibility of information

leak from the testing dataset to the training dataset.

All algorithms are implemented in Python. CNN is implemented based on Py-

111

Torch [191]. As references for comparison, SVM and Logistic Regression (LR)-based

methods are implemented based on scikit-learn [197]. Training and inference of all

methods are performed on a machine with 2.40 GHz CPU and one NVIDIA GTX

1080 graphics card.

5.3.2 Overall #DRV Prediction

For comparison, the previous method [52] is directly transferred to our benchmark

as a reference. In this method, only the maximum value (across all grid cells) and

the coefficients of variation of features are extracted for each placement. The same

preprocessing is performed. Both LR and SVM with Radial Basis Function kernel are

tested as classifiers. Compared with RouteNet, the input of this method XRef
i ∈ R2×F

contains much less feature information.

The goal of #DRV prediction is to select a small set of placements with low

#DRV from many candidates. Table 5.2 shows the performance in #DRV prediction.

The “c0/c1+c2+c3” accuracy checks the binary classification accuracy by treating all

placements in c1, c2, c3 as one class and c0 as the other. As indicated in Algorithm

5, c0 means the lowest #DRV level. This accuracy evaluates how different methods

recognize placements with the lowest #DRV level. The result shows that RouteNet

has similar accuracy as trial routing (TR) and global routing (GR).

Table 5.2: #DRV Prediction Comparison

Circuit Name
c0/c1+c2+c3 accuracy (%) Best rank in top 10
SVM LR TR GR Route

Net SVM LR TR GR Route
Net

des_perf 52 69 80 77 80 87th 15th 2nd 1st 2nd

edit_dist 64 61 78 77 76 17th 17th 3rd 3rd 2nd

fft 59 56 73 70 75 6th 6th 2nd 33rd 1st

matrix_mult_a 68 62 78 74 72 30th 5th 1st 1st 5th

matrix_mult_b 58 58 76 73 76 22nd 93rd 4th 1st 4th

Average 60 61 77 74 76 32nd 27th 2nd 8th 3rd

112

Figure 5.6: Trade-off between error with actually 1st-ranked placement and infer-
ence time in #DRV prediction.

We are also interested in the quality of placements selected by each method.

To evaluate this, we first rank all placements from same design in ascending order

of #DRV. Then for each method, the top ten placements predicted to have least

#DRV are selected. Among such ten placements, the rank of the placements with

least ground truth #DRV is reported as “Best rank in top 10” in Table 5.2. On

average, RouteNet finds the 3rd best placement from hundreds of candidates within

10 selections. Again, it shows comparable performance with trial routing and global

routing, and is much better than both LR and SVM.

When Table 5.2 only shows the rank of the best placement in 10 selections, Figure

5.6 further indicates the gap between such “best in ten” and the actually 1st-ranked

placement with least #DRV. Such gap is denoted as error in #DRV value. Each point

represents the result of one design. Besides accuracy, runtime is another essential

factor to consider. Figure 5.6 also shows the inference time for each method. Inference

time is the overall time taken to predict one placement, starting at the end of global

placement. In practice, RouteNet is trained in advance with other designs, so the

training process costs no extra time during inference. But for reference, we still

113

provide “RouteNet_w_train”, which includes the training time of RouteNet. In

Figure 5.6, the results for RouteNet aggregate at the lower left corner, which means

low inference time and high accuracy are achieved at the same time. By contrast,

trial routing and global routing take substantially longer runtime to reach similar

accuracy. LR and SVM, however, cannot guarantee low error though they are quite

fast. Our RouteNet is the only fast and accurate method in #DRV prediction. Even

with training time included, the average inference time for one placement is still less

than one second.

5.3.3 DRC Hotspot Detection

For comparison, alternative methods similar to the previous work [51] are imple-

mented. Features from each grid cell itself are extracted as its input, then grid cells

are classified independently by either LR or SVM.

Table 5.3 shows the accuracy in hotspot detection. TPR (True Positive Rate)

and FPR (False Positive Rate) are used for evaluation. FPR describes the rate of

grid cells being wrongly classified as hotspots. TPR, also named recall or sensitivity,

describes the percentage of detected hotspots over all existing hotspots. By adjusting

the decision threshold of prediction result, FPR and TPR change proportionally. For

a fair comparison, we compare the TPR of all methods under the same FPR. The

Table 5.3: Hotspot Detection Comparison

Circuit Name FPR
(%)

TPR (%)
TR GR LR SVM RouteNet

des_perf 0.54 17 56 54 42 74
edit_dist 1.00 25 36 38 28 64
fft 0.30 21 45 54 31 71
matrix_mult_a 0.21 13 30 34 12 49
matrix_mult_b 0.24 13 37 41 20 53
Average 0.46 18 41 44 27 62

114

Ground Truth RouteNetLR

Figure 5.7: Visualization of hotspot detection results.

same decision threshold is used for all designs, which results in slightly different FPR

among designs, but all under 1%.

As Table 5.3 shows, global routing is a much better hotspot detector than trial

routing, although both methods have similar accuracy in overall #DRV prediction.

LR demonstrates better accuracy than global routing. SVM, however, is inferior

to global routing even with our best effort on hyperparameter tuning. RouteNet is

superior to all methods and improves global routing accuracy by 50%. Figure 5.7

provides an illustration of hotspot detection results. The result of RouteNet is closer

to the ground truth. Orange circles indicate grid cells wrongly recognized as hotspots

with high confidence by LR. These grid cells typically locate at the edges of macros.

LR exaggerates the influence of macro on them.

5.3.4 Ablation Studies

To further explore the hotspot detection problem, some variations of both FCN and

alternative methods are evaluated. Results are shown in the Table 5.4. These variant

methods are briefly described as follows.

• Infer seen: Training and inference on different placements of the same circuit.

115

Table 5.4: Hotspot Detection for FCN Variations and Other Alternative Methods

Circuit Name FPR
(%)

TPR (%)
Inferseen

Less
data

No
short

Lessconv
No

pool
Route

Net LR 5×5
LR

9×9
LR SVM 5×5

SVM
9×9
SVM

des_perf 0.54 77 71 71 73 68 74 54 58 58 42 47 29
edit_dist 1.00 68 61 63 62 55 64 38 39 38 28 29 20
fft 0.30 74 70 68 68 69 71 54 56 54 31 41 23
matrix_mult_a 0.21 51 46 45 45 45 49 34 36 35 12 32 9
matrix_mult_b 0.24 58 50 51 50 50 53 41 44 42 20 39 16
Average 0.46 66 60 60 60 57 62 44 47 45 27 38 19

• Less data: Trained on less data. Only placements from two circuits are used

for training instead of four.

• No short: The shortcut structure is removed from current FCN architecture.

• Less conv: Three convolutional layers (with channels 64, 32, 32) in the middle

of shortcut are removed, resulting in a shallower network.

• No pool: Based on the shallow network above, the POOL layers are removed.

TRANS layers are replaced by normal CONV layers.

• 5× 5 LR: Using window size of 5× 5 grid cells to capture neighboring features

of each grid cell in LR. Similarly, 9× 9 LR means 9× 9 cells of window size.

• 5×5 SVM: The same as the 5×5 LR above in feature extraction, but for SVM.

The effect of training and inference on different designs is explored by “Infer

seen” and “Less data” in Table 5.4. Difference in designs used for training and

inference can be vital to the transferability of an algorithm. That is, if the distribution

of DRC hotspots varies greatly among different designs, the pattern learned from

training data may not be applicable to new “unseen” designs. Compared with original

RouteNet, the better performance for “Infer seen” in Table 5.4 implies the existence

116

of certain pattern unique to each design. But lower accuracy for “Less data” indicates

that more training data from different designs can bridge such gap.

The FCN structure in RouteNet has both shallow and deep paths connecting

input and output layers. In order to check the effect of such two-path structure, two

variations “No short” and “Less conv” are tested. “No short” removes the shorter

path and “Less conv” removes the longer path. As expected, Table 5.4 shows accuracy

degradation for both variations. More interestingly, by removing POOL and TRANS

structures in “No pool”, which leads to a large reduction in receptive region, overall

accuracy further degrades. It supports our claim on the importance of receptive

region and the global information in hotspot detection.

Table 5.4 also shows how a larger receptive region affects other machine learning

methods in hotspot detection. We tested several larger window sizes for feature

extraction as 3× 3, 5× 5, 7× 7, 9× 9 grid cells. The 5× 5 window size turns out to

perform the best. Again, the large receptive region gives better results, but 5× 5 is

the upper limit in our experiment. An even larger window blurs the local information

of the target grid cell. Compared with these alternative methods, RouteNet provides

a better solution to obtain the benefit of large receptive region.

5.4 Summary

This work advanced the state of the art of routability prediction at two fronts. For

overall routability forecast of mixed-size designs, RouteNet achieves similar accuracy

as global routing but is several orders of magnitude faster. This largely solves the

challenge of having both accurate and fast routability prediction of general designs.

For DRC hotspot detection with consideration of macros, RouteNet also makes an

important step forward by improving global router’s accuracy by 50%.

117

Proposed in 2018, this work named RouteNet was the first CNN/FCN-based

routability predictor that achieves sufficiently high accuracy and high speed. It

attracts wide attention and becomes a common baseline in routability estimators.

Some feature-extraction and model-design principles proposed in this work are widely

adopted in later works.

118

Chapter 6

Design Flow Tuning

6.1 Background

The impact of parameter settings on overall design quality is phenomenal. Fig-

ure 6.1 plots the power and the worst negative setup time slack of design B22 from

ITC’99 [176], when it is synthesized with different logic synthesis parameters. Chang-

ing logic synthesis parameters can result in 3× difference in power and more than

one clock cycle difference in slack. Therefore, high-quality and automatic design flow

parameter tuning is highly desirable.

Design space exploration (DSE), a problem similar to design flow parameter tun-

ing, has been studied across various levels of abstractions [198, 199, 200, 201, 202, 203].

Active learning-based method is widely successful in DSE. This method builds an in-

Improved
Timing

Lower	Power

Dash	lines:	average	
solution	quality

A

B

Figure 6.1: Solution quality variance in parameter space.

119

ternal machine learning model to predict the design quality from design parameter

space, and selects the next sampling point based on Gaussian process [204, 205] or

random forest model [62, 200]. Then, the flow result of the newly sampled parameter

set is added into the dataset to re-train the machine learning model for the next

sampling step.

Despite their similarities, design flow parameter tuning is different from design

space exploration. First, design flow parameter tuning often has a larger amount of

prior data to learn from because similar parameters have been applied to previous

designs multiple times already. Design space exploration, on the contrary, often has

fewer prior data to learn from. This is because each design is different, and the

impact of architecture decisions such as loop unrolling and pipelining can change sig-

nificantly across different designs. Second, design flows such as synthesis and physical

design flows often have an order of magnitude longer runtime and more parameters

than those of design space exploration, including high-level synthesis design space

exploration. This significantly reduces the number of sampling iterations and re-

sults in a smaller dataset for learning. Therefore, despite the similarity, automatic

flow parameter tuning is more challenging from a time budget perspective. To apply

the machine learning approach, we need to improve the efficiency of automatic flow

parameter tuning with more advanced and customized learning techniques.

We work on the design flow parameter tuning problem, also named parameter

space exploration to indicate both the similarity with and difference from conven-

tional design space exploration. Synthesis or physical design parameters are tuned

to optimize design quality after the complete synthesis and physical design flow. To

collect data for experiments, we performed extensive synthesis and physical design

runs with different synthesis parameters on many designs to build a dataset, where we

notice the impact of parameters can be consistent for different designs. This allows

120

Model-less	Sampling	+𝒑

Model-guided	Sampling	+𝟏

TrainPredict

Training
samples	𝑺$

Learning
model	𝒇

Remaining
samples	
𝑺 − 𝑺$

Once

Iteration

Figure 6.2: Iterative refinement framework.

transferring knowledge from known prior data.

Iterative Refinement Algorithm. The iterative refinement framework has

been adopted in many previous DSE works [204, 205, 199]. It is illustrated in Figure

6.2. It divides the space exploration process into two phases: model construction and

model refinement. At model construction phase, p samples are selected and designers

run design flow to build initial model f . Such a sampling process is referred to as

model-less sampling.

During model refinement phase, according to f ’s prediction, it iteratively selects

the most promising sample s to run through design flow. Then f is refined by the

new completed set S̃, which is augmented by s at each iteration. We name the

model-based sample selection method at this phase as model-guided sampling.

6.2 Methodology

6.2.1 Problem Formulation

We refer to the parameters in logic synthesis or physical design scripts as parameters

or features. Each parameter combination is also referred to as a sample or a parameter

vector. A parameter combination d consists of c features and each feature has ni

options, where i ∈ [1, c]. Continuous features can be discretized into categorical data.

121

We use S to denote the whole parameter space and |S| = ∏c
i=1 ni. The parameter

space grows exponentially when c increases. We evaluate the design objectives after

we complete the whole synthesis and physical design flow. Due to the large parameter

space, the limited computation resources and the allowed execution time, only a

small subset S̃ of samples can complete design flow and be evaluated. The process of

selecting samples to form S̃ is referred to as sampling. The number of trials allowed

is denoted as budget b, |S̃| <= b.

For each single design objective such as power P , the goal of design flow parameter

tuning framework F is to find the sample with lowest P with no more than b samples.

Assume learning model f is used during exploration,

S̃ = F (S, b, f)

F ∗ = arg min
F

(min P [S̃]−min P [S])

An alternative formulation is to minimize the number of samples b while achieving

power no higher than P .

For multiple design objectives, the goal of F is to derive an approximated param-

eter set for Pareto-optimal samples, namely, Pareto frontier. The quality of Pareto

frontier is measured by average distance from reference set (ADRS). A lower ADRS

means the parameter set is closer to the actual Pareto set.

Assume two of the objectives are power P and delay D. Given actual ground-truth

Pareto frontier T ⊂ S and approximate frontier Λ ⊂ S̃, we have:

ADRS(T, Λ) = 1
|T |

∑
τ∈T

min
λ∈Λ

δ(τ, λ)

δ(τ = (Pτ , Dτ), λ = (Pλ, Dλ)) = max (0,
Pλ − Pτ

Pτ

,
Dλ −Dτ

Dτ

)

Method Overview. Figure 6.3 and Algorithm 6 illustrate our algorithm FIST.

122

Algorithm 6 FIST Framework
Input: Parameter space S, budget b, completed samples S̃ = ∅,

feature importance I ∈ Rc, clustering refinement threshold θ
Clustering:

1: Identify more important features ι = I > median(I), where ι ∈ {0, 1}c

2: Build m clusters Si (i ∈ [1, m]) as partition of S, s.t. ∀si ∈ Si, si[ι] are the same
Model-less Sampling:

3: Randomly select p clusters Sj (j ∈ [1, p]) from m Si (i ∈ [1, m])
4: Randomly select one sj from each Sj

5: Run and add sj (j ∈ [1, k]) to S̃
6: ∀s ∈ Sj, label s with sj and add s to S̃approx

Model-guided Sampling (Refinement)
7: for each int i ∈ [1, b− p] do
8: Initialize fi, its depth depends on i
9: if i <= θ then // Exploration and approximation

10: Train fi with S̃approx

11: Pick sa in S − S̃approx based on fi, run sa, add to S̃
12: Identify Sa s.t. sa ∈ Sa

13: ∀s ∈ Sa, label s with sa and add s to S̃approx

14: else // Exploitation
15: Train fi with S̃
16: Pick s in S − S̃ based on fi, run s, add to S̃

Output: Completed samples S̃

The major innovative strategies include: 1. Sampling by clustering; 2. Approxi-

mate samples; 3. Dynamic model. The “approximate samples” strategy is actually

incorporated in “sampling by clustering”.

6.2.2 Clustering by Similarity in Important Features

For a specific design, samples with the same values on some features will result in

similar solution qualities, especially for the “important” features. The “importance”

here means the extent to which each feature can influence the final solution quality.

When evaluating the influence of each feature, the values of all other features are

controlled to be the same. In Algorithm 7, samples with the same value for all other

123

Algorithm 7 Feature Importance Evaluation
Input: Parameter space S ′ with labels L from prior designs

1: for each int q ∈ [1, c] do
2: Sq = (S ′ with the qth feature removed from all s′ ∈ S ′)
3: Build n measurement subgroups Sk (k ∈ [1, n]) as a partition of Sq, s.t.
∀sk ∈ Sk, sk are the same

4: I[q] ∝ ∑n
k=1 σ2

k, σ2
k is variance of L in Sk

Output: Feature importance I ∈ Rc

features except the evaluated one form measurement subgroups Sk. In this way, the

summation of the solution quality variation σ2
k within each measurement subgroup

reflects the importance of this evaluated parameter. A feature importance vector

I ∈ Rc is generated.

For example, a parameter space S ′ consists of two features, each with two op-

tions {0, 1}, then S ′ = {[0, 0], [0, 1], [1, 0], [1, 1]}. Assume the corresponding labels

on solution quality L = {1, 2, 3, 4}. When measuring the first feature, Sq is con-

structed by removing the first feature from S ′, Sq = {[0], [1], [0], [1]}. Then L for

these two subgroups are {1, 3} and {2, 4}. I[1] = σ2(1, 3) + σ2(2, 4) = 2. Similarly,

for the second feature, I[2] = σ2(1, 2) + σ2(3, 4) = 0.5. Thus, the feature importance

vector I = [2, 0.5] and the binary vector indicating if each feature is important is

ι = I > median(I) = [1, 0]. In this case, the first feature is important, which means

it has a stronger impact on solution quality L. FIST learns and transfers feature

importance from prior data because such important parameters can be quite consis-

tent among different designs, but notice that it is completely different from assuming

certain universally good parameter settings across different designs ever exist.

Clustering is then performed with such prior knowledge on feature importance

(line 1-2 in Algorithm 6). More important features ι ∈ {0, 1}c are first identified,

then samples with the exact same values for ι are grouped into the same cluster Si.

In this way, the final solution qualities for the samples in the same cluster are closer.

124

Already selected samples	 +𝒑+𝜽
Model-guided	Sampling	+𝟏

Train	(𝒊 > 𝜽)Predict Dynamic
Model	𝒇𝒊

Remaining
samples	

𝑺 − 𝑺)/𝑺)𝒂𝒑𝒑𝒓𝒐𝒙
Training
samples	𝑺)

Approximate
samples	
𝑺)𝒂𝒑𝒑𝒓𝒐𝒙

Train	(𝒊 <= 𝜽)

Once

Iteration

Figure 6.3: FIST framework.

The sampling strategies in FIST use one sample to partially represent samples from

the whole cluster, which makes sampling much more efficient.

6.2.3 Model-less Sampling Based on Clusters

The model-less sampling aims at exploring the whole parameter space with a limited

number of samples p < b. During feature importance based clustering, the number

of clusters m is set to be greater than p to retain in-cluster similarity. The value of

m can be easily adjusted by modifying the number of important features ι. Sampling

from different clusters avoids wasting budget on similar samples. As the red samples

in Figure 6.4 shows, only a subset of clusters are selected and one sample from

each selected cluster is randomly chosen to represent its cluster. We complete the

design flow of selected samples and put them into S̃, which is the training data for

constructing the machine learning model.

125

6.2.4 Approximate Samples

In order to enhance the machine learning model training with limited sampling that

costs expensive runtime, we increase the sampling dataset in an approximate manner.

If a cluster Sj has only one sample sj ∈ Sj with known label l(sj), we apply this label

to the rest of the samples in Sj as training data. Although the design flow has

not been run for Sj − {sj}, their actual labels should be similar to l(sj), as they

belong to the same cluster. By using Sj − {sj} as approximate samples, the entire

cluster Sj is included in set S̃approx. This process is indicated in Figure 6.3 and line

6 in Algorithm 6. The usage of S̃approx and approximate samples is shown in lines

10-13. This is partially inspired by the “pseudo labeling” [206] commonly used in

semi-supervised learning.

6.2.5 Model-guided Sampling by Clustering

We strive to balance “exploration” and “exploitation” in the model-guided sampling

process. “Exploration” only acquires new knowledge from unexplored clusters while

“exploitation” also makes use of promising explored clusters in sampling. At the

beginning of model refinement phase, exploration is emphasized, because the number

of completed samples |S̃| is relatively small and many clusters have not been explored.

Thus, FIST identifies a new sample sa from unexplored clusters S− S̃approx in line 11

of Algorithm 6. Also, it adds whole cluster Sa to approximate samples set S̃approx.

After θ iterations, the emphasis is shifted to exploit explored clusters. Now neither

cluster information nor approximate samples are considered anymore. The model is

simply trained with completed samples S̃ and the new selected sample in S − S̃ is

often from previously explored clusters. This is shown in line 16 of Algorithm 6 and

yellow samples in Figure 6.4.

126

1. Model-less	Sampling 2. Model-guided
Sampling

(Exploration): 0 0			1					1			 1				0	

More	Important
Features

Other
Features

001***

000***

010***

011***

100***

101***

111***

3. Model-guided
Sampling

(Exploitation)
Samples	in	one	cluster

Unselected samples

Selected samples	(max	1	sample	each	cluster)

𝜾	 : 1	1 1	0 0 0	
𝑰	 :		9	7	5	3	2	1	

Selected samples	(no longer limited to cluster)

Figure 6.4: An example of sampling by clustering.

6.2.6 Dynamic Tree Depth

The bias-variance trade-off in machine learning indicates that an appropriate model

complexity depends on training data size. The model refinement stage starts with

p samples and ends with b completed samples. Assuming b > 2 ∗ p, the number of

training data at least doubles during model-guided sampling. Thus, it is rational

to vary the model complexity accordingly. We choose to change the maximum tree

depth through the model refinement process, as shown in line 8 in Algorithm 6.

Initially, we use relatively shallow trees, which result in a less complex model, then

increase the maximum tree depth to the optimal depth.

127

6.3 Evaluation

6.3.1 Experiment Setup

Nine different designs from ITC’99 [174] are synthesized with a commercial synthesis

tool in 45nm NanGate Library [172] and then placed and routed by Cadence En-

counter v14.28. Their post-synthesis gate number ranges from 167 to 76842. Both

slack and power are measured by Encounter. When each design is tested, all other de-

signs are utilized as “known” designs to evaluate feature importance. The design ob-

jectives are “Power”, “Setup Time WNS” and “Hold Time WNS”, where WNS means

the worst negative slack. For each design, we choose nine synthesis parameters for

tuning, and exhaustively collect all 1728 samples in the parameter space. Synthesis

parameters include: set_max_fanout, set_max_transition, set_max_capacitance,

high_fanout_net_threshold, set_max_area, insert_clock_gating, leakage_power

_optimization, dynamic_power_optimization and compile_type. Any non-numeric

parameters are represented by multiple artificial features with one-hot encoding.

We compare our method to prior arts in two ways. First, we evaluate the quality

of samples with a fixed sampling budget b. In this case, p = b−10
2 samples are selected

for model-less sampling. Second, we evaluate the number of iterations performed

to reach a required design flow quality. In this case, we set p = 40 for model-less

sampling. We set the maximum tree depths of our dynamic models to be 3 and 10

for initial and final stages, respectively. The cluster refinement threshold θ is set to

10 iterations. To reduce randomness, all single-objective and multi-objective results

are obtained by taking an average of 500 and 1000 trials, respectively.

128

6.3.2 Flow Tuning Performance

We first evaluate different methods by targeting three single objectives separately.

Compared with exploring the Pareto frontier, such a simpler task is a more straight-

forward evaluation of space exploration algorithms. Denotations for different strate-

gies are defined in Table 6.1. FIST method can also be denoted as ‘mless_ref_dyn’,

which adopts all strategies including XGBoost, dynamic model and cluster sampling

in both model-less sampling and refinement.

The quality of selections is measured by their rank in the whole parameter space.

Figure 6.5 shows the best rank of explored results for three objectives given a fixed

budget. For example, “Power_60” means the algorithm attempts to minimize power

with 60 samples for refinement. On average, FIST achieves 53% reduction in ranking

compared with the original framework baseline_RF. XGBoost outperforms Random

Forest as the learning model and all other strategies contribute to a better rank-

ing. Among these strategies, the contribution of cluster sampling is higher than the

dynamic model.

Another method of note is “rand_mless_ref_dyn”, where feature importance is

randomly assigned. Though worse than the FIST method, it still outperforms “base-

line”. On one hand, it indicates clustering sampling method itself benefits parameter

tuning even without feature information; on the other hand, it proves the effectiveness

Table 6.1: Methods Notation

Denotation Methods
baseline_RF random sampling & Random Forest model
baseline random sampling & XGBoost (same below)
dyn dynamic-depth tree model
mless model-less sampling by clustering
ref model-guided sampling in refinement by clustering
rand feature importance assigned randomly

129

Figure 6.5: Best solution rank with the same sample cost.

Figure 6.6: Sample cost to reach the same solution rank.

of using important features and learning from other designs.

Two other popular methods are also compared with FIST in Table 6.2 for ref-

erence. TED sampling is proposed in [62] to replace random sampling in “base-

line_RF”, but it fails to improve performance except on “HoldTime”. We analyzed

such unsupervised TED sampling method with our clustering strategy. On average

the top 30 samples from TED falls into only 14 clusters, leaving the other 58 clusters

130

empty. That is, under the view of supervised clustering, such unsupervised method

cannot pick the most representative samples in parameter space. The genetic learn-

ing method [55], which is originally applied to primitives, is also implemented for

comparison. As [198] has concluded, the given budget is too limited for such genetic

algorithms to accumulate a large enough population.

Table 6.2: Rank Results with the Same Sample Cost

Methods Power_40 SetupTime_40 HoldTime_40
baseline_RF 8.0 9.8 14
baseline_RF_TED [62] 13 18 13
Genetic Algo [55] 28 40 26
Methods Power_60 SetupTime_60 HoldTime_60
baseline_RF 3.2 4.7 7.7
baseline_RF_TED [62] 7.9 10 7.2
Genetic Algo [55] 23 15 19

Besides better sample quality under a fixed budget, we are also interested in

reducing sample cost while reaching the same quality. The cost here refers to the

number of samples synthesized in model refinement phase. Figure 6.6 indicates the

cost to reach same solution ranks, where 35% cost reduction is achieved by adopting

all strategies. We can observe a similar trend for different strategies.

Besides single-objective optimization, designers are also concerned about opti-

mizatizing multiple objectives in exploring Pareto frontier. The performance on

Pareto frontier identification is evaluated with ADRS. ADRS can be measured be-

cause we know the quality of the whole design space after data collection. Figures 6.7

and 6.8 show the performance in exploring Pareto frontier. Sample cost is fixed for

Figure 6.7 and ADRS level is fixed for Figure 6.8. A range of cost levels and ADRS

levels is covered. The effectiveness of all strategies is consistent on all cost or ADRS

levels we have tested. On average 25% improvement in ADRS and 37% improvement

in cost are achieved.

131

Figure 6.7: Best ADRS with the same sample cost.

Figure 6.8: Sample cost to reach the same ADRS.

To further understand the effect of sampling by clustering, the similarity of sam-

ples by different sampling methods is shown in Table 6.3. It compares random sam-

pling, sampling within cluster, and sampling from different clusters. The standard

deviations σ of their solution quality are measured. The “true” and “learn” in paren-

theses indicate whether feature importance is ground-truth or learned from other

132

Table 6.3: Standard Deviation of Samples

Power SetupTime HoldTime
Random sampling 3.35 0.377 0.288
In-cluster sampling (learn) 0.49 0.152 0.175
Cross-cluster sampling (learn) 3.42 0.384 0.282
In-cluster sampling (true) 0.54 0.135 0.146
Cross-cluster sampling (true) 3.39 0.383 0.294

designs. The in-cluster sampling gives much lower σ, which verifies that samples

from the same cluster have much more similar quality. This provides the rationale of

using S̃approx with approximate labels. The learned in-cluster σ is only slightly higher

than ground truth for timing, indicating that learned feature importance is close to

the ground truth.

However, σ for cross-cluster sampling is not significantly higher than that for

random sampling. That means simply sampling from different clusters does not lead

to more representative samples. That is also why approximate samples S̃approx are

necessary in such clustering strategy.

6.3.3 Experiment Setup on Industrial Designs

We have developed a FIST-based automatic parameter tuning flow for industrial

physical design flows based on commercial EDA tools. The designs we experimented

on are from a deep learning inference accelerator [207] implemented in 16nm FinFET

technology: a 71K gate Processing Element (PE) and a 117K gate RISC-V micro-

processor (RISC-V). The design objectives that FIST optimizes are ‘area’ and ‘setup

time TNS’. They are optimized under the condition that ‘hold time TNS’ and ‘DRC

violations’ are met. The quality of FIST’s parameter selections is compared with the

quality of a set of parameter selections hand-tuned by experienced designers on these

recently taped-out designs.

133

Table 6.4: Physical Design Parameters for Industrial Designs

Physical design parameter Settings
postroute iterations 0, 1, 2, 3, 4
cts.optimize.enable_local_skew False, True
clock_opt.hold.effort low, medium, high
postroute (clock_tran_fix) disable, enable
postroute (useful_skew, timing_opt) 0, 1
useful_skew (power_opt) 0, 1
clock buffer max fanout 22, 36, 48, 96
target skew 0.025, 0.05, 0.1, 0.3
setup uncertainty -0.025, -0.05, -0.1
hvt cell swap enable during leakage optimization 0, 1
extra hold uncertainty for SRAM macro -0.025, -0.05, -0.1, -0.15
max util 0.7, 0.78, 0.85

hold uncertainty -0.002, -0.005, -0.008
-0.01, -0.012

Compared with experiments on ITC’99, this industrial experiment explores a

much larger parameter space. Thirteen physical design parameters are tuned and

each parameter provides 2 to 5 options. Details of the parameters are shown in

Table 6.4. The whole parameter space consists of 1,382,400 samples. In this case, it

is not possible to collect data exhaustively like in the ITC’99 experiment. We limit

the budget b of FIST to be around 200, which is less than 0.02% of parameter space.

By comparison, the designer would hand-tune 30 parameter selections before settling

on the final parameter selection. We check whether FIST, the automatic parameter

tuning method, provides better solutions.

Though taking more trials than the hand-tuning process, parameter tuning with

FIST can be fully automatic without any human knowledge. Hand-tuning parameters

200 times for multiple designs costs extra engineer time and is not likely to find a

better solution than FIST. We set initial sampling number p = 100 and cluster

refinement threshold θ = 40 based on the budget b = 200. To leverage computer

farms and prove the scalability of FIST, the ML model now selects around 10 best

134

samples at each iteration instead of just one. Then the design flows with selected

parameters are completed on multiple machines in parallel.

6.3.4 Performance on Industrial Designs

The qualities of parameter space exploration for PE and RISC-V are shown in Figure

6.9 and 6.10, respectively. The x-axis shows area in µm2 and y-axis shows setup time

TNS in ns. Points on the upper-left boundary of all the already explored samples are

desirable Pareto points. We present six sequential stages during the tuning process,

corresponding to six sub-graphs in Figure 6.9 and 6.10. Subgraph 1 contains p = 100

initial samples and each new subgraph adds around 20 new samples. In each subgraph

sgi > 1, black points are 30 parameter selections hand-tuned by the designers, green

and yellow points are the 20 new samples explored at that stage, blue and red points

are the 100 + (sgi − 1) ∗ 20 samples already explored in previous stages. Yellow and

red points are Pareto points.

For PE, the best area of hand-tuned parameter selections (in black) is 56,483,

while FIST finds a solution (in yellow) with the area of 55,453 with acceptable setup

time closure. The improvement in area is 1.82%. Similarly, in RISC-V, FIST reduced

the best area from 113,375 (in black) to 111,751 (in yellow), improving the area by

1.43%. Notice that such improvement is achieved by exploring less than 0.02% of the

parameter space.

Interestingly, the strategies of FIST can be clearly observed in different stages

of this parameter tuning process. The hand-tuned solutions tend to aggregate into

one cluster, which means they have similar design qualities. In comparison, the ini-

tial samples in subgraph 1 distribute much more sparsely. It is contributed by the

cluster-based model-less sampling, which avoids selecting similar samples. After ini-

135

1 2

3 4

5 6

Figure 6.9: Parameter tuning process on PE. Area (µm2) vs. setup TNS (ns). Red
and yellow are Pareto points. Black are hand-tuned baselines.

tial sampling, since cluster refinement threshold θ is set to 40, subgraph 2, 3 perform

‘exploration’ and subgraph 4, 5, 6 perform ‘exploitation’. The ‘exploration’ and ‘ex-

ploitation’ show different effects. In subgraph 2, 3, new samples (green and yellow)

slowly move towards the upper left direction, but still distribute sparsely, especially

for PE. But in subgraph 4, 5, 6, when model exclusively performs ‘exploitation’, new

samples, which now concentrate around new Pareto points, generally have better

136

1

3

5

2

4

6

Figure 6.10: Parameter tuning process on RISC-V. Area (µm2) vs. setup TNS (ns).
Red and yellow are Pareto points. Black are hand-tuned baselines.

quality. Notice that all 60 points at this stage outperform the hand-tuned solutions

in ‘area’. By subgraph 6, new samples gradually converge at Pareto point, which

means the best point that FIST can find is approximately reached.

137

6.4 Summary

Design flow parameter tuning is a daunting task and an efficient automatic approach

is highly desirable. In this chapter, I present an efficient machine learning approach

for automatic parameter tuning. We build a large dataset, from which we devel-

oped a clustering-based method to leverage prior data to improve sampling efficiency

during exploration. We also introduce approximate sampling and dynamic model-

ing based on semi-supervised learning and bias-variance trade-off principles. Our

approach either improves design quality significantly or requires much less sampling

cost to achieve a given design performance compared with prior exploration meth-

ods. Finally, we validate our method on two more complicated industrial designs

with a much larger parameter space. It improves the best hand-tuned solutions by

experienced designers with reasonable budgets.

138

Chapter 7

Conclusion

In this dissertation, I study customized machine learning methods for intelligent

circuit design and implementation, targeting multiple primary design objectives.

For power, I present APOLLO, an automatically developed power modeling frame-

work that unprecedentedly achieves high accuracy, fine temporal resolution, and low

hardware implementation cost at the same time. For interconnect and timing, I

present Net2, providing much more accurate individual net size estimations and pre-

placement timing reports than prior works/tools. Targeting IR drop, I present Pow-

erNet, supporting accurate cross-design estimations for both vertorless and vector-

based dynamic IR drop. For routability, I present RouteNet, the first CNN/FCN-

based estimator supporting both coarse-grained and fine-grained routability estima-

tions. Finally, besides targeting single design stage or single design objective, I present

FIST for design flow tuning, optimizing the trade-off among power, performance, and

area during both logic synthesis and physical design. My ultimate goal is to achieve

superior circuit performance with less design cost, less engineering efforts, shorter

turnaround time, and less computation cost.

ML methods have demonstrated great potential for hardware design. But severe

challenges also exist and worth exploration in the future. First, it is challenging to get

access to adequate training data with sufficient diversity, which limits the develop-

ment of high-quality and generalized ML estimators. This may require collaborative

training on decentralized private design data. Second, multiple security and reliabil-

ity concerns regarding training data and ML model arise when ML for EDA becomes

139

increasingly popular. Third, efficient deployment of ML models in existing design

flows is still challenging. I expect ML models to better integrate with design flow or

even completely replace some traditional design automation techniques in the future.

140

Bibliography

[1] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. A survey
of accelerator architectures for deep neural networks. Engineering, 2020.

[2] Gordon E Moore et al. Cramming more components onto integrated circuits,
1965.

[3] Thomas N Theis and H-S Philip Wong. The end of moore’s law: A new begin-
ning for information technology. Computing in Science & Engineering, 2017.

[4] IBS. As chip design costs skyrocket, 3nm process node is in jeopardy. https:
//www.extremetech.com/computing/272096-3nm-process-node, 2020.

[5] Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, Kumaraguru
Palaniswamy, Nicolas Hebert, Jiang Hu, Huanrui Yang, Yiran Chen, and Shid-
hartha Das. APOLLO: An automated power modeling framework for runtime
power introspection in high-volume commercial microprocessors. In Interna-
tional Symposium on Microarchitecture (MICRO), 2021.

[6] Zhiyao Xie, Rongjian Liang, Xiaoqing Xu, Jiang Hu, Chen-Chia Chang, Jingyu
Pan, and Yiran Chen. Pre-placement net length and timing estimation by cus-
tomized graph neural network. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), Accepted, 2022.

[7] Zhiyao Xie, Rongjian Liang, Xiaoqing Xu, Jiang Hu, Yixiao Duan, and Yiran
Chen. Net2: A graph attention network method customized for pre-placement
net length estimation. In Asia and South Pacific Design Automation Conference
(ASP-DAC), 2021.

[8] Zhiyao Xie, Hai Li, Xiaoqing Xu, Jiang Hu, and Yiran Chen. Fast IR drop
estimation with machine learning. In International Conference on Computer-
Aided Design (ICCAD), 2020.

[9] Zhiyao Xie, Haoxing Ren, Brucek Khailany, Ye Sheng, Santosh Santosh, Jiang
Hu, and Yiran Chen. PowerNet: Transferable dynamic IR drop estimation
via maximum convolutional neural network. In Asia and South Pacific Design
Automation Conference (ASP-DAC), 2020.

[10] Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang,
Yiran Chen, and Jiang Hu. RouteNet: Routability prediction for mixed-size
designs using convolutional neural network. In International Conference On

141

Computer Aided Design (ICCAD), 2018.

[11] Zhiyao Xie, Guan-Qi Fang, Yu-Hung Huang, Haoxing Ren, Yanqing Zhang,
Brucek Khailany, Shao-Yun Fang, Jiang Hu, Yiran Chen, and Erick Carvajal
Barboza. FIST: A feature-importance sampling and tree-based method for
automatic design flow parameter tuning. In Asia and South Pacific Design
Automation Conference (ASP-DAC), 2020.

[12] Jawad Haj-Yihia, Ahmad Yasin, Yosi Ben Asher, and Avi Mendelson. Fine-
grain power breakdown of modern out-of-order cores and its implications on
skylake-based systems. ACM Transactions on Architecture and Code Opti-
mization (TACO), 2016.

[13] Hans Jacobson, Alper Buyuktosunoglu, Pradip Bose, Emrah Acar, and Richard
Eickemeyer. Abstraction and microarchitecture scaling in early-stage power
modeling. In International Symposium on High-Performance Computer Archi-
tecture (HPCA), 2011.

[14] Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and
Zhiru Zhang. PRIMAL: Power inference using machine learning. In Design
Automation Conference (DAC), 2019.

[15] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanović. Simmani:
Runtime power modeling for arbitrary RTL with automatic signal selection. In
International Symposium on Microarchitecture (MICRO), 2019.

[16] Wei Huang, Charles Lefurgy, William Kuk, Alper Buyuktosunoglu, Michael
Floyd, Karthick Rajamani, Malcolm Allen-Ware, and Bishop Brock. Accurate
fine-grained processor power proxies. In International Symposium on Microar-
chitecture (MICRO), 2012.

[17] Davide Zoni, Luca Cremona, and William Fornaciari. Powerprobe: Run-time
power modeling through automatic RTL instrumentation. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2018.

[18] Waclaw Godycki, Christopher Torng, Ivan Bukreyev, Alyssa Apsel, and
Christopher Batten. Enabling realistic fine-grain voltage scaling with reconfig-
urable power distribution networks. In International Symposium on Microar-
chitecture (MICRO), 2014.

[19] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez.
Rubik: Fast analytical power management for latency-critical systems. In In-

142

ternational Symposium on Microarchitecture (MICRO), 2015.

[20] Chang-Hong Hsu, Yunqi Zhang, Michael A Laurenzano, David Meisner,
Thomas Wenisch, Jason Mars, Lingjia Tang, and Ronald G Dreslinski.
Adrenaline: Pinpointing and reining in tail queries with quick voltage boost-
ing. In International Symposium on High-Performance Computer Architecture
(HPCA), 2015.

[21] Hugh Mair, Ericbill Wang, Alice Wang, Ping Kao, Yuwen Tsai, Sumanth Guru-
rajarao, Rolf Lagerquist, Jin Son, Gordon Gammie, Gordon Lin, et al. A 10nm
FinFET 2.8GHz tri-gear deca-core CPU complex with optimized power-delivery
network for mobile SoC performance. In International Solid-State Circuits Con-
ference (ISSCC), 2017.

[22] Keith A Bowman, Sarthak Raina, J Todd Bridges, Daniel J Yingling, Hoan H
Nguyen, Brad R Appel, Yesh N Kolla, Jihoon Jeong, Francois I Atallah, and
David W Hansquine. A 16 nm all-digital auto-calibrating adaptive clock distri-
bution for supply voltage droop tolerance across a wide operating range. IEEE
Journal of Solid-State Circuits (JSSC), 2016.

[23] Vijay Janapa Reddi, Meeta S Gupta, Glenn Holloway, Gu-Yeon Wei, Michael D
Smith, and David Brooks. Voltage emergency prediction: Using signatures to
reduce operating margins. In International Symposium on High-Performance
Computer Architecture (HPCA), 2009.

[24] T Webel, PM Lobo, T Strach, PB Parashurama, S Purushotham, R Bertran,
and A Buyuktosunoglu. Proactive power management in IBM z15. IBM Journal
of Research and Development, 2020.

[25] Ed Grochowski, David Ayers, and Vivek Tiwari. Microarchitectural simulation
and control of di/dt-induced power supply voltage variation. In International
Symposium on High-Performance Computer Architecture (HPCA), 2002.

[26] Siemens. PowerPro® RTL Low-Power. https://eda.sw.siemens.com/en-
US/ic/powerpro/, 2021.

[27] Cadence. Palladium® Z1 Enterprise Emulation Platform. https://www.
cadence.com/en_US/home/tools/system-design-and-verification/
acceleration-and-emulation/palladium-z1.html, 2021.

[28] R. Joseph and M. Martonosi. Run-time power estimation in high performance
microprocessors. In International Symposium on Low Power Electronics and

143

Design (ISLPED), 2001.

[29] W Lloyd Bircher and Lizy K John. Complete system power estimation: A
trickle-down approach based on performance events. In International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), 2007.

[30] Matthew J Walker, Stephan Diestelhorst, Andreas Hansson, Anup K Das,
Sheng Yang, Bashir M Al-Hashimi, and Geoff V Merrett. Accurate and stable
run-time power modeling for mobile and embedded CPUs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2016.

[31] Mohamad Najem, Pascal Benoit, Mohamad El Ahmad, Gilles Sassatelli, and
Lionel Torres. A design-time method for building cost-effective run-time power
monitoring. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD), 2017.

[32] Luca Cremona, William Fornaciari, and Davide Zoni. Automatic identification
and hardware implementation of a resource-constrained power model for em-
bedded systems. Elsevier Sustainable Computing: Informatics and Systems,
2020.

[33] Daniele Jahier Pagliari, Valentino Peluso, Yukai Chen, Andrea Calimera, En-
rico Macii, and Massimo Poncino. All-digital embedded meters for on-line power
estimation. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2018.

[34] Davide Zoni, Luca Cremona, Alessandro Cilardo, Mirko Gagliardi, and William
Fornaciari. PowerTap: All-digital power meter modeling for run-time power
monitoring. Elsevier Microprocessors and Microsystems (MICPRO), 2018.

[35] Shekhar Kapoor and Mark Richards. Getting better results faster with the sin-
gular RTL-to-GDSII product. https://www.synopsys.com/implementation-
and-signoff/resources/articles/unified-data-engines-fusion-
compiler.html, 2021.

[36] Cadence. Cadence digital full flow optimized to deliver improved quality of
results with up to 3x faster throughput. https://www.cadence.com/en_
US/home/company/newsroom/press-releases/pr/2020/cadence-digital-
full-flow-optimized-to-deliver-improved-quality-.html, 2020.

[37] Cadence. Cadence Genus user guide. https://www.cadence.com/content/
dam/cadence-www/global/en_US/documents/tools/digital-design-

144

signoff/genus-synthesis-solution-ds.pdf, 2019.

[38] Cadence. Innovus implementation system. https://www.cadence.com/en_
US/home/tools/digital-design-and-signoff/soc-implementation-and-
floorplanning/innovus-implementation-system.html, 2021.

[39] Srinivas Bodapati and Farid N Najm. Prelayout estimation of individual wire
lengths. IEEE Transactions on Very Large Scale Integration Systems (TVLSI),
2001.

[40] Bahareh Fathi, Laleh Behjat, and Logan M Rakai. A pre-placement net length
estimation technique for mixed-size circuits. In International Workshop on
System Level Interconnect Prediction (SLIP), 2009.

[41] Qiang Liu, Jianguo Ma, and Qijun Zhang. Neural network based pre-placement
wirelength estimation. In International Conference on Field-Programmable
Technology (FPT), 2012.

[42] Daijoon Hyun, Yuepeng Fan, and Youngsoo Shin. Accurate wirelength pre-
diction for placement-aware synthesis through machine learning. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2019.

[43] Yuta Yamato, Tomokazu Yoneda, Kazumi Hatayama, and Michiko Inoue. A
fast and accurate per-cell dynamic IR-drop estimation method for at-speed scan
test pattern validation. In International Test Conference (ITC), 2012.

[44] Fangming Ye, Farshad Firouzi, Yang Yang, Krishnendu Chakrabarty, and
Mehdi B Tahoori. On-chip voltage-droop prediction using support-vector ma-
chines. In VLSI Test Symposium (VTS), 2014.

[45] Shih-Yao Lin, Yen-Chun Fang, Yu-Ching Li, Yu-Cheng Liu, Tsung-Shan Yang,
Shang-Chien Lin, Chien-Mo Li, and Eric Jia-Wei Fang. IR drop prediction of
ECO-revised circuits using machine learning. In VLSI Test Symposium (VTS),
2018.

[46] Yen-Chun Fang, Heng-Yi Lin, Min-Yan Sui, Chien-Mo Li, and Eric Jia-Wei
Fang. Machine-learning-based dynamic IR drop prediction for ECO. In Inter-
national Conference On Computer Aided Design (ICCAD), 2018.

[47] Yaoguang Wei, Cliff Sze, Natarajan Viswanathan, Zhuo Li, Charles J. Alpert,
Lakshmi Reddy, Andrew D. Huber, Gustavo E. Tellez, Douglas Keller, and
Sachin S. Sapatnekar. Glare: Global and local wiring aware routability evalu-

145

ation. In Design Automation Conference (DAC), 2012.

[48] Jinan Lou, Shankar Krishnamoorthy, and Henry S. Sheng. Estimating routing
congestion using probabilistic analysis. In ACM International Symposium on
Physical Design (ISPD), 2001.

[49] Jurjen Westra, Chris Bartels, and Patrick Groeneveld. Probabilistic congestion
prediction. In ACM International Symposium on Physical Design (ISPD), 2004.

[50] Peter Spindler and Frank M Johannes. Fast and accurate routing demand
estimation for efficient routability-driven placement. In Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2007.

[51] Wei-Ting J Chan, Pei-Hsin Ho, Andrew B Kahng, and Prashant Saxena.
Routability optimization for industrial designs at sub-14nm process nodes us-
ing machine learning. In International Symposium on Physical Design (ISPD),
2017.

[52] Wei-Ting J Chan, Yang Du, Andrew B Kahng, Siddhartha Nath, and Kambiz
Samadi. Beol stack-aware routability prediction from placement using data
mining techniques. In International Conference on Computer Design (ICCD),
2016.

[53] Quan Zhou, Xueyan Wang, Zhongdong Qi, Zhuwei Chen, Qiang Zhou, and Yici
Cai. An accurate detailed routing routability prediction model in placement.
In Asia Symposium on Quality Electronic Design (ASQED), 2015.

[54] Matthew M Ziegler, Hung-Yi Liu, George Gristede, Bruce Owens, Ricardo
Nigaglioni, and Luca P Carloni. A synthesis-parameter tuning system for au-
tonomous design-space exploration. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016.

[55] Matthew M Ziegler, Hung-Yi Liu, and Luca P Carloni. Scalable auto-tuning
of synthesis parameters for optimizing high-performance processors. In Inter-
national Symposium on Low Power Electronics and Design (ISLPED), 2016.

[56] Michael K Papamichael, Peter Milder, and James C Hoe. Nautilus: Fast au-
tomated IP design space search using guided genetic algorithms. In Design
Automation Conference (DAC), 2015.

[57] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In ACM SIGKDD International Conference on Knowledge Discovery and Data

146

Mining (KDD), 2016.

[58] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang
Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, et al. Machine
learning for electronic design automation: A survey. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 2021.

[59] Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z Pan, Marilyn Wolf,
and Jörg Henkel. MLCAD: A survey of research in machine learning for CAD
keynote paper. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2021.

[60] Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and
Zhiru Zhang. Fast and accurate estimation of quality of results in high-level
synthesis with machine learning. In Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2018.

[61] Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara
Bondi, Sai Manoj Pudukotai Dinakarrao, Houman Homayoun, and Setareh
Rafatirad. Pyramid: Machine learning framework to estimate the optimal
timing and resource usage of a high-level synthesis design. In International
Conference on Field-Programmable Logic and Applications (FPL), 2019.

[62] Hung-Yi Liu and Luca P Carloni. On learning-based methods for design-space
exploration with high-level synthesis. In Design automation conference (DAC),
2013.

[63] Dong Liu and Benjamin Carrion Schafer. Efficient and reliable high-level syn-
thesis design space explorer for FPGAs. In International Conference on Field
Programmable Logic and Applications (FPL), 2016.

[64] Yanqing Zhang, Haoxing Ren, and Brucek Khailany. GRANNITE: Graph neu-
ral network inference for transferable power estimation. In Design Automation
Conference (DAC), 2020.

[65] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows
without human knowledge. In Design Automation Conference (DAC), 2018.

[66] Walter Lau Neto, Max Austin, Scott Temple, Luca Amaru, Xifan Tang, and
Pierre-Emmanuel Gaillardon. LSOracle: A logic synthesis framework driven by
artificial intelligence. In International Conference On Computer Aided Design
(ICCAD), 2019.

147

[67] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda.
Drills: Deep reinforcement learning for logic synthesis. In Asia and South
Pacific Design Automation Conference (ASP-DAC), 2020.

[68] Walter Lau Neto, Matheus T Moreira, Yingjie Li, Luca Amarù, Cunxi Yu,
and Pierre-Emmanuel Gaillardon. SLAP: A supervised learning approach for
priority cuts technology mapping. In Design Automation Conference (DAC),
2021.

[69] Erick Carvajal Barboza, Nishchal Shukla, Yiran Chen, and Jiang Hu. Machine
learning-based pre-routing timing prediction with reduced pessimism. In Design
Automation Conference (DAC), 2019.

[70] Andrew B Kahng, Mulong Luo, and Siddhartha Nath. SI for free: machine
learning of interconnect coupling delay and transition effects. In International
Workshop on System Level Interconnect Prediction (SLIP), 2015.

[71] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade
Nazi, et al. A graph placement methodology for fast chip design. Nature, 2021.

[72] Jingsong Chen, Jian Kuang, Guowei Zhao, Dennis J-H Huang, and Evange-
line FY Young. PROS: A plug-in for routability optimization applied in the
state-of-the-art commercial EDA tool using deep learning. In International
Conference On Computer Aided Design (ICCAD), 2020.

[73] Yu-Hung Huang, Zhiyao Xie, Guan-Qi Fang, Tao-Chun Yu, Haoxing Ren, Shao-
Yun Fang, Yiran Chen, and Jiang Hu. Routability-driven macro placement
with embedded cnn-based prediction model. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2019.

[74] Chen-Chia Chang, Jingyu Pan, Tunhou Zhang, Zhiyao Xie, Jiang Hu, Weiyi Qi,
Chunwei Lin, Rongjian Liang, Joydeep Mitra, Elias Fallon, and Yiran Chen.
Automatic routability predictor development using neural architecture search.
In International Conference On Computer Aided Design (ICCAD), 2021.

[75] Jingyu Pan, Chen-Chia Chang, Zhiyao Xie, Ang Li, Minxue Tang, Tun-
hou Zhang, Jiang Hu, and Yiran Chen. Towards collaborative intelligence:
Routability estimation based on decentralized private data. In Design Automa-
tion Conference (DAC), 2022.

[76] Chia-Tung Ho and Andrew B Kahng. IncPIRD: Fast learning-based prediction

148

of incremental IR drop. In International Conference on Computer-Aided Design
(ICCAD), 2019.

[77] Han Zhou, Wentian Jin, and Sheldon X-D Tan. GridNet: Fast data-driven EM-
induced IR drop prediction and localized fixing for on-chip power grid networks.
In International Conference On Computer Aided Design (ICCAD), 2020.

[78] Yi-Chen Lu, Jeehyun Lee, Anthony Agnesina, Kambiz Samadi, and Sung Kyu
Lim. GAN-CTS: A generative adversarial framework for clock tree prediction
and optimization. In International Conference On Computer Aided Design
(ICCAD), 2019.

[79] Rongjian Liang, Zhiyao Xie, Jinwook Jung, Vishnavi Chauha, Yiran Chen,
Jiang Hu, Hua Xiang, and Gi-Joon Nam. Routing-free crosstalk prediction. In
International Conference on Computer Aided Design (ICCAD), 2020.

[80] Yi-Chen Lu, Sai Surya Kiran Pentapati, Lingjun Zhu, Kambiz Samadi, and
Sung Kyu Lim. TP-GNN: A graph neural network framework for tier parti-
tioning in monolithic 3d ICs. In Design Automation Conference (DAC), 2020.

[81] Yoav Katz, Michal Rimon, Avi Ziv, and Gai Shaked. Learning microarchitec-
tural behaviors to improve stimuli generation quality. In Design Automation
Conference (DAC), 2011.

[82] Shai Fine and Avi Ziv. Coverage directed test generation for functional ver-
ification using bayesian networks. In Design Automation Conference (DAC),
2003.

[83] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo,
Karthikeyan Natarajan, and Bei Yu. High performance graph convolutional
networks with applications in testability analysis. In Design Automation Con-
ference (DAC), 2019.

[84] Haoyu Yang, Jing Su, Yi Zou, Yuzhe Ma, Bei Yu, and Evangeline FY Young.
Layout hotspot detection with feature tensor generation and deep biased learn-
ing. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2018.

[85] Haoyu Yang, Shuhe Li, Zihao Deng, Yuzhe Ma, Bei Yu, and Evangeline FY
Young. GAN-OPC: Mask optimization with lithography-guided generative ad-
versarial nets. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2019.

149

[86] Wei Ye, Mohamed Baker Alawieh, Yibo Lin, and David Z Pan. LithoGAN: End-
to-end lithography modeling with generative adversarial networks. In Design
Automation Conference (DAC), 2019.

[87] Jihye Kwon, Matthew M Ziegler, and Luca P Carloni. A learning-based rec-
ommender system for autotuning design fiows of industrial high-performance
processors. In Design Automation Conference (DAC), 2019.

[88] Kishor Kunal, Jitesh Poojary, Tonmoy Dhar, Meghna Madhusudan, Ramesh
Harjani, and Sachin S Sapatnekar. A general approach for identifying hierarchi-
cal symmetry constraints for analog circuit layout. In International Conference
On Computer Aided Design (ICCAD), 2020.

[89] Hao Li, Fanshu Jiao, and Alex Doboli. Analog circuit topological feature extrac-
tion with unsupervised learning of new sub-structures. In Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2016.

[90] Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung
Lee, and Song Han. GCN-RL circuit designer: Transferable transistor sizing
with graph neural networks and reinforcement learning. In Design Automation
Conference (DAC), 2020.

[91] Kourosh Hakhamaneshi, Nick Werblun, Pieter Abbeel, and Vladimir Sto-
janović. BagNet: Berkeley analog generator with layout optimizer boosted
with deep neural networks. In International Conference on Computer-Aided
Design (ICCAD), 2019.

[92] Haoxing Ren, George F Kokai, Walker J Turner, and Ting-Sheng Ku. Para-
Graph: Layout parasitics and device parameter prediction using graph neural
networks. In Design Automation Conference (DAC), 2020.

[93] Kishor Kunal, Tonmoy Dhar, Meghna Madhusudan, Jitesh Poojary, Arvind
Sharma, Wenbin Xu, Steven M Burns, Jiang Hu, Ramesh Harjani, and Sachin S
Sapatnekar. GANA: Graph convolutional network based automated netlist an-
notation for analog circuits. In Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), 2020.

[94] Mingjie Liu, Keren Zhu, Jiaqi Gu, Linxiao Shen, Xiyuan Tang, Nan Sun, and
David Z Pan. Towards decrypting the art of analog layout: Placement qual-
ity prediction via transfer learning. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2020.

150

[95] Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu,
Sachin S Sapatnekar, Ramesh Harjani, and Jiang Hu. A customized graph neu-
ral network model for guiding analog IC placement. In International Conference
On Computer Aided Design (ICCAD), 2020.

[96] Biying Xu, Yibo Lin, Xiyuan Tang, Shaolan Li, Linxiao Shen, Nan Sun, and
David Z Pan. Wellgan: Generative-adversarial-network-guided well genera-
tion for analog/mixed-signal circuit layout. In Design Automation Conference
(DAC), 2019.

[97] Mingjie Liu, Keren Zhu, Xiyuan Tang, Biying Xu, Wei Shi, Nan Sun, and
David Z Pan. Closing the design loop: Bayesian optimization assisted hier-
archical analog layout synthesis. In Design Automation Conference (DAC),
2020.

[98] Keren Zhu, Mingjie Liu, Yibo Lin, Biying Xu, Shaolan Li, Xiyuan Tang, Nan
Sun, and David Z Pan. Geniusroute: A new analog routing paradigm using
generative neural network guidance. In International Conference on Computer-
Aided Design (ICCAD), 2019.

[99] Haralampos-G Stratigopoulos and Yiorgos Makris. Error moderation in
low-cost machine-learning-based analog/RF testing. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2008.

[100] Synopsys. IC Compiler II for physical implementation. https://www.
synopsys.com/implementation-and-signoff/physical-implementation/
ic-compiler.html, 2021.

[101] Synopsys. DSO.ai: AI-driven design applications. https://www.synopsys.
com/implementation-and-signoff/ml-ai-design/dso-ai.html, 2021.

[102] Cadence. Cadence Cerebrus intelligent chip explorer. https:
//www.cadence.com/en_US/home/tools/digital-design-and-signoff/
soc-implementation-and-floorplanning/cerebrus-intelligent-chip-
explorer.html, 2021.

[103] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. ACM SIGARCH Com-
puter Architecture News, 2000.

[104] Benjamin C Lee and David M Brooks. Accurate and efficient regression mod-
eling for microarchitectural performance and power prediction. ACM SIGOPS

151

Operating Systems Review, 2006.

[105] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. McPAT: an integrated power, area, and timing mod-
eling framework for multicore and manycore architectures. In International
Symposium on Microarchitecture (MICRO), 2009.

[106] Santhosh Kumar Rethinagiri, Oscar Palomar, Rabie Ben Atitallah, Smail Niar,
Osman Unsal, and Adrian Cristal Kestelman. System-level power estimation
tool for embedded processor based platforms. In Workshop on Rapid Simulation
and Performance Evaluation: Methods and Tools (RAPIDO), 2014.

[107] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli. Regression-based
RTL power modeling. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 2000.

[108] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. Al-
addin: A pre-RTL, power-performance accelerator simulator enabling large de-
sign space exploration of customized architectures. In International Symposium
on Computer Architecture (ISCA), 2014.

[109] David Brooks, Pradip Bose, Viji Srinivasan, Michael K Gschwind, Philip G
Emma, and Michael G Rosenfield. New methodology for early-stage,
microarchitecture-level power-performance analysis of microprocessors. IBM
Journal of Research and Development, 2003.

[110] Dongwook Lee, Lizy K John, and Andreas Gerstlauer. Dynamic power and
performance back-annotation for fast and accurate functional hardware sim-
ulation. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2015.

[111] Ajay Krishna Ananda Kumar and Andreas Gerstlauer. Learning-based CPU
power modeling. In Workshop on Machine Learning for CAD (MLCAD), 2019.

[112] Wu Ye, Narayanan Vijaykrishnan, Mahmut Kandemir, and Mary Jane Irwin.
The design and use of SimplePower: A cycle-accurate energy estimation tool.
In Design Automation Conference (DAC), 2000.

[113] Qing Wu, Qinru Qiu, Massoud Pedram, and Chih-Shun Ding. Cycle-accurate
macro-models for RT-level power analysis. IEEE Transactions on Very Large
Scale Integration Systems (TVLSI), 1998.

152

[114] Joel Coburn, Srivaths Ravi, and Anand Raghunathan. Power emulation: a
new paradigm for power estimation. In Design Automation Conference (DAC),
2005.

[115] Jianlei Yang, Liwei Ma, Kang Zhao, Yici Cai, and Tin-Fook Ngai. Early stage
real-time SoC power estimation using RTL instrumentation. In Asia and South
Pacific Design Automation Conference (ASP-DAC), 2015.

[116] Dam Sunwoo, Gene Y Wu, Nikhil A Patil, and Derek Chiou. PrEsto: An
FPGA-accelerated power estimation methodology for complex systems. In In-
ternational Conference on Field Programmable Logic and Applications (FPL),
2010.

[117] Frank Bellosa. The benefits of event: driven energy accounting in power-
sensitive systems. In ACM SIGOPS European Workshop (EW), 2000.

[118] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard
Ayguade. Decomposable and responsive power models for multicore processors
using performance counters. In ACM International Conference on Supercom-
puting (ICS), 2010.

[119] C Gilberto and M Margaret. Power prediction for intel xscale processors using
performance monitoring unit events. In International Symposium on Low Power
Electronics and Design (ISLPED), 2005.

[120] Bhavishya Goel, Sally A McKee, Roberto Gioiosa, Karan Singh, Major Bhadau-
ria, and Marco Cesati. Portable, scalable, per-core power estimation for intel-
ligent resource management. In International Conference on Green Computing
(IGCC), 2010.

[121] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In International Symposium on
Microarchitecture (MICRO), 2003.

[122] Fabian Oboril, Jos Ewert, and Mehdi B Tahoori. High-resolution online power
monitoring for modern microprocessors. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2015.

[123] Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan Venkatara-
mani, Tulika Mitra, and Sanjay Vishin. Power-performance modeling on asym-
metric multi-cores. In International Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES), 2013.

153

[124] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip Kundu.
A study on the use of performance counters to estimate power in microproces-
sors. IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II),
2013.

[125] Mark Sagi, Nguyen Anh Vu Doan, Martin Rapp, Thomas Wild, Jörg Henkel,
and Andreas Herkersdorf. A lightweight nonlinear methodology to accurately
model multicore processor power. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems (TCAD), 2020.

[126] Karan Singh, Major Bhadauria, and Sally A McKee. Real time power es-
timation and thread scheduling via performance counters. ACM SIGARCH
Computer Architecture News, 2009.

[127] Vijay Kiran Kalyanam, Peter G Sassone, and Jacob A Abraham. Power pre-
diction of embedded scalar and vector processor: Challenges and solutions. In
International Symposium on Quality Electronic Design (ISQED), 2017.

[128] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, So-
mayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH Computer Ar-
chitecture News, 2011.

[129] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G Saidi,
and Steven K Reinhardt. The M5 simulator: Modeling networked systems.
IEEE Micro, 2006.

[130] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-Yeon Wei, and David Brooks.
Quantifying sources of error in McPAT and potential impacts on architectural
studies. In International Symposium on High-Performance Computer Architec-
ture (HPCA), 2015.

[131] Wooseok Lee, Youngchun Kim, Jee Ho Ryoo, Dam Sunwoo, Andreas Gerst-
lauer, and Lizy K John. PowerTrain: A learning-based calibration of McPAT
power models. In International Symposium on Low Power Electronics and De-
sign (ISLPED), 2015.

[132] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representa-
tions (ICLR), 2017.

[133] Srikar Bhagavatula and Byunghoo Jung. A low power real-time on-chip power

154

sensor in 45-nm SOI. IEEE Transactions on Circuits and Systems I: Regular
Papers (TCAS-I), 2012.

[134] Srikar Bhagavatula and Byunghoo Jung. A power sensor with 80ns response
time for power management in microprocessors. In Custom Integrated Circuits
Conference (CICC), 2013.

[135] Vijay Kiran Kalyanam, Eric Mahurin, Keith Bowman, and Jacob Abraham. A
proactive voltage-droop-mitigation system in a 7nm Hexagon™ processor. In
IEEE Symposium on VLSI Circuits (VLSI), 2020.

[136] Zacharias Hadjilambrou, Shidhartha Das, Paul N Whatmough, David Bull,
and Yiannakis Sazeides. GeST: An automatic framework for generating CPU
stress-tests. In International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2019.

[137] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological), 1996.

[138] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave
penalty. The Annals of statistics, 2010.

[139] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends
in optimization, 2014.

[140] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming,
2015.

[141] Fei Wen, Lei Chu, Peilin Liu, and Robert C Qiu. A survey on nonconvex
regularization-based sparse and low-rank recovery in signal processing, statis-
tics, and machine learning. IEEE Access, 2018.

[142] Arthur E Hoerl and Robert W Kennard. Ridge regression: applications to
nonorthogonal problems. Technometrics, 1970.

[143] Siemens. Catapult® high-level synthesis. https://eda.sw.siemens.com/en-
US/ic/ic-design/high-level-synthesis-and-verification-platform/,
2021.

[144] Synopsys. Design Compiler® RTL Synthesis. https://www.synopsys.com/
implementation-and-signoff/rtl-synthesis-test/design-compiler-
nxt.html, 2021.

155

[145] Arm. Arm Neoverse N1 Core Technical Reference Manual. https://
developer.arm.com/documentation/100616/0301, 2021.

[146] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph Pus-
desris, Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar Ringe,
Ashok Tummala, et al. The Arm Neoverse N1 Platform: Building Blocks
for the Next-Gen Cloud-to-Edge Infrastructure SoC. IEEE Micro, 2020.

[147] Robert Christy, Stuart Riches, Sujil Kottekkat, Prasanth Gopinath, Ketan
Sawant, Anitha Kona, and Rob Harrison. A 3GHz Arm Neoverse N1 CPU
in 7nm FinFET for infrastructure applications. In International Solid-State
Circuits Conference (ISSCC), 2020.

[148] Arm. Arm Cortex-A77 Core Technical Reference Manual. https://
developer.arm.com/documentation/101111/latest/preface, 2021.

[149] Synopsys. VCS® functional verification solution. https://www.synopsys.
com/verification/simulation/vcs.html, 2021.

[150] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. PyTorch: An imperative style, high-performance deep learning library. In-
ternational Conference on Neural Information Processing Systems (NeurIPS),
2019.

[151] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in Python. Jour-
nal of Machine Learning Research (JMLR), 2011.

[152] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, et al. Array programming with NumPy.
Nature, 2020.

[153] Nico JD Nagelkerke et al. A note on a general definition of the coefficient of
determination. Biometrika, 1991.

[154] Zhang Xuegong. Introduction to statistical learning theory and support vector
machines. Acta Automatica Sinica, 2000.

[155] Joseph Lee Rodgers and W Alan Nicewander. Thirteen ways to look at the
correlation coefficient. The American Statistician, 1988.

156

[156] Nir Magen, Avinoam Kolodny, Uri Weiser, and Nachum Shamir. Interconnect-
power dissipation in a microprocessor. In International Workshop on System
Level Interconnect Prediction (SLIP), 2004.

[157] Massoud Pedram and Narasimha Bhat. Layout driven technology mapping. In
Design Automation Conference (DAC), 1991.

[158] Massoud Pedram and Narasimha B Bhat. Layout driven logic restructur-
ing/decomposition. In International Conference On Computer Aided Design
(ICCAD), 1991.

[159] Bo Hu and Malgorzata Marek-Sadowska. Wire length prediction based cluster-
ing and its application in placement. In Design Automation Conference (DAC),
2003.

[160] Andrew B Kahng and Sherief Reda. Intrinsic shortest path length: A new, ac-
curate a priori wirelength estimator. In International Conference On Computer
Aided Design (ICCAD), 2005.

[161] Qinghua Liu and Malgorzata Marek-Sadowska. Pre-layout wire length and
congestion estimation. In Design Automation Conference (DAC), 2004.

[162] Petar Veličković et al. Graph attention networks. In International Conference
on Learning Representations (ICLR), 2017.

[163] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representa-
tions (ICLR), 2017.

[164] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. In International Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2017.

[165] Guo Zhang, Hao He, and Dina Katabi. Circuit-GNN: Graph neural networks
for distributed circuit design. In International Conference on Machine Learning
(ICML), 2019.

[166] Andrew B Kahng, Seokhyeong Kang, Hyein Lee, Siddhartha Nath, and Jyoti
Wadhwani. Learning-based approximation of interconnect delay and slew in
signoff timing tools. In International Workshop on System Level Interconnect
Prediction (SLIP), 2013.

157

[167] Seung-Soo Han, Andrew B Kahng, Siddhartha Nath, and Ashok S Vy-
dyanathan. A deep learning methodology to proliferate golden signoff timing.
In Design, Automation & Test in Europe Conference & Exhibition (DATE),
2014.

[168] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel
hypergraph partitioning: Applications in VLSI domain. IEEE Transactions on
Very Large Scale Integration Systems (TVLSI), 1999.

[169] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[170] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI),
2015.

[171] Leo Breiman. Random forests. Machine learning, 2001.

[172] Si2. NanGate 45nm open cell library. https://si2.org/open-cell-library/,
2018.

[173] Franc Brglez, David Bryan, and Krzysztof Kozminski. Combinational profiles
of sequential benchmark circuits. In International Symposium on Circuits and
Systems (ISCAS), 1989.

[174] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. RT-level ITC’99
benchmarks and first ATPG results. IEEE Design & Test of computers, 2000.

[175] Rafael T Possignolo, Nursultan Kabylkas, and Jose Renau. ANUBIS: A new
benchmark for incremental synthesis. In International Workshop on Logic and
Synthesis (IWLS), 2017.

[176] Christoph Albrecht. IWLS 2005 benchmarks. http://iwls.org/iwls2005/
benchmarks.html, 2005.

[177] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with
PyTorch Geometric. In International Conference on Learning Representations
Workshop (ICLR-W), 2019.

[178] Hongliang Chang and Sachin S Sapatnekar. Statistical timing analysis consid-

158

ering spatial correlations using a single PERT-like traversal. In International
Conference On Computer Aided Design (ICCAD), 2003.

[179] Mohammad Tehranipoor and Kenneth M Butler. Power supply noise: A survey
on effects and research. IEEE Design & Test of Computers, 2010.

[180] Howard H Chen and David D Ling. Power supply noise analysis methodol-
ogy for deep-submicron VLSI chip design. In Design Automation Conference
(DAC), 1997.

[181] ANSYS. ANSYS RedHawk website. https://www.ansys.com/products/
semiconductors/ansys-redhawk, 2018.

[182] SK Nithin, Gowrysankar Shanmugam, and Sreeram Chandrasekar. Dynamic
voltage (IR) drop analysis and design closure: Issues and challenges. In Inter-
national Symposium on Quality Electronic Design (ISQED), 2010.

[183] Min Zhao, Rajendran V Panda, Sachin S Sapatnekar, and David Blaauw.
Hierarchical analysis of power distribution networks. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2002.

[184] Haifeng Qian, Sani R Nassif, and Sachin S Sapatnekar. Power grid analysis us-
ing random walks. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2005.

[185] Tsung-Hao Chen and Charlie Chung-Ping Chen. Efficient large-scale power
grid analysis based on preconditioned krylov-subspace iterative methods. In
Design Automation Conference (DAC), 2001.

[186] Cheng Zhuo, Jiang Hu, Min Zhao, and Kangsheng Chen. Power grid analysis
and optimization using algebraic multigrid. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2008.

[187] Harshad Dhotre, Stephan Eggersglüß, and Rolf Drechsler. Identification of
efficient clustering techniques for test power activity on the layout. In Asian
Test Symposium (ATS), 2017.

[188] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep net-
work training by reducing internal covariate shift. In International Conference
on Machine Learning (ICML), 2015.

[189] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-

159

mization. In International Conference for Learning Representations (ICLR),
2015.

[190] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research (JMLR), 2014.

[191] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In Advances in Neural Information Pro-
cessing Systems Workshops (NeurIPS-W), 2017.

[192] Maurice George Kendall. Rank correlation methods. 1948.

[193] Aysa Fakheri Tabrizi, Nima Karimpour Darav, Logan Rakai, Ismail Bustany,
Andrew Kennings, and Laleh Behjat. Eh? predictor: A deep learning frame-
work to identify detailed routing short violations from a placed netlist. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2019.

[194] Aysa Fakheri Tabrizi, Logan Rakai, Nima Karimpour Darav, Ismail Bustany,
Laleh Behjat, Shuchang Xu, and Andrew Kennings. A machine learning frame-
work to identify detailed routing short violations from a placed netlist. In
Design Automation Conference (DAC), 2018.

[195] Ismail S. Bustany, David Chinnery, Joseph R. Shinnerl, and Vladimir Yutsis.
ISPD 2015 benchmarks with fence regions and routing blockages for detailed-
routing-driven placement. In ACM International Symposium on Physical De-
sign (ISPD), 2015.

[196] Chien-Hsiung Chiou, Chin-Hao Chang, Szu-To Chen, and Yao-Wen Chang.
Circular-contour-based obstacle-aware macro placement. In IEEE Asia and
South Pacific Design Automation Conference (ASP-DAC), 2016.

[197] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research (JMLR),
2011.

[198] Hung-Yi Liu. Supervised Design-Space Exploration. Columbia University, 2015.

160

[199] Giovanni Mariani, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano.
OSCAR: An optimization methodology exploiting spatial correlation in multi-
core design spaces. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2012.

[200] Pingfan Meng, Alric Althoff, Quentin Gautier, and Ryan Kastner. Adaptive
threshold non-pareto elimination: Re-thinking machine learning for system
level design space exploration on FPGAs. In Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016.

[201] Saurabh K Tiwary, Pragati K Tiwary, and Rob A Rutenbar. Generation of
yield-aware Pareto surfaces for hierarchical circuit design space exploration. In
Design Automation Conference (DAC), 2006.

[202] Sotirios Xydis, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano. A
meta-model assisted coprocessor synthesis framework for compiler/architecture
parameters customization. In Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2013.

[203] Sotirios Xydis, Gianluca Palermo, Vittorio Zaccaria, and Cristina Silvano.
SPIRIT: spectral-aware pareto iterative refinement optimization for supervised
high-level synthesis. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD), 2015.

[204] Marcela Zuluaga, Andreas Krause, Peter Milder, and Markus Püschel. "Smart"
design space sampling to predict pareto-optimal solutions. In International
Conference on Languages, Compilers, Tools and Theory for Embedded Systems
(LCTES), 2012.

[205] Marcela Zuluaga, Guillaume Sergent, Andreas Krause, and Markus Püschel.
Active learning for multi-objective optimization. In International Conference
on Machine Learning (ICML), 2013.

[206] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learn-
ing method for deep neural networks. In International Conference on Machine
Learning Workshop (ICML-W), 2015.

[207] Brian Zimmer, Rangharajan Venkatesan, Yakun Sophia Shao, Jason Clemons,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, et al. A 0.11 pJ/Op, 0.32-128 TOPS, scalable multi-chip-
module-based deep neural network accelerator with ground-reference signaling
in 16nm. In IEEE Symposium on VLSI Circuits (VLSI), 2019.

161

Biography

Zhiyao Xie is a Ph.D. candidate at the Electrical and Computer Engineering Depart-

ment of Duke University. He received his Bachelor’s degree from the City University

of Hong Kong in 2017. His research is mainly about efficient circuit design and inno-

vative EDA methods, especially focused on novel ML algorithms in EDA. During his

Ph.D. study, he worked as a Research Intern in multiple leading IC design or EDA

companies, including Nvidia, Arm, Cadence, and Synopsys.

Zhiyao’s first-authored work [5] received the Best Paper Award in MICRO’21. He

also received the Best Research Poster Award at the Student Research Forum in ASP-

DAC’22. He has authored or co-authored papers in multiple primer computer archi-

tecture and EDA conferences or journals, including MICRO [5], ICCAD [74, 79, 10, 8],

DAC [75], ASP-DAC [11, 7, 9], DATE [73], and TCAD [6]. After graduation, Zhiyao

will join the ECE Department of Hong Kong University of Science and Technology

(HKUST) as an Assistant Professor in Fall 2022.

162

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Power Modeling at RTL and Runtime
	Net Length and Timing Modeling at Netlist
	Fast IR Drop Modeling on Layout
	Early Routability Modeling on Layout
	Design Flow Tuning
	Summary of Works on ML for EDA

	Power Modeling at RTL and Runtime
	Background
	APOLLO Methodology
	Automatic Training Data Generation
	Features and Labels Collection
	ML-Based Power Proxy Selection
	Final Model Construction
	Multi-Cycle Power Modeling

	Application of the Power Modeling Framework
	Design-Time Power Analysis
	Runtime On-chip Power Meter

	Evaluation
	Experimental Setup
	Accuracy of APOLLO
	Model Discussion
	Hardware Prototype of APOLLO-OPM
	Application Scenarios

	Summary

	Net Length and Timing Modeling at Netlist
	Background
	Methodology
	Problem Formulation
	The Overall Flow
	Node Features on Graph
	Edge Features
	GNN and Net2 Models
	Timing Prediction Method

	Evaluation
	Experimental Setup
	Net Length Prediction Result
	Timing Prediction Result
	Runtime Comparison

	Summary

	Fast IR Drop Modeling on Layout
	Background
	Methodology
	Problem Formulation
	Feature Extraction
	Preprocessing by Decomposition
	PowerNet Model

	Evaluation
	Experiment Setup
	Accuracy and Speed Comparison
	IR Drop Mitigation in Design Flow
	Why PowerNet Performs Better
	Results Considering Other Factors

	Summary

	Early Routability Modeling on Layout
	Background
	Methodology
	Problem Formulation
	Feature Extraction
	#DRV Prediction
	DRC Hotspot Detection

	Evaluation
	Experiment Setup
	Overall #DRV Prediction
	DRC Hotspot Detection
	Ablation Studies

	Summary

	Design Flow Tuning
	Background
	Methodology
	Problem Formulation
	Clustering by Similarity in Important Features
	Model-less Sampling Based on Clusters
	Approximate Samples
	Model-guided Sampling by Clustering
	Dynamic Tree Depth

	Evaluation
	Experiment Setup
	Flow Tuning Performance
	Experiment Setup on Industrial Designs
	Performance on Industrial Designs

	Summary

	Conclusion
	Bibliography
	Biography

