
FADO: Floorplan-Aware Directive Optimization
for High-Level Synthesis Designs on Multi-Die FPGAs

Linfeng Du
linfeng.du@connect.ust.hk

Hong Kong University of Science and
Technology

Kowloon, Hong Kong

Tingyuan Liang
tliang@connect.ust.hk

Hong Kong University of Science and
Technology

Kowloon, Hong Kong

Sharad Sinha
sharad@iitgoa.ac.in

Indian Institute of Technology Goa
Goa, India

Zhiyao Xie
eezhiyao@ust.hk

Hong Kong University of Science and
Technology

Kowloon, Hong Kong

Wei Zhang
eeweiz@ust.hk

Hong Kong University of Science and
Technology

Kowloon, Hong Kong

ABSTRACT
Multi-die FPGAs are widely adopted to deploy large-scale hardware
accelerators. Two factors impede the performance optimization
of high-level synthesis (HLS) designs implemented on multi-die
FPGAs. On the one hand, the long net delay due to nets crossing die-
boundaries results in an NP-hard problem to properly floorplan and
pipeline an application. On the other hand, traditional automated
searching flow for HLS directive optimizations targets single-die
FPGAs, and hence, it cannot consider the resource constraints on
each die and the timing issue incurred by the die-crossings. Further,
it leads to an excessively long runtime to legalize the floorplanning
of HLS designs generated under each group of configurations during
directive optimization due to the large design scale.

To co-optimize the directives and floorplan of HLS designs on
multi-die FPGAs, we propose the FADO framework, which for-
mulates the directive-floorplan co-search problem based on the
multi-choice multi-dimensional bin-packing and solves it using
an iterative optimization flow. For each step of directive optimiza-
tion, a latency-bottleneck-guided greedy algorithm searches for
more efficient directive configurations. For floorplanning, instead
of repetitively incurring global floorplanning algorithms, we imple-
ment a more efficient incremental floorplan legalization algorithm.
It mainly applies the worst-fit strategy from the online bin-packing
algorithm to balance the floorplan, together with an offline best-fit-
decreasing re-packing step to compact the floorplan, followed by
pipelining of the long wires crossing die-boundaries.

Through experiments on a set of HLS designs mixing dataflow
and non-dataflow kernels, FADO not only well-automates the co-
optimization and finishes within 693X∼4925X shorter runtime, com-
pared with DSE assisted by global floorplanning, but also yields an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FPGA ’23, February 12–14, 2023, Monterey, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9417-8/23/02. . . $15.00
https://doi.org/10.1145/3543622.3573188

improvement of 1.16X∼8.78X in overall workflow execution time
after implementation on the Xilinx Alveo U250 FPGA.

CCS CONCEPTS
• Hardware→ High-level and register-transfer level synthe-
sis; Partitioning and floorplanning.

KEYWORDS
High-Level Synthesis, Design Space Exploration, Multi-Die FPGA,
Directive Optimization, Floorplanning

ACM Reference Format:
Linfeng Du, Tingyuan Liang, Sharad Sinha, Zhiyao Xie, and Wei Zhang.
2023. FADO: Floorplan-Aware Directive Optimization for High-Level Syn-
thesis Designs on Multi-Die FPGAs. In Proceedings of the 2023 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA ’23), Feb-
ruary 12–14, 2023, Monterey, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543622.3573188

1 INTRODUCTION
Guided by optimization directives, high-level synthesis (HLS) com-
piles high-level behavioral specifications to register-transfer level
(RTL) structures, supporting the ever-growing functional and struc-
tural complexity of hardware accelerators. The various directives
contribute to large design space to search upon. For example, there
are 26 directives in Xilinx Vitis HLS 2020.2 [11], each of which has a
set of parameters and can be applied at different levels or structures
of the HLS source code. Previous works [18, 27, 28, 31, 32, 34, 37,
38, 41, 45] mainly use automated design space exploration (DSE)
algorithms to search for the Pareto-optimal directive configurations,
targeting the lowest latency (execution time in clock cycle) under a
specific resource constraint.

To deploy large-scale HLS designs on FPGAs, with consideration
of chip yield in fabrication, larger FPGAs with multiple dies emerge
based on 2.5D/3D integration techniques. However, the concomi-
tant long net delay due to nets crossing die-boundaries harms the
timing quality of the implemented designs. One of the multi-die
packaging technologies is the Stacked Silicon Interconnect (SSI)
from Xilinx [30], where a silicon interposer integrates multiple dies,
also called super logic regions (SLRs). [4] states that the super long
lines (SLLs) between dies cause ∼1 ns delay, while [25] states that a

15

https://orcid.org/0000-0002-3007-4890
https://orcid.org/0000-0002-0390-2320
https://orcid.org/0000-0002-4532-2017
https://orcid.org/0000-0002-4442-592X
https://orcid.org/0000-0002-7622-6714
https://doi.org/10.1145/3543622.3573188
https://doi.org/10.1145/3543622.3573188
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543622.3573188&domain=pdf&date_stamp=2023-02-12

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Linfeng Du, Tingyuan Liang, Sharad Sinha, Zhiyao Xie, & Wei Zhang

HLS Source Code

Func/Loop/Array
Parser

Mixed Dataflow &
Non-Dataflow

Graph Constructor

HLS Tool

AutoBridge
Floorplanner

QoR
Library

Online Packing

Look Back

Look Ahead

Offline Re-packing

AutoBridge
Latency Balancer,

Router, RTL Generator

* Output:
(1) Updated Verilog for

Dataflow Kernel
(2) Legal Floorplan

Constraint (.tcl)

Incremental
Pipelining

if not fit

Online Packing

Online Packing

Online Packing

if not fit

if not fit

if not fit

if fit

* Output:
Directives
Config (.tcl)

FADO Utilities

External Tools

FADO Workflow

Pre-processing

FADO Directive Search

FADO Floorplanning

FADO

Directive
Optimization

next iter

Initial Floorplan

Figure 1: Overview of Our FADO Framework.
typical medium-length routing wire within a single die has 4X∼8X
shorter delay under the same manufacturing process. Further, [7]
shows that for HLS dataflow designs, a handshake-based model for
task-level parallelism, its floorplanning and pipelining can optimize
the maximum achievable frequency (Fmax) on multi-die Alveo FP-
GAs to at most ∼300 MHz, because of the delay of SLLs and long
routes detoured by specialized IP blocks close to the I/O banks.

To mitigate the delay penalty on multi-die FPGAs, Xilinx pro-
poses using the floorplanning method [14] to keep critical timing
paths on a single SLR. However, the fine-grained gate/cell-level
floorplanning is very time-consuming. In comparison, [7] requires
that no function in the HLS dataflow region should spread over
multiple SLRs and proposes a coarse-grained method to floorplan
HLS functions at the SLR level to accommodate the large-scale
dataflow designs and pipeline the wires crossing die-boundaries.

Min-cut floorplanning focuses on meeting the separate resource
constraints on slots divided by SLR boundaries or I/O banks and the
SLL number constraints between SLRs. However, an initial min-cut
floorplan would not always support the latency-centric optimiza-
tion of HLS directives. When a function’s directive configuration
changes, its resource also changes, and the original floorplan could
be illegal because of resource over-utilization. For coordinating
floorplanning with directive DSE, a simple combination is to solve
the global floorplanning repeatedly, e.g., using mixed-integer linear
programming (MILP) solver [7], whenever there’s a new directive
applied. This incurs an extended runtime of the DSE flow. Thus,
we try to replace the global MILP solution with an incremental
legalization algorithm to facilitate a highly-efficient integration of
iterative directive search and floorplanning.

In this paper, we solve this challenge with a new framework
named FADO 1, as shown in Fig. 1. It is the first work to co-optimize
HLS directives and floorplanning on multi-die FPGAs, thus ben-
efiting both latency and timing of HLS designs. We first formu-
late this complex co-optimization problem based on multi-choice
multi-dimensional bin-packing (MMBP) [26], then develop an ex-
tremely efficient iterative solution. In each iteration, we apply a
latency-bottleneck-guided greedy algorithm to search for more ef-
ficient directive configurations, followed by incremental floorplan
legalization. Such legalization applies both worst-fit (WF) online
bin-packing algorithm and the best-fit decreasing (BFD) offline al-
gorithm [20]. The WF algorithm balances the resource utilization
1The FADO framework for directive-floorplan co-optimization is fully open-sourced
in https://github.com/RipperJ/FADO.

Table 1: Comparisons between FADO and Previous Work
Directive Multi-die Floorplan-aware
Search Floorplanning Directive DSE (FADO)

QoR latency, timing latency, resource,
resource (frequency) timing

Design 1. directives 2. SLR-level 1 & 2Space & parameters func location
DSE syn: slow; slow (SA, MILP, fast (incremental

Efficiency model: fast bi-partition, ...) floorplanning)
Type of dataflow or dataflow mixed dataflow

Benchmark non-dataflow & non-dataflow

among slots on FPGA to avoid congestion, while the BFD algorithm
breaks the balance with minimum cost to enable the floorplanning
of overlarge HLS functions. At the end of each iteration, FADO in-
crementally adds/updates/removes the pipeline logic along the long
wires crossing die-boundaries. This incremental floorplan update
is much faster than global algorithms in previous works [7].

In summary, FADO improves the overall performance of designs
deployed on multi-die FPGAs with co-optimization and achieves
high speed with its customized iterative solution. In our experiment,
FADO can fully utilize resources on FPGA under all constraints.
Also, FADO proves to scale well to large accelerators with both
dataflow and non-dataflow kernels.

Our contributions in FADO are as summarized below:
• To the best of our knowledge, FADO is the first solution
for co-optimization of HLS directives and floorplanning on
multi-die FPGAs. It improves both latency and timing of
complex implemented designs within a very short runtime.

• We propose the first precise mathematical formulation of this
directive-floorplan co-optimization problem on multi-die
FPGAs in FADO. Its solution is based on a well-customized
iterative algorithm, which finishes in seconds, achieving
orders-of-magnitude speedup over global algorithms in prior
works, while producing even better final design quality.

• Compared with the directive DSE with the global MILP floor-
planning and pipelining [7], FADO achieves 693X∼4925X
speedup with an even higher and near-optimal final design
performance on FPGA for all six tested designs. The perfor-
mance measured with overall workload execution time on
each design improves 1.16X∼8.78X.

• Compared with [7], our FADO framework can automatically
handle not only dataflow benchmarks but also large-scale
applications mixing dataflow and non-dataflow kernels.

2 RELATEDWORK
As shown in Table. 1, FADO performs co-optimization considering
latency, resource, and timing during floorplanning, while previous
commonly used flows, such as directive search and multi-die floor-
planning, only target one or two optimization objectives. To achieve
multi-objective optimization, the design space is enormous, defined
by the Cartesian product of directives, their respective parame-
ters, and SLR-level function locations. Previous works may take
a long time to traverse such a large design space. However, with
our effective incremental floorplanning, FADO achieves orders-of-
magnitude speedup in the search time. Moreover, existing floor-
planning works for HLS designs [2, 7] are dedicated to dataflow
applications. FADO is able to automatically solve the floorplanning
for non-dataflow functions by adding additional constraints.

16

https://github.com/RipperJ/FADO

FADO: Floorplan-Aware Directive Optimization
for High-Level Synthesis Designs on Multi-Die FPGAs FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Table 2: Objectives of Multi-die FPGA Timing Optimizations
Objectives Previous Works

Total Wirelength [6, 21, 44]
Signal Delay [8, 21, 25]

Number of Cut Net (SLL) [7, 8, 25, 29]
Routing Congestion [2, 8, 25, 29]

Aspect Ratio [6, 29]

HLS Directive Optimization has been researched thoroughly.
The featured challenges are listed below.

• Directives and their parameters contribute to an enormous
design space [35]. Accordingly, we apply a latency-bottleneck-
guided algorithm to minimize the overall latency and speed
up the DSE effectively.

• Directive configurations have non-monotonic effects [35] on
QoRs, which is also explained by [42] as inter-dependency
among directives and structures in the source code. To avoid
getting trapped in local optima on the non-monotonic design
space, we design the look-ahead/back sampling methods.

The general techniques for HLS directive DSE includes (1) meta
heuristics [31, 32, 40], (2) dedicated heuristics [27, 28, 42], (3) ma-
chine learning [24, 37, 43], and (4) graph analysis [34, 38, 41, 45].
Prior work on directive search mainly optimizes latency under an
overall resource constraint of single-die FPGAs. To compare, multi-
die FPGAs introduce separate constraints on each slot and between
SLRs, and also the vital timing issue because of long wires crossing
die-boundaries. Hence, we cannot directly apply the previous DSE
algorithms to our co-optimization problem.
Multi-die FPGA Timing Optimization can be classified by their
objectives as Table. 2 shows. [6] proposes optimization on total
wirelength and aspect ratio of face-to-face-stacked floorplans. [21]
minimizes total wirelength while reducing total and die-crossing
delay. [44] proposes constructive floorplan optimizations dedicated
to PEs of systolic arrays. [8] and [25] extend the P&R tool VPR [3]
to multi-die scenario by adding parameters to the cost function in-
cluding wire-cut ratio, delay increment, and cut number, while [25]
also considers the congestion cost. [7] applies MILP to minimize the
number of die-crossing long wires. It runs iterative bi-partitioning
rather than N-way partitioning and prefers the most balanced floor-
plan across all slots divided by die-boundaries and I/O banks. [29]
implements a partition-driven placer and an aspect-ratio-aware cut
scheduling algorithm. [2] also applies ILP and resource balancing
heuristics to partition dataflow accelerators and average conges-
tion among different SLRs. It also discusses partitioning dataflow
accelerators among multiple FPGAs through network interfaces.

In FADO, we mainly compare with [7] on the efficiency of coarse-
grained floorplanning because fine-grained floorplanning in other
works is too time-consuming for large-scale designs, not to mention
floorplanning repetitively during iterative DSE. We identify that
the major frequency improvement in [7] comes from the insertion
of pipelining logic, while min-cut floorplanning mainly performs
legalization for logic resources and die-crossings. Thus, we replace
the timing-consuming min-cut MILP floorplanning with an incre-
mental legalization algorithm with a partial pipelining update to
speed up the DSE without sacrificing floorplanning quality.
Knapsack [23] and Bin-Packing Problems [22] are a series of
classic combinatorial optimization problems having a common
ground with the directive-floorplan co-search. The basic version

is the 0-1 Knapsack problem, where multiple items with different
weights and values are to be packed in a knapsack, and a binary
choice is made for packing the item or not. [16, 33] introduces the
multiple-choice Knapsack problem, where the items are classified,
and exactly one from each class is chosen to form a solution. The
classes here map to the directive configurations for an HLS function
in our problem. [17] introduces the multiple-dimensional Knapsack
problem, where the weight of each item and the capacity of knap-
sacks are in vectors. This corresponds with the types and amounts
of resources on each die of a multi-die FPGA. [1, 26] separately
formulates the multi-choice multi-dimensional Knapsack problem
(MMKP) and bin-packing problem (MMBP). The optimal solution
to this problem can be found using branch-and-bound with linear
programming, but the high time complexity does not support a
large number of variables and equations. Another approximation
is using greedy approaches, generally sorting items based on the
values and the weights in a certain order. We thus formulate our
problem based on the MMBP and combine online Worst Fit (WF)
and offline Best-Fit Decreasing (BFD) [20] bin-packing heuristics
to solve it efficiently. Here, in the online algorithm, the decision
of packing an item is irreversible, and the next item is only visible
after the previous packing is settled. For offline algorithms, the
value and weight of all items are visible from the very beginning,
and we can sort the items to improve the packing quality. [15]

3 MOTIVATION
To show the different challenges of the directive-floorplan co-search
problem on multi-die FPGAs, we use a toy example with one step
of floorplanning followed by directive optimization to explain why
general floorplanning algorithms and heuristics won’t collaborate
with directive search.

Suppose that we have a toy multi-die FPGA with two slots, each
having a constraint of 70% of the total available resource, as sug-
gested by [2, 7]. Although there are several different resources on a
modern FPGA, such as Look-up Tables (LUT), Flip-Flops (FF), Digi-
tal Signal Processors (DSP), Block-RAMs (BRAM), UltraRAMs [10]
(URAM), etc., in our experiments, we normalize and take the maxi-
mum among all resources as the final utilization ratio in evaluation.

Fig. 2 shows a design consisting of 2 dataflow and 1 non-dataflow
kernel. A/B (or D/E) are functions connected by the FIFO channels in
the same dataflow kernel (region), defined as an HLS function with
directive "DATAFLOW", achieving task-level parallelism within the
function through a handshake-based model. C is a non-dataflow
function connected through RAM to other kernels. The channel
width between A and B is 16, and that between D and E is 8.

For latency optimization, different QoRs are caused by various
directive configurations in HLS. For example, when applying a
smaller initiation interval (II) to the directive PIPELINE, or a larger
factor to the UNROLL, the latency of an HLS design tends to de-
crease, while the resource utilization is likely to increase. In this
example, assume that we only have one directive — two configura-
tions for each function independently, either with or without that
directive. When the directive is applied to a function, its resource
consumption increases and latency decreases, as shown in Fig. 2.

For timing optimization, a design’s frequency can be ensured
at a high level by pipelining as long as the following floorplan
conditions are satisfied. The first is having a legal floorplan which

17

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Linfeng Du, Tingyuan Liang, Sharad Sinha, Zhiyao Xie, & Wei Zhang

A:
0.2

E:
0.25

Total Latency=9+2+7=18

B:
0.15

Directive
Search

Directive
Search

Directive
Search

Min-Cut
Floorplan

Balanced
Floorplan

Schedule
View

Schedule
View

Ideal
Floorplan

Schedule
View

Non-dataflow

C:L=2

E: L=6

A: L=8

Dataflow 1: latency=9 Dataflow 2: latency=7

Slot 0: Resource Util=0.55/0.7 Slot 1: Resource Util=0.25/0.7

C:
0.1

D:
0.1

A:
0.2

E:
0.25

B:
0.15

Slot 0: Resource Util=0.45/0.7 Slot 1: Resource Util=0.35/0.7

C:
0.1

D:
0.1

A:
0.2

E:
0.25

B:
0.15

Slot 0: Resource Util=0.2/0.7 Slot 1: Resource Util=0.6/0.7

C:
0.1

D:
0.1

A:
0.2

E:
0.35

B:
0.2

Slot 0: Resource Util=0.6/0.7 Slot 1: Resource Util=0.35/0.7

C:
0.1

D:
0.1

A:
0.2

E:
0.35

B:
0.2

Slot 0: Resource Util=0.55/0.7 Slot 1: Resource Util=0.6/0.7

C:
0.1

D:
0.3

A:
0.6

E:
0.35

B:
0.15

Slot 0: Resource Util=0.6/0.7 Slot 1: Resource Util=0.7/0.7

C:
0.1

D:
0.1

Total Latency=9+2+7=18

Non-dataflow

C:L=2

E: L=6

A: L=8

Dataflow 1: latency=9 Dataflow 2: latency=7

Total Latency=9+2+7=18

Non-dataflow

C:L=2

E: L=6

A: L=8

Dataflow 1: latency=9 Dataflow 2: latency=7

Total Latency=9+2+5=16

Non-dataflow

C:L=2
D: L=4

A: L=8

Dataflow 1: latency=9 Dataflow 2: latency=5

Total Latency=9+2+3=14

Non-dataflow

C:L=2
D:L=2

E:L=2

A: L=8

Dataflow 1: latency=9 Dataflow 2: latency=3

Total Latency=6+2+5=13

Non-dataflow

C:L=2

A: L=5

Dataflow 1: latency=6

D: L=4

Dataflow 2: latency=5

time

time

time

time

time HLS
Functions

Without Directive With Directive

Resource Latency Resource Latency

A 0.2 8 0.6 5

B 0.15 3 0.2 2

C 0.1 2 0.3 1

D 0.1 4 0.3 2

E 0.25 6 0.35 2

Dataflow
Region

FIFO FIFO Channel

RAM
RAM Between
Kernels

BA D

Width=16

FIFO

Top

CRAM E

Width=8

FIFORAM

A Sub-function in
A Dataflow Region

A Non-dataflow
Function

time

B: L=3

B: L=3

B: L=3

D: L=4

D: L=4

D: L=4
E: L=2

B: L=2

B: L=2

B: L=3

E: L=2

Figure 2: A Toy Example with 2 Dataflow Kernels and 1 Non-dataflow Kernel, with Different Latency (L) and Resource
Consumption (R). Three Different Floorplanning Methods and the Corresponding DSE Results Are Compared.

meets the resource constraint on every single slot. Second, only
FIFO channel connections are allowed to cross the slot boundaries
(within a limit on total width not reflected in this toy example)
because the handshake interface of FIFO is easy to pipeline, while
the complex RAM interface cannot be pipelined. Thus, when func-
tions are connected through RAM, they should be grouped and
floorplanned on the same slot, while functions connected through
FIFO channels can be partitioned on different slots.

During directive DSE, weminimize the total latency of the design
while ensuring the two floorplan conditions above. Suppose that
every function has no directive applied at the beginning of DSE. We
find an initial floorplan using a specific algorithm first and then try
to improve some functions by applying their respective directive,
subject to the resource constraint on each slot.

Fig. 2 shows the three floorplanning objectives compared in this
toy example. The first minimizes the width of the FIFO channel
crossing two slots (min-cut), as used in [7]. Since all functions
cannot be packed in one single slot, the solution to the min-cut
problem is 8, which is the width of the channel between D and
E. Thus, function E should be assigned to the other slot. In this
case, functions B and E can still fit into their slots when applying
directives, and the final total latency is improved to 16.

The second floorplan refers to the heuristics of resource balanc-
ing [2]. Since functions B, C, and D are grouped during floorplan-
ning, as the largest one, they are floorplanned onto the other slot
initially. After DSE, directives are applied for functions B, D, and E,
and the total latency is improved to 14.

To compare, an ideal floorplan for this design is to partition
between A and B, and the best point improves total latency from 18
to 13 clock cycles, which is the minimum achievable latency for this
case. If we have an ideal floorplan at the very beginning, it’s natural
for DSE to reach the optimal latency without any effort to change
the floorplan. However, if we start with the other two floorplans,
neither the min-cut nor balancing algorithm can further improve
the achieved latency. In our FADO framework, the incremental

floorplanning algorithm smartly re-packs the functions from either
of the two prior floorplans and always reaches the ideal solution
finally. To be specific, if FADO starts with the min-cut solution, A is
identified as the latency bottleneck and has the top priority to apply
the directive. When online packing finds no legal floorplan for A
under the min-cut floorplan, the offline re-packing stage groups B,
C, D, and E. Thus, the ideal floorplan is found, and the directive for
A is successfully applied. It’s a similar workflow if we start with
the balanced floorplan. In Sec. 6, the control experiments on real
benchmarks all start with a min-cut floorplan, to fairly compare
the effectiveness of FADO with MILP floorplanning assisted DSE.

From this example, we want to show that previous floorplanning
techniques could fail to assist directive optimization on multi-die
FPGAs. On the contrary, an improper floorplan could prune the
high-performance points in a design space. That’s why we propose
floorplan-aware directive optimization, the FADO framework.

4 PROBLEM FORMULATION
Based on the multi-choice multi-dimensional bin-packing prob-
lem, we formulate the directive-floorplan co-search problem on
multi-die FPGAs. To accurately describe the problem and show the
complexity compared with floorplanning in [7], we also present
a MILP formulation below. Note that MILP is only used for a de-
scription of the problem. In the implementation (Sec. 5), we are
using approximation heuristics for the objective and each constraint
instead of repetitively calling the MILP solver.

4.1 Symbol Definition
Table 3 shows the domain and definition of all the variables used
in our formulation.

4.2 MILP Formulation
The objective function in our problem minimizes the total latency
of an HLS design. To show the generality of our problem, assume
that we have a large accelerator containing multiple dataflow and
non-dataflow kernels connected by RAMs. Minimizing the total

18

FADO: Floorplan-Aware Directive Optimization
for High-Level Synthesis Designs on Multi-Die FPGAs FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Table 3: Symbols Used in Problem Formulation

Symbols Definition

𝐿𝑖 𝑗

The latency of the 𝑗-th function in the 𝑖-th kernel
along the longest path. 𝑖 ∈ {1, 2, ...,𝑚 + 𝑛},
𝑗 ∈ {1, 2, ...,𝐶𝑖 }. 𝐶𝑖 = 1,∀𝑖 ≥ 𝑚 + 1.

𝑍𝑖 𝑗𝑝

Suppose that function 𝑗 or kernel 𝑖 has 𝑄𝑖 𝑗 directive
choices in total. 𝑍𝑖 𝑗𝑝 = 1 when directive choice 𝑝 is
applied to function 𝑗 of kernel 𝑖 . 𝑝 ∈ {1, 2, ..., 𝑄𝑖 𝑗 }.

𝑥𝑖 𝑗𝑘
𝑥𝑖 𝑗𝑘 = 1 when the sub-function 𝑗 of kernel 𝑖 is
floorplanned to slot 𝑘 ∈ {1, 2, ..., 𝑆} among 𝑆 slots.

𝑟𝑖 𝑗𝑝𝑡

𝑟𝑖 𝑗𝑝𝑡 represents the consumption of resource type 𝑡
of function 𝑗 in kernel 𝑖 , when directive choice 𝑝
is applied. 𝑡 ∈ 𝐵𝑅𝐴𝑀,𝐷𝑆𝑃, 𝐹𝐹, 𝐿𝑈𝑇,𝑈𝑅𝐴𝑀 .

𝑅𝑘𝑡 The total amount of resource 𝑡 on slot 𝑘 .

𝑒𝑖1, 𝑗1,𝑖2, 𝑗2

𝑒𝑖1, 𝑗1,𝑖2, 𝑗2 ∈ N. It’s positive when there exists a RAM
connection from function 𝑗1 in kernel 𝑖1, to 𝑗2
in kernel 𝑖2, with a width of 𝑒𝑖1, 𝑗1,𝑖2, 𝑗2. 𝑖1, 𝑖2 ∈
{1, 2, ...,𝑚 + 𝑛}, 𝑗1 ∈ {1, 2, ...,𝐶𝑖1}, 𝑗2 ∈ {1, 2, ...,𝐶𝑖2}.

𝑊,𝐻 Width/Height of an FPGA (by number of slots).

𝑏ℎ (𝑘,𝑘𝑠,𝑘𝑑)

𝑏ℎ ∈ {0, 1}, it equals 1 when a source function on slot
𝑘𝑠 goes through the die boundary indexed with 𝑘
and connects to a destination function on slot 𝑘𝑑 .
𝑘 = (𝑘𝑥 , 𝑘𝑦), 𝑘𝑥 ∈ {0, 1, ...,𝑊 − 1}, 𝑘𝑦 ∈ {0, 1, ..., 𝐻 − 2}.

𝐵ℎ Total amount of SLLs on a die boundary.

latency is equivalent to minimizing the sum of latency of kernels
𝐿𝑖 along the longest path, as Eq. 1 shows.

minimize
𝑁∑︁
𝑖=1

𝐿𝑖 (1)

Generally, a dataflow kernel’s total latency is very close to the
longest sub-function max𝑗 𝐿𝑖 𝑗 in it, meanwhile relatively much
smaller latency comes from the depth of dataflow — max𝑗 𝐿𝑖 𝑗 ≫
𝐿𝑑𝑒𝑝𝑡ℎ . We here approximate the total latency of a dataflow kernel
𝑖 with the latency of the longest sub-function.

For the longest-latency path with𝑚 dataflow kernels and 𝑛 non-
dataflow kernels, the objective function can be re-written as:

minimize
𝑚∑︁
𝑖=1

max
𝑗

𝐿𝑖 𝑗 +
𝑚+𝑛∑︁
𝑖=𝑚+1

𝐿𝑖 (2)

where 𝑖 iterates on kernels, and 𝑗 on sub-functions. There’s no
sub-function in non-dataflow kernels indexed from𝑚 + 1 to𝑚 + 𝑛.

Table 4: Directives in the Design Space of FADO
Directives Parameters

PIPELINE Initiation Interval (II) (<int>: {𝑀𝑖𝑛𝐼𝐼, ..., ⌊4 ×𝑀𝑖𝑛𝐼𝐼, 𝐼𝑡𝑒𝑟𝐿𝑎𝑡⌋})
UNROLL Factor (<int>: {1, 2, 4, ..., 𝐿𝑜𝑜𝑝𝐵𝑜𝑢𝑛𝑑})

ARRAY_PARTITION Type (Block/Cyclic/Complete)
Dimension (<int>)

BIND_STORAGE Implementation (BRAM/URAM)

4.2.1 Constraint 1: multi-choice packing problem. During the direc-
tive search, we have multiple choices of directives and parameters
for HLS functions, loops, and arrays. The directive design space
of FADO is shown in Table 4. For PIPELINE, the lower bound of
II,𝑀𝑖𝑛𝐼𝐼 , is determined by recurrence and resource analysis, and
it’s also revealed by the HLS report when applying the minimum
value possible for target II, i.e., 1. The upper bound considers the
iteration latency and four times the 𝑀𝑖𝑛𝐼𝐼 . For UNROLL, the ap-
plicable value for its factor ranges from 1 to the loop bound. For
ARRAY_PARTITION, we consider the three types of partitioning
schemes and the dimension of an array. For BIND_STORAGE, an
array is either implemented using BRAM or URAM.

Grouped

BRAM/URAM FIFO Channel

Dataflow Sub-functions

ba c

Dataflow Kernel A

d…
Non-

dataflow
Kernel C

Dataflow
Kernel B

Grouped

Figure 3: Grouped Floorplan for RAM-Interfaced Functions.
Every time we trigger the HLS, one group of directives and the

corresponding QoR are applied for each function (including the
loops and arrays within it), described as the constraint in Eq. 3.

𝑄𝑖 𝑗∑︁
𝑝=1

𝑍𝑖 𝑗𝑝 = 1, 𝑍𝑖 𝑗𝑝 ∈ {0, 1} (3)

4.2.2 Constraint 2: multiple bins. During floorplanning, multi-die
FPGA is partitioned into several slots by the die boundaries and
I/O banks. Eq. 4 guarantees that there’s no duplicated or missing
floorplan for each HLS function.

𝑆∑︁
𝑘=1

𝑥𝑖 𝑗𝑘 = 1, 𝑥𝑖 𝑗𝑘 ∈ {0, 1} (4)

4.2.3 Constraint 3: multi-dimensional packing problem. In our prob-
lem, a single dimension of resource constraints corresponds with
one type of resource on the multi-die FPGAs. The following con-
straint in Eq. 5 assures that functions on each slot with specific
directive configurations respectively will not cause resource over-
flow in any type of resource.

𝑚+𝑛∑︁
𝑖=1

𝐶𝑖∑︁
𝑗=1

𝑥𝑖 𝑗𝑘𝑧𝑖 𝑗𝑝𝑟𝑖 𝑗𝑝𝑡 ≤ 𝑅𝑘𝑡 (5)

4.2.4 Constraint 4: grouping the RAM-connected functions. Another
special type of constraint is introduced by RAM connection be-
tween kernels, as shown in Fig. 3. Since the interface between
RAMs and functions is not the handshake model and is difficult
to pipeline, the RAM-connected functions are grouped and as-
signed to the same slot during floorplanning. As Equation 6 states,
𝑒𝑖1, 𝑗1,𝑖2, 𝑗2𝑥𝑖1𝑗1𝑘1𝑥𝑖2𝑗2𝑘2 = 0 guarantees that either there’s no RAM
connection between two functions, or they are not separated on
two different slots.

𝑒𝑖1, 𝑗1,𝑖2, 𝑗2𝑥𝑖1𝑗1𝑘1𝑥𝑖2𝑗2𝑘2 = 0, (𝑖1 ≠ 𝑖2 ∨ 𝑗1 ≠ 𝑗2) ∧ 𝑘1 ≠ 𝑘2
𝑒𝑖1, 𝑗1,𝑖2, 𝑗2 ∈ N+, 𝑖1 ≠ 𝑖2 ∨ 𝑗1 ≠ 𝑗2 (6)

4.2.5 Constraint 5: Limited number of SLLs. As Fig. 4 shows, Alveo
U250 FPGA is vertically partitioned into two parts by the I/O banks
and horizontally partitioned by die-boundaries into four parts. Sup-
pose we have a source function "s" and a destination function "d"
placed on SLR3:Slot0 and SLR0:Slot1, respectively. No matter which
route between "s" and "d" is chosen, it crosses three horizontal die
boundaries. For each boundary with vertical index 𝑘𝑦 , the route
passes through either the left half or the right half of it. The corre-
sponding constraint is:

𝑊 −1∑︁
𝑘𝑥=0

𝑥𝑖1𝑗1𝑘1𝑥𝑖2𝑗2𝑘2𝑏ℎ (𝑘,𝑘1,𝑘2) sgn(𝑒𝑖1, 𝑗1,𝑖2, 𝑗2) = 1 (7)

Since the number of SLLs is limited between two dies, we have
the formulation in Eq. 8.∑︁

𝑖1, 𝑗1,𝑖2, 𝑗2,𝑘1,𝑘2
𝑥𝑖1𝑗1𝑘1𝑥𝑖2𝑗2𝑘2𝑏ℎ (𝑘,𝑘1,𝑘2)𝑒𝑖1, 𝑗1,𝑖2, 𝑗2 ≤ 𝛽𝐵ℎ, (8)

where 𝛽 is the upper limit of SLL utilization. It is set to 90% in
our implementation.

19

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Linfeng Du, Tingyuan Liang, Sharad Sinha, Zhiyao Xie, & Wei Zhang

SLR 1: Slot 0 SLR 1: Slot 1

SLR 0: Slot 0 SLR 0: Slot 1

SLR 3: Slot 0 SLR 3: Slot 1

SLR 2: Slot 0 SLR 2: Slot 1

s

d

Route 2

Route 3

Die Boundary

IO Banks

kx

ky

3

2

1

0

0 1

Route 0

Route 1

Vertical Boundary (bv)

Horizontal Die
Boundary (bh)

Figure 4: An Example about Different Routes between Two
Functions Placed on Two Separate Slots of Alveo U250 FPGA.

5 IMPLEMENTATION
To solve the MILP formulation above by the FADO framework
(Fig. 1), we describe the objective and multi-choice constraint (Eq. 3)
in the DSE algorithm (Sec. 5.3), and other constraints in the floor-
planning algorithms (Sec. 5.4). The interaction between FADO and
external tools is explained in Sec. 5.6.

5.1 Pre-processing
In a large-scale HLS design, many function blocks could be based on
the same template. When running an HLS over the entire design, ex-
cessively long synthesis time is wasted on analyzing those functions
from the same template repeatedly. Besides, it is hard for existing
graph analysis or machine learning methods to accurately predict
the QoR of an HLS design with various coding styles, complicated
control and data flow, and flexible compilation optimization.

Considering the small size of each function template, it only takes
a short period to sample their directive choices and build a function-
level QoR library to facilitate the whole workflow. To be specific,
we classify the functions by either the template of C++ generics,
or custom naming rules, e.g., all functions whose names match the
regular expression r’funcA_[0-9]_[0-9]’ will map to ’funcA’ in the
QoR library. To apply directives to the C++ template, we follow [12].
As for custom regex, it’s straightforward since they have distinct
names. Accordingly, we only need to look up for QoRs in the library
instead of running HLS flow for an entire design repeatedly.

5.2 Booting of FADO
As Fig. 1 shows, at the very beginning, the input to FADO is
an HLS design without any directive of PIPELINE, UNROLL, AR-
RAY_PARTITION, and BIND_STORAGE. We parse the source code
in "Func/Loop/Array Parser" to generate labels and hierarchy for
nested loops, and to identify functions of the same template to
build a QoR library 𝑄𝑜𝑅_𝑙𝑖𝑏 in pre-processing. In the other work-
flow, the labeled code is synthesized by an external HLS tool. Then,
the HLS report is analyzed by a graph constructor, where connec-
tions through FIFOs and RAMs are identified. Then, the graph is
passed to the min-cut floorplanner of AutoBridge [7] to generate
an initial legal floorplan, which is then passed on to FADO for
directive-floorplan co-optimization.

5.3 Directive Optimization
The Top-Level Algorithm of floorplan-aware directive optimiza-
tion is described in Alg. 1. In every iteration of floorplan-aware
directive optimization, we identify the functions with the longest
and second-longest latency among the whole HLS design, i.e.,
the sub-function 𝑗1 of kernel 𝑖1 is the bottleneck, represented by

1 2 3 4

Initiation Interval (ii)

0.2

0.3

0.4

0.5

0.6

0.7

R
es

ou
rc

e
U

ti
li

za
ti

o
n

R
a
ti

o

CNN 13x10–Resource Util. v.s. ii

DSP

FF

LUT

1 2 3 4

Initiation Interval (ii)

0.10

0.15

0.20

0.25

0.30

0.35

R
es

ou
rc

e
U

ti
li

za
ti

o
n

R
a
ti

o

LU Decomp.–Resource Util. v.s. ii

DSP

FF

LUT

Figure 5: Comparison of Resource Utilization v.s. II between
CNN and LU Benchmarks.

Algorithm 1: Top-level of FADO framework
Input:𝑄𝑜𝑅_𝑙𝑖𝑏, 𝑁 : look-ahead step number
Output: Optimal Directives, Legal Floorplan

1 while True do
2 (𝑖1, 𝑗1) = argmax1𝑖,𝑗 (𝐿𝑖 𝑗) // the longest functions

3 𝐿(𝑖2, 𝑗2) = max2𝑖,𝑗 (𝐿𝑖 𝑗) // the 2nd-longest latency

4 𝐷𝑆 = Prune(𝑄𝑜𝑅_𝑙𝑖𝑏, (𝑖𝑚𝑎𝑥,1, 𝑗𝑚𝑎𝑥,1) , 𝐿𝑖𝑚𝑎𝑥,2, 𝑗𝑚𝑎𝑥,2);
5 𝐷𝑃 = 𝐷𝑆 [−1], break if 𝐷𝑃 is 𝑁𝑜𝑛𝑒 // Constraint Eq. 3

6 𝑓 𝑖𝑡 , 𝑖𝑛𝑐𝑟 𝑓 𝑝_𝑙𝑖𝑠𝑡 = online_packing((𝑖1, 𝑗1) , DP);
7 if not fit then
8 offline_repacking, online_packing
9 if not fit then
10 iterative look_ahead(𝑁), online_packing
11 if not fit then
12 iterative look_back(), online_packing

13 incremental_Floorplan(𝑖𝑛𝑐𝑟 𝑓 𝑝_𝑙𝑖𝑠𝑡);
14 exit_condition_check();

(𝑖1, 𝑗1) = argmax1
𝑖, 𝑗
(𝐿𝑖 𝑗), and the second-longest function is (𝑖2, 𝑗2).

We apply the latency-bottleneck-guided search [18, 45] in Prune(),
which extracts all design points of (𝑖1, 𝑗1) with smaller latency com-
pared with the second-longest function’s 𝐿(𝑖2, 𝑗2) to form a next-step
design space 𝐷𝑆 (a set of directive configurations and their respec-
tive QoRs). Although applying any of the configurations in 𝐷𝑆 to
function (𝑖1, 𝑗1) would make (𝑖2, 𝑗2) the new latency bottleneck of
the whole design, we choose the design point 𝐷𝑃 , which has the
largest latency among 𝐷𝑆 , for further floorplan legalization.

To compare, FADO will not make one-off latency improvements
for bottleneck functions or choose the design point with the lowest
resource utilization. On the one hand, aggressive latency improve-
ment usually results in a dramatic increase in the resource utiliza-
tion of current function(s), and potential latency improvement for
future bottlenecks could be precluded because of a lack of resources.
On the other hand, since resource utilization is calculated by tak-
ing the maximum ratio among different resources, considering the
non-monotonic design space, when utilization of one resource is
minimized, others could still increase. Hence, we always assign the
top priority to 𝐷𝑃 for floorplanning. Note that functions having the
same latency with (𝑖1, 𝑗1) are considered as a batch for efficiency.

Look-Ahead and Look-Back. Guided by the latency bottleneck,
the main algorithm prunes the ineffective design points with negli-
gible improvement in the overall latency. However, in realistic HLS
designs, the greedy algorithm could get stuck in local optima. Fig. 5
shows the different trend of resource utilization as the PIPELINE
initiation interval (II) changes in two designs, CNN from [5] and
LU from [36]. As II increases, latency also increases in both designs.
It results in less utilization of the three types of resources in the
CNN benchmark because computation instances are shared among
multiple cycles. However, in contrast, there are a lot of loop-carried

20

FADO: Floorplan-Aware Directive Optimization
for High-Level Synthesis Designs on Multi-Die FPGAs FPGA ’23, February 12–14, 2023, Monterey, CA, USA

1.0
latency

resource
0 1.0

(0.1, 0.8)

𝑫𝑷 𝒓, 𝒍 =(0.5, 0.3)

(0.5, 0.5)

(0.6, 0.2)

(0.3, 0.15)
(0.45, 0.1)

1

2

3

1

2

resource
constraint

0.35

(0.3, 0.6)

1

Look-ahead step number: 𝑁

𝑁=1: Result: (0.3, 0.6)

𝑁=2: Result: (0.3, 0.15)

𝑁=3: Result: (0.3, 0.15)

1 1 1 2

1 1 2

1 1 2 3

legal illegal

Current QoR of function 𝑖1, 𝑗1
QoRs of design points in 𝐷𝑆,
considered in look-ahead

QoRs considered in look-back

0.8

=max 𝐵𝑅𝐴𝑀,𝐷𝑆𝑃, 𝐹𝐹, 𝐿𝑈𝑇, 𝑈𝑅𝐴𝑀

0.4
𝑳 𝒊𝟐,𝒋𝟐

=

𝑳 𝒊𝟏,𝒋𝟏

=

Figure 6: Effect of Look-Ahead with Step # 𝑁 , and Look-Back.
dependencies in the LU benchmark, the results from the previous
iteration cannot be directly passed to the next, and extra logic is
used to buffer the results. Together with the effect of resource shar-
ing, the utilization first increases as II increases from 1 to 2, and
then decreases when II continues increasing.

To handle the non-monotonic design space, we propose the
sampling methods of look_ahead() and look_back(). When the
first two stages of floorplanning — online packing and offline re-
packing fail to find a legal floorplan for 𝐷𝑃 , we further check the
floorplan for a certain number of design points with lower latency
yet potentially fewer resources. This is referred to as the look-ahead
stage. If it still fails in floorplanning, we turn to check the points
with larger latency than𝐷𝑃 in the look-back stage. These points are
more likely to have lower resource utilization and a legal floorplan.

Fig. 6 shows a snapshot of directive search for the current bot-
tleneck function (𝑖1, 𝑗1). QoR values are normalized for clarity. The
design point with the top priority for floorplan checking is𝐷𝑃 , with
a resource utilization of 0.5 and a latency of 0.3 (the longest latency
smaller than 𝐿(𝑖2, 𝑗2) = 0.4). However, only 0.35 resource is left for
the current function, and there’s no legal floorplan found for𝐷𝑃 dur-
ing online packing and offline re-packing. We now look ahead/back
for other improvement opportunities with fewer resources. When
we set the step number 𝑁 to 1 during look_ahead(), the next de-
sign point consumes 0.6 utilization and also fails to be floorplanned.
Thus, when look_ahead() also fails to find a point with a legal
floorplan, look_back() traverses all the points with latency from
0.3 to 0.8. When 𝑁 is set to 2 or 3, the directive configuration with
a latency of 0.15 is found during look_ahead().

For HLS designs, our implementation decides the step num-
ber 𝑁 of look_ahead() by analyzing the range of parameters for
PIPELINE and UNROLL, two of the most effective directives. We
define the 𝑁 as the largest number of different configurations on
a single nested loop. To exclude the directives over-utilizing re-
sources, we check at most three levels for each nested loop from
the innermost level. For each nested loop of 𝑛 levels, we index the
innermost loop with 1, and the outermost loop with 𝑛. (1) For di-
rective PIPELINE, since [13] suggests a maximum loop bound of
64 for auto pipelining, we set the range of II to the logarithm of
the minimum between 64 and the iteration latency 𝐼𝐿 from HLS
report. (2) For directive UNROLL, similar to PIPELINE, we take the
minimum between 64 and the loop bound 𝐵. (3) For the combination
of PIPELINE and UNROLL, since all the inner loops are completely
unrolled when an outer loop is pipelined, we consider only the
directive combination in 2 levels of loops. In all, the resulting step
number 𝑁 for a design with𝑚 nested loops is:

Algorithm 2: Online Packing
Input: 𝑙𝑜𝑛𝑔𝑒𝑠𝑡_𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 and QoRs 𝐿𝑖 𝑗 , 𝑅𝑖 𝑗 , design point 𝑝
Output: 𝑓 𝑖𝑡 , 𝑖𝑛𝑐𝑟 𝑓 𝑠𝑝_𝑙𝑖𝑠𝑡

1 𝑓 𝑖𝑡 = False, 𝑖𝑛𝑐𝑟 𝑓 𝑝_𝑙𝑖𝑠𝑡 = [], 𝑢𝑛𝑓 𝑖𝑡_𝑓 𝑢𝑛𝑐𝑠 = [];
2 for 𝑓 𝑢𝑛𝑐 in longest_functions do
3 if 𝑓 𝑢𝑛𝑐 still fits in the current slot 𝑠𝑐 then
4 update directives for 𝑓 𝑢𝑛𝑐 , and resource util. for 𝑠𝑐 ;
5 𝐿𝑖 𝑗 , 𝑅𝑖 𝑗 = 𝐿𝑝 , 𝑅𝑝 ; 𝑓 𝑖𝑡 = True;

6 else
// check constraint Eq. 6, Eq. 7 and Eq. 8

7 calculate overflow ratio, and sort 𝑜𝑡ℎ𝑒𝑟_𝑠𝑙𝑜𝑡𝑠 by𝐶𝑅;
8 for each 𝑠𝑜 in 𝑜𝑡ℎ𝑒𝑟_𝑠𝑙𝑜𝑡𝑠 do
9 if no overflow when moving 𝑓 𝑢𝑛𝑐 to 𝑠𝑜 then

// check constraint Eq. 5

10 update directives for 𝑓 𝑢𝑛𝑐 ;
11 update util. for 𝑠𝑜 , 𝑠𝑐 ; // constraint Eq. 4

12 append (𝑓 𝑢𝑛𝑐 , 𝑠𝑜) to 𝑖𝑛𝑐𝑟 𝑓 𝑝_𝑙𝑖𝑠𝑡 ;
13 𝐿𝑖 𝑗 , 𝑅𝑖 𝑗 = 𝐿𝑝 , 𝑅𝑝 ; 𝑓 𝑖𝑡 = True; break;

14 if not fit then
15 append 𝑓 𝑢𝑛𝑐 to 𝑢𝑛𝑓 𝑖𝑡_𝑓 𝑢𝑛𝑐𝑠 ;

16 if any func in unfit_funcs then
17 clear 𝑖𝑛𝑐𝑟 𝑓 𝑝_𝑙𝑖𝑠𝑡 ; 𝑓 𝑖𝑡 = False;

𝑁1 = max
1≤𝑖≤𝑚

max(3,𝑛𝑖)∑︁
𝑗=1

log2min(64, 𝐼𝐿𝑖 𝑗)

𝑁2 = max
1≤𝑖≤𝑚

max(3,𝑛𝑖)∑︁
𝑗=1

log2min(64, 𝐵𝑖 𝑗)

𝑁3 = max
1≤𝑖≤𝑚

max(2,𝑛𝑖)∑︁
𝑗=1

log2min(64, 𝐵𝑖 𝑗)

𝑁 = 𝑁1 + 𝑁2 + 𝑁3

(9)

5.4 Incremental Floorplanning
The initial floorplan input to FADO is generated by an iterative
min-cut MILP bi-partitioning in the "AutoBridge Floorplanner [7]"
shown in Fig. 1. During FADO’s iterations, we apply a resource-
bottleneck-guided online WF algorithm. When the online packing
fails in finding a legal floorplan, an offline BFD re-packing compacts
the existing floorplan before calling the online packing again. The
definition of "online" and "offline" algorithms refers to [15]. During
online packing, HLS functions are optimized one after another, and
the previous floorplan of a function will be kept unchanged. In
contrast, without applying new directives, the offline stage reorder
all functions by heuristics to improve the packing quality.
5.4.1 Online Packing. To avoid routing congestion from a high-
abstraction view, the online packing tends to balance the utilization
ratio among different resources and different slots, i.e., if a func-
tion fails to fit into its original slot after applying a new directive
configuration, we try to floorplan it into other slots according to
the non-decreasing order of critical resource (CR). CR refers to
the type of resource having the most overflow percentage among
BRAM, DSP, FF, LUT, and URAM. If there are multiple slots with
the same CR, we sort them by the average utilization of the other
four non-critical resources. The online packing algorithm is shown
in Alg. 2. Note that overflow ratios are calculated by each resource.
5.4.2 Offline Re-packing. Since online_packing() tends to spread
functions evenly on each slot, and when there’s an aggressive move
in directive search with a sharp increase in resource utilization, the

21

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Linfeng Du, Tingyuan Liang, Sharad Sinha, Zhiyao Xie, & Wei Zhang

Slot 0

Slot 1

Slot 2

Slot 3

0.3

0.4

0.3

0.2

0.3

Max Util. = 70%

0.3

Slot 1

0.3

0.4

0.3

0.2

0.6

DSE

Could cause overflow in any
slot. No legal floorplan found.

Slot 0

Slot 1

Slot 2

Slot 3

0.3

0.4

0.3

0.2

0.3

Max Util. = 70%

Slot 0

Slot 1

Slot 2

Slot 3

0.3

0.4

0.3

0.2

S3S2S0S1 > = >

1

2 3

4 5 6

0.3

Slot 0

Slot 1

Slot 2

Slot 3

0.3

0.4

0.3

0.2

0.6

6

Offline
Re-packing

Another Round of
Online Packing

Online Packing Offline Re-packing then
Online Packing Again

Fixed
Functions

Pruned: dst
Slot 2 is Empty.

3

Figure 7: An Example of Offline Re-packing.

Slot 0 Slot 1

Slot 2 Slot 3

s
d

Slot 0 Slot 1

Slot 2 Slot 3

s

d

Pipeline Registers
Dataflow sub-function
Or non-dataflow function

Figure 8: Incremental Update of Pipeline Registers.
balance could preclude the new design point from taking effect.
Thus, offline re-packing sorts all the slots 𝑆𝐿𝑖 by resource utilization
in non-increasing order. Then, it respectively sorts all the functions
𝐹𝑖 𝑗 on each slot 𝑆𝐿𝑖 by resource in non-increasing order as well.
The re-packing starts with moving the 𝐹21 from the second fullest
slot 𝑆𝐿2 to the fullest 𝑆𝐿1, and then the second largest function 𝐹22
from 𝑆𝐿2 to 𝑆𝐿1, etc. When 𝑆𝐿1 is full, or 𝑆𝐿2 is empty, we turn to
move functions 𝐹31, 𝐹32, etc., from the third fullest slot 𝑆𝐿3 to 𝑆𝐿1,
then to 𝑆𝐿2. A general step of re-packing the𝑚-th fullest slot is to
move 𝐹𝑚1, 𝐹𝑚2, ..., 𝐹𝑚𝑛𝑚 to 𝑆𝐿1, 𝑆𝐿2, ..., 𝑆𝐿𝑚−1 in turn.

Fig. 7 shows the floorplanning of 5 functions onto 4 slots. We
reduce multiple resources to one dimension by taking the maxi-
mum ratio among them. Through directive search, the resource
of the blue function expands from 0.3 to 0.6. However, since other
gray functions were fixed during the online stage, the expanded
function fits nowhere. To compare, the re-packing stage sorts the
slots by utilization in non-increasing order and executes six trials
in order. Trials 1/2 fail because slot 1 is full. During trial 3, a gray
function is moved from slot 2 to slot 0. Trials 4/5 also fail because
the destinations, slots 0 and 1, are full. Trial 6 is canceled because
the destination slot 2 has been found empty. With re-packing, the
expanded function fits in slot 2 after a new round of online packing.

Re-packing applies different strategies for functions in dataflow
kernels and non-dataflow kernels. The floorplan change is free
for dataflow functions if the SLL utilization constraint is met. For
non-dataflow parts, since their connections with other adjacent
functions are not through the FIFO channel, the long wires could
not be broken by inserting pipeline logic. Hence, instead of moving
them, we try to force other dataflow functions that have no RAM
connection with them to different slots. Thus, FADO assigns more
resources to the slots containing non-dataflow for further DSE.
5.5 Incremental Pipelining
When moving a function across slots, as Fig. 8 shows, each time
a path crosses a boundary between two slots (SLR boundary or
I/O banks), additional pipeline registers should be added beside the
boundaries to break down the long wires. We here set a constraint
of 90% (Eq. 8) for SLL utilization and incrementally update the
pipelining logic of long wires crossing slot boundaries. As Fig. 8

CNN
Kernel 0

COV
Kernel 0

RAM

CNN
Kernel 1

RAM

COV
Kernel 1

RAM

CNN
Kernel 2

RAM

2MM
Kernel 0

MM
Kernel 0

RAM

2MM
Kernel 1

RAM

MM
Kernel 1

RAM

CNN
Kernel 0

2MM
Kernel 0

RAM

CNN
Kernel 1

RAM

MTTKRP
Kernel 0

HEAT
Kernel 0

RAM

MTTKRP
Kernel 1

RAM

HEAT
Kernel 1

RAM

RAM

COV
Kernel 0

MM
Kernel 0

RAM

COV
Kernel 1

RAM

MTTKRP
Kernel 0

COV
Kernel 0

RAM

MTTKRP
Kernel 1

RAM

COV
Kernel 1

RAM

RAM

Dataflow Kernels

Non-Dataflow Kernels

RAM between Kernels

Figure 9: The 6 Benchmarks Used to Evaluate FADO.
shows, when function "d" is moved from Slot 0 to Slot 3, two groups
of additional pipeline registers are added between "s" and "d".

5.6 Exit Condition and External Tools
During iterative optimization, when there’s no legal floorplan found
for the next design point of the current longest function or when
no other directive configuration could improve the bottleneck’s
latency further, it is excluded in future iterations. FADO stops when
there’s no function left for the bottleneck analysis. Then, it dumps
the optimal directives to a TCL file to guide the re-synthesis of the
HLS code to generate a high-performance RTL design. FADO also
delivers the final floorplan to the global router, latency balancer,
and dataflow RTL generator within [7] to update the pipelining
of dataflow kernels in the Verilog code, and generate another TCL
script to guide the floorplanning during implementation in Vitis.

6 RESULTS
6.1 Benchmarks and Experiment Settings
We mainly adopt large-scale open-source HLS designs with com-
patible interfaces for evaluation and filter out many commonly
used but unsuitable benchmarks. To be specific, most of the designs
in Vitis Libraries [39], CHstone [9], Rosetta [46], etc., occupy less
than 10% of resources on the Alveo U250 FPGA. They only have
several functions to consider during coarse-grained floorplanning,
which is not challenging even if we increase the design size, e.g., by
applying a larger bitwidth. Besides, interface incompatibility makes
it difficult to scale up by connecting multiple designs from these
benchmarks. Hence, we generate large dataflow CNN, MM and
MTTKRP using PolySA [5] and AutoSA [36]. As for non-dataflow
designs, we use 2MM, COV, and HEAT from Polybench [19], which
are general programs also used in CPU, GPU, etc. To best show
the generality of our solution, we assemble six large benchmarks
mixing the dataflow and non-dataflow kernels above to evaluate
the performance of our framework, as Fig. 9 shows. The kernels
connect through RAMs, which enlarges the design space compared
with a single dataflow kernel.

To show the scale of our problem, we visualize the HLS-function-
level data flow graph of the CNN*2+2MM*1 benchmark in Fig. 10.
The two yellow bounding boxes mark the two CNN13x2 dataflow
kernels, each containing hundreds of sub-functions. The red circles
on the top of this figure are the non-dataflow 2MM kernel and the
two RAMs connected to it. The RAM module "temp_xin1_V_U" is
connected to two input sub-functions of CNN13x2 Kernel 1, and
RAM "temp_xout0_V_U" is connected to one output sub-function
of CNN13x2 Kernel 0. Since the connection among them are not
through FIFO channels, they are grouped during floorplanning
and always placed in the same slot. As for a dataflow kernel, the
green boxes are FIFO channels, and the blue circles are dataflow sub-
functions. Dataflows can be partitioned, floorplanned, and pipelined
on any slot as long as the resource constraints are met. The overall

22

FADO: Floorplan-Aware Directive Optimization
for High-Level Synthesis Designs on Multi-Die FPGAs FPGA ’23, February 12–14, 2023, Monterey, CA, USA

Table 5: QoR Comparison between FADO and Other DSE Strategies
Benchmarks CNN*2+2MM*1 MM*1+COV*2 MTTKRP*2+HEAT*2

Resource𝑎 Runtime𝑏 Latency𝑐 Fmax𝑑 Exe_time𝑔 Resource Runtime Latency Fmax Exe_time Resource Runtime Latency Fmax Exe_time
Original (no directive) 28% - 8933 - - 20% - 131839 - - 57% - 8147919 - -

Initial FP𝑒 -> Iterative DO𝑓 28% 2.24 735 300.45 2,445 19% 0.16 131839 282.86 466,094 46% 1.36 8138605 Failure -
Iterative (DO + AutoBridge FP) 48% 1658 92.7 235.89 393 41% 10307 2549 278.84 9,141 62% 3554 598532 159.97 3,741,525
Iterative (DO + Incr FP) (Ours) 55% 2.39 91.2 269.95 338 41% 2.17 1647 274.47 6,001 63% 1.95 128104 300.45 426,374

Benchmarks MM*2+2MM*2 CNN*3+COV*2 MTTKRP*2+COV*2

Resource Runtime Latency Fmax Exe_time Resource Runtime Latency Fmax Exe_time Resource Runtime Latency Fmax Exe_time
Original (no directive) 40% - 259516 - - 31% - 18130 - - 38% - 8113234 - -

Initial FP -> Iterative DO 59% 1.13 258842 274.10 944,335 39% 2.03 6716 300.45 22,354 42% 2.18 8113234 300.45 27,003,607
Iterative (DO + AutoBridge FP) 60% 32656 67652 Failure - 62% 8301 1278 222.01 5,754 61% 12627 562017 300.45 1,870,585
Iterative (DO + Incr FP) (Ours) 58% 6.63 66158 300.00 220,527 63% 5.04 1233 300.45 4,105 64% 4.89 126921 300.45 422,437
𝑎 The maximum utilization ratio among BRAM, DSP, FF, LUT, and URAM. 𝑏 DSE runtime in seconds. 𝑐 Execution time of HLS designs in number of thousand clock cycles.
𝑑 Maximum achievable frequency in MHz. 𝑒 FP: Floorplanning. 𝑓 DO: Directive Optimization. 𝑔 Overall execution time (cycle number/frequency) of HLS designs in microseconds (𝜇s).

A FIFO Channel between
Dataflow Sub-functions

A Dataflow Sub-function

CNN13x2 Kernel 0

CNN13x2 Kernel 1

Non-dataflow
2MM Kernel

RAMs between
Kernels

These 6 items will be
grouped in the same slot,

since the connections are not
through FIFO channels.

Figure 10: The Scale of the CNN*2+2MM*1 Benchmark.
design space of FADO is the Cartesian product of directive space
and floorplan space. For directive search, the space ranges from
millions to billions in our benchmarks, considering the parameters
in Table 4. For floorplanning, it maps hundreds of functions to four
slots, and the space size is four to the power of hundreds.

We use the Xilinx Vitis HLS 2020.2 for HLS synthesis and Vitis for
implementation. We evaluate our framework on the Xilinx Alveo
U250 FPGA, which contains eight slots defined by the 4 SLRs and
an I/O bank in the middle. Note that the rightmost column of clock
regions is occupied by Vitis platform IP. Hence the resource calcu-
lation excludes that column. We reduce the floorplanning of HLS
designs to the lower half2 (4 slots on SLR 0 and SLR 1) of the FPGA
to enable exhaustive floorplan search in analyzing the optimality
of our results. In our experiments, we find the resource constraint
of 70% still leads to placement or routing failure sometimes. Hence,
we tighten the limit to 65% for each slot during DSE.

6.2 Comparative Experiments
Table. 5 compares FADO with different top-level DSE algorithms
and floorplanning algorithms. We report both the DSE runtime
and the quality of each design implementation with their latency,
maximum frequency, and overall execution time. Among these
metrics, the overall execution time combines latency and timing
quality, reflecting the ultimate design performance on FPGA.

In Table. 5, the "Initial FP -> Iterative DO" baseline performs the
directive optimization using one-off initial floorplanning. It applies
the min-cut MILP floorplanning from [7], and all HLS functions’
positions are fixed during the iterative directive search. The limited

2The lower half of Alveo U250 FPGA excluding the rightmost column of clock region
contains 2016 BRAMs, 5184 DSPs, 1319040 FFs, 659520 LUTs, and 544 URAMs.

optimization opportunities caused by the fixed initial floorplan lead
to an under-utilization of resources. This seriously limits the latency
optimization, resulting in the longest latency for all benchmarks.
It fails in the implementation of MTTKRP*2+HEAT*2 because two
HEAT kernels are floorplanned on the same slot, but each has a
large array using more than one column of BRAM or URAM, which
triggers an exception during placement.

The "Iterative (DO + AutoBridge FP)" baseline runs the min-cut
MILP floorplanning iteratively. Note that the heuristics of look-
ahead and look-back are also applied in this algorithm for fairness
when compared with FADO. This algorithm results in orders-of-
magnitude longer runtime than FADO due to repetitively calling
the MILP solver. Meanwhile, since AutoBridge [7] applies iterative
bi-partitioning rather than one-off eight-way partitioning3, it fails
to reach some of the solutions. As reflected by the execution time,
its design implementation quality is inferior to FADO in all six
benchmarks. In summary, this method takes a significantly longer
time while still resulting in a sub-optimal design.

As for our FADO, the online packing and offline re-packing strate-
gies alternatively balance and compact the floorplan, contributing
to full utilization of resources on multiple dies (the highest uti-
lization ratio under resource constraint of 65% in five out of all
six benchmarks). Accordingly, the high-quality floorplan provides
strong support for exploring a larger design space during the di-
rective search, thus our FADO achieves 33.12% smaller latency on
average compared with the time-consuming "iterative (DO + Au-
toBridge FP)", and attains the lowest latency for all benchmarks
over all baselines. The latency improvement varies because of the
nature of benchmarks – it’s more significant when FADO legalizes
the floorplan for some bottleneck functions with a great latency-
resource tradeoff, as the cases MM*1+COV*2, MTTKRP*2+HEAT*2,
and MTTKRP*2+COV*2 show. As for frequency, experiments show
that when the utilization gets close to 65%, although the frequency
could vary to some extent due to non-determinism in floorplan-
ning and further implementation, our incremental solution still
outperforms the baselines, with both a higher average Fmax of
290.96 MHz and lower variance. Moreover, since our incremental
legalization leads to a minimum change of floorplan in each iter-
ation of co-optimization, it’s much more efficient than updating
all functions’ locations globally. This efficient legalization algo-
rithm contributes to a speedup of 693X∼4925X in the runtime of

3Eight-way partitioning runs evenmore than 10x slower compared with bi-partitioning
in directive-floorplan co-search experiments using benchmarks above.

23

FPGA ’23, February 12–14, 2023, Monterey, CA, USA Linfeng Du, Tingyuan Liang, Sharad Sinha, Zhiyao Xie, & Wei Zhang

Table 6: Stages of Floorplan-aware Directive Optimization
Benchmarks CNN*2+2MM*1 MM*1+COV*2 MTTKRP*2+HEAT*2 MM*2+2MM*2 CNN*3+COV*2 MTTKRP*2+COV*2

Stages Resource𝑎 Latency𝑏 Resource Latency Resource Latency Resource Latency Resource Latency Resource Latency
Online 28.27% 735 40.66% 5167 63.15% 163241 40.28% 259516 31.79% 4718 62.95% 141260
Offline 40.12% 132 40.66% 5167 64.67% 153927 40.28% 259516 31.79% 4718 62.95% 141260

Look-Ahead 55.01% 91.4 40.66% 1651 63.26% 129184 55.25% 66184 31.79% 4718 64.49% 126921
Look-Back 54.56% 91.2 40.66% 1647 63.25% 128104 57.53% 66158 63.32% 1233 64.49% 126921
𝑎 The maximum utilization ratio among BRAM, DSP, FF, LUT, and URAM. 𝑏 Execution time of HLS designs in number of thousand clock cycles.

Figure 11: DSE Stages and Results on the CNN*2+2MM*1 Benchmark.
the entire co-optimization. Without any loss in timing quality, the
design implementation quality reflected in overall execution time
is 1.16X∼8.78X better than the best baseline.
6.3 Analysis of DSE Stages
Fig. 11 shows the multiple stages of directive-floorplan co-search
for CNN*2+2MM*1 benchmark. The horizontal axis takes the max-
imum utilization among resources on the FPGA, and the vertical
axis shows the latency in the number of clock cycles. The cyan
points represent the whole directive design space without floor-
plan legality check, with red dots showing the Pareto-front. Our
search starts from the highest latency point (28.27%, 8933000). In
the first stage, the green arrows at the beginning are showing on-
line floorplanning. It stops at (28.27%, 734592) because of a sharp
resource increase of the large non-dataflow kernel. In the second
stage, the offline re-packing clears out the dataflow sub-functions
on the least-occupied slot, and continues until (40.12%, 131752),
where the yellow arrows fall into a local maximum resource in the
second sub-figure. It would fail to continue without looking ahead
for points with less utilization of the current critical resource. As
the third sub-figure shows, the pink arrows reach (55.01%, 91384) by
looking ahead for three more design points after failure in previous
stages. Finally, the DSE stops at (54.56%, 91164) after the final look-
back. To compare, the DSE with global MILP floorplanning stops
earlier at (47.59%, 92700). To show the optimality of our result, we
check the floorplan legality for all design points with less latency
than our result of 91164 — all the gray points have no legal floorplan
when running global MILP floorplanning solely.

Table. 6 shows the DSE results of different optimization stages
in FADO. Note that the four stages are running sequentially in each
iteration, and the latency/resource in this table is not the result of
each stage acting alone, except for "Online". For example, for stage
"Look-Ahead", it includes the joint effort of (1) online packing, (2)
offline re-packing followed by another round of online packing, and
(3) look-ahead followed by online packing, as described in Alg. 1.
It’s possible that for some iterations, we only use (1), or (1)+(2),
while using (1)+(2)+(3) in the worst cases. The QoR of each stage
shown in Table 6 measures the legal design point with the smallest
latency achieved before the first call to the next stage. For example,
the results for "Look-Ahead" is the legal point with the smallest
latency achieved before the first call to look_back().

For benchmarks CNN*2+2MM*1 and MTTKRP*2+HEAT*2, each
stage is more effective than the previous ones to avoid local op-
tima. However, the offline method fails to improve the results in
MM*1+COV*2, MM*2+2MM*2, and MTTKRP*2+COV*2, compared
with online stage. This happens when there are large design points
with over-utilization. For example, the non-dataflow COV kernel
consumes 30 DSPs when without any directive. However, when we
unroll the loop containing the multiplication operation, the DSP
increases to 1920, which is more than the total DSP available in any
slot. Thus, offline stage fails to optimize the floorplan, and the bot-
tleneck, DSP utilization always remains the same value during DSE
inMM*1+COV*2 andMTTKRP*1+COV*2. For CNN*3+COV*2, since
COV kernel has a longer latency than CNN, major improvements
are enabled by the look-back applied at the beginning of DSE.
6.4 Optimality Analysis
To analyze the optimality of our latency achieved, we check the
floorplan legality for all design points with less latency than our
final result. For those benchmarks with too many design points
to check legality, we sample 2000 points from them and run MILP
floorplanning respectively for each point. Our results show that
there’s no legal floorplan when a design point’s latency is below
our final result for all six benchmarks.
7 CONCLUSION
Our work produces FADO, an open-source framework that co-
optimizes the directives and floorplan of HLS designs implemented
on multi-die FPGAs. FADO combines a latency-bottleneck-guided
directive optimization and an incremental floorplanning algorithm
mixing various bin-packing heuristics. On the one hand, our well-
customized incremental floorplanning achieves a speedup of 693X
∼4925X over the global MILP floorplanning [7]. On the other hand,
our co-optimization enables full utilization of resources on multi-
ple dies and greatly benefits both the latency and timing. Among
all six large-scale benchmarks mixing dataflow and non-dataflow
kernels, FADO optimizes their execution time with a speedup of
1.16X∼8.78X compared with the global floorplanning solution.
ACKNOWLEDGMENTS
This work is partially supported by the RGC GRF grant 16215319,
and ACCESS — AI Chip Center for Emerging Smart Systems, Hong
Kong SAR. We would like to thank all the anonymous reviewers
for their valuable comments.

24

FADO: Floorplan-Aware Directive Optimization
for High-Level Synthesis Designs on Multi-Die FPGAs FPGA ’23, February 12–14, 2023, Monterey, CA, USA

REFERENCES
[1] MdMostofa Akbar, Eric GManning, Gholamali C Shoja, and Shahadat Khan. 2001.

Heuristic solutions for the multiple-choice multi-dimension knapsack problem.
In International Conference on Computational Science. Springer, 659–668.

[2] Tobias Alonso, Lucian Petrica, Mario Ruiz, Jakoba Petri-Koenig, Yaman Umuroglu,
Ioannis Stamelos, Elias Koromilas, Michaela Blott, and Kees Vissers. 2021. Elastic-
DF: Scaling performance of DNN inference in FPGA clouds through automatic
partitioning. ACM Transactions on Reconfigurable Technology and Systems (TRETS)
15, 2 (2021), 1–34.

[3] Vaughn Betz and Jonathan Rose. 1997. VPR: A new packing, placement and
routing tool for FPGA research. In International Workshop on Field Programmable
Logic and Applications. Springer, 213–222.

[4] Raghunandan Chaware, Kumar Nagarajan, and Suresh Ramalingam. 2012. As-
sembly and reliability challenges in 3D integration of 28nm FPGA die on a large
high density 65nm passive interposer. In 2012 IEEE 62nd Electronic Components
and Technology Conference. IEEE, 279–283.

[5] Jason Cong and Jie Wang. 2018. PolySA: Polyhedral-based systolic array auto-
compilation. In 2018 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD). IEEE, 1–8.

[6] Yangdong Steven Deng and Wojciech Maly. 2003. Physical design of the "2.5 D"
stacked system. In Proceedings 21st International Conference on Computer Design.
IEEE, 211–217.

[7] Licheng Guo, Yuze Chi, Jie Wang, Jason Lau, Weikang Qiao, Ecenur Ustun, Zhiru
Zhang, and Jason Cong. 2021. Autobridge: Coupling coarse-grained floorplanning
and pipelining for high-frequency HLS design on multi-die fpgas. In The 2021
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 81–92.

[8] Andre Hahn Pereira and Vaughn Betz. 2014. Cad and routing architecture for
interposer-based multi-fpga systems. In Proceedings of the 2014 ACM/SIGDA
international symposium on Field-programmable gate arrays. 75–84.

[9] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya
Ishii. 2008. Chstone: A benchmark program suite for practical c-based high-level
synthesis. In 2008 IEEE International Symposium on Circuits and Systems (ISCAS).
IEEE, 1192–1195.

[10] Xilinx Inc. 2016. UltraRAM: Breakthrough Embedded Memory Integration on
UltraScale+ Devices. https://docs.xilinx.com/v/u/en-US/wp477-ultraram

[11] Xilinx Inc. 2020. Vitis High-Level Synthesis User Guide. https://docs.xilinx.com/
r/2020.2-English/ug1399-vitis-hls/Optimization-Directives

[12] Xilinx Inc. 2020. Vitis High-Level Synthesis User Guide. https://docs.xilinx.com/
r/en-US/ug1399-vitis-hls/Applying-Optimization-Directives-to-Templates

[13] Xilinx Inc. 2020. Vitis High-Level Synthesis User Guide. https://docs.xilinx.com/
r/2020.2-English/ug1399-vitis-hls/Automatic-Loop-Pipelining

[14] Xilinx Inc. 2022. Floorplanning With Stacked Silicon Interconnect (SSI)
Devices. https://docs.xilinx.com/r/en-US/ug906-vivado-design-analysis/
Floorplanning-With-Stacked-Silicon-Interconnect-SSI-Devices

[15] Richard M Karp. 1992. On-line algorithms versus off-line algorithms: How much
is it worth to know the future?. In Algorithms, Software, Architecture: Information
Processing 92: Proceedings of the IFIP 12th World Computer Congress, Madrid, Spain,
Vol. 1. 416.

[16] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. The multiple-choice
knapsack problem. In Knapsack Problems. Springer, 317–347.

[17] Ariel Kulik and Hadas Shachnai. 2010. There is no EPTAS for two-dimensional
knapsack. Inform. Process. Lett. 110, 16 (2010), 707–710.

[18] Tingyuan Liang, Jieru Zhao, Liang Feng, Sharad Sinha, and Wei Zhang. 2019.
Hi-clockflow: Multi-clock dataflow automation and throughput optimization in
high-level synthesis. In 2019 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 1–6.

[19] Tomofumi Yuki Louis-Noel Pouchet. 2016. PolyBench/C. http://web.cse.ohio-
state.edu/~pouchet.2/software/polybench/

[20] EG Co man Jr, MR Garey, and DS Johnson. 1996. Approximation algorithms for
bin packing: A survey. Approximation algorithms for NP-hard problems (1996),
46–93.

[21] Fubing Mao, Wei Zhang, Bo Feng, Bingsheng He, and Yuchun Ma. 2016. Modular
placement for interposer based multi-FPGA systems. In 2016 International Great
Lakes Symposium on VLSI (GLSVLSI). IEEE, 93–98.

[22] Silvano Martello and Paolo Toth. 1990. Bin-packing problem. Knapsack problems:
Algorithms and computer implementations (1990), 221–245.

[23] Silvano Martello and Paolo Toth. 1990. Knapsack problems: algorithms and com-
puter implementations. John Wiley & Sons, Inc.

[24] Pingfan Meng, Alric Althoff, Quentin Gautier, and Ryan Kastner. 2016. Adaptive
threshold non-pareto elimination: Re-thinking machine learning for system level
design space exploration on FPGAs. In 2016 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 918–923.

[25] Ehsan Nasiri, Javeed Shaikh, Andre Hahn Pereira, and Vaughn Betz. 2015. Multi-
ple dice working as one: CAD flows and routing architectures for silicon inter-
poser FPGAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
24, 5 (2015), 1821–1834.

[26] Boaz Patt-Shamir and Dror Rawitz. 2010. Vector bin packing with multiple-choice.
In Scandinavian Workshop on Algorithm Theory. Springer, 248–259.

[27] Nam Khanh Pham, Amit Kumar Singh, Akash Kumar, and Mi Mi Aung Khin. 2015.
Exploiting loop-array dependencies to accelerate the design space exploration
with high level synthesis. In 2015 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 157–162.

[28] Luca Piccolboni, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P Carloni.
2017. COSMOS: Coordination of high-level synthesis and memory optimization
for hardware accelerators. ACM Transactions on Embedded Computing Systems
(TECS) 16, 5s (2017), 1–22.

[29] Chirag Ravishankar, Dinesh Gaitonde, and Trevor Bauer. 2018. Placement strate-
gies for 2.5 D FPGA fabric architectures. In 2018 28th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 16–164.

[30] Kirk Saban. 2011. Xilinx stacked silicon interconnect technology delivers break-
through FPGA capacity, bandwidth, and power efficiency. Xilinx, White Paper 1,
1 (2011), 1–10.

[31] Benjamin Carrion Schafer. 2017. Parallel High-Level Synthesis Design Space
Exploration for Behavioral IPs of Exact Latencies. 22, 4, Article 65 (may 2017),
20 pages. https://doi.org/10.1145/3041219

[32] Benjamin Carrion Schafer, Takashi Takenaka, and Kazutoshi Wakabayashi. 2009.
Adaptive Simulated Annealer for high level synthesis design space exploration.
In 2009 International Symposium on VLSI Design, Automation and Test. 106–109.
https://doi.org/10.1109/VDAT.2009.5158106

[33] Prabhakant Sinha and Andris A Zoltners. 1979. The multiple-choice knapsack
problem. Operations Research 27, 3 (1979), 503–515.

[34] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. 2021. Enabling
Automated FPGA Accelerator Optimization Using Graph Neural Networks. CoRR
abs/2111.08848 (2021). arXiv:2111.08848 https://arxiv.org/abs/2111.08848

[35] Atefeh Sohrabizadeh, Cody Hao Yu, Min Gao, and Jason Cong. 2022. AutoDSE:
Enabling Software Programmers to Design Efficient FPGA Accelerators. ACM
Transactions on Design Automation of Electronic Systems (TODAES) 27, 4 (2022),
1–27.

[36] Jie Wang, Licheng Guo, and Jason Cong. 2021. Autosa: A polyhedral compiler for
high-performance systolic arrays on fpga. In The 2021 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. 93–104.

[37] Zi Wang, Jianqi Chen, and Benjamin Carrion Schafer. 2020. Efficient and ro-
bust high-level synthesis design space exploration through offline micro-kernels
pre-characterization. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 145–150.

[38] Nan Wu, Yuan Xie, and Cong Hao. 2021. Ironman: Gnn-assisted design space
exploration in high-level synthesis via reinforcement learning. In Proceedings of
the 2021 on Great Lakes Symposium on VLSI. 39–44.

[39] Xilinx. 2022. Vitis Accelerated Libraries. https://github.com/Xilinx/Vitis_
Libraries/

[40] Sotirios Xydis, Christos Skouroumounis, Kiamal Pekmestzi, Dimitrios Soudris,
and George Economakos. 2010. Efficient high level synthesis exploration method-
ology combining exhaustive and gradient-based pruned searching. In 2010 IEEE
Computer Society Annual Symposium on VLSI. IEEE, 104–109.

[41] Hanchen Ye, Cong Hao, Jianyi Cheng, Hyunmin Jeong, Jack Huang, Stephen
Neuendorffer, and Deming Chen. 2021. ScaleHLS: Scalable High-Level Synthesis
through MLIR. arXiv preprint arXiv:2107.11673 (2021).

[42] Cody Hao Yu, Peng Wei, Max Grossman, Peng Zhang, Vivek Sarker, and Jason
Cong. 2018. S2FA: An accelerator automation framework for heterogeneous
computing in datacenters. In 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC). IEEE, 1–6.

[43] Georgios Zacharopoulos, Andrea Barbon, Giovanni Ansaloni, and Laura Pozzi.
2018. Machine learning approach for loop unrolling factor prediction in high
level synthesis. In 2018 International Conference on High Performance Computing
& Simulation (HPCS). IEEE, 91–97.

[44] Jiaxi Zhang, Wentai Zhang, Guojie Luo, XuechaoWei, Yun Liang, and Jason Cong.
2019. Frequency improvement of systolic array-based CNNs on FPGAs. In 2019
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 1–4.

[45] Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng
He. 2017. COMBA: A comprehensive model-based analysis framework for high
level synthesis of real applications. In 2017 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 430–437.

[46] Yuan Zhou, Udit Gupta, Steve Dai, Ritchie Zhao, Nitish Srivastava, Hanchen Jin,
Joseph Featherston, Yi-Hsiang Lai, Gai Liu, Gustavo Angarita Velasquez,Wenping
Wang, and Zhiru Zhang. 2018. Rosetta: A Realistic High-Level Synthesis Bench-
mark Suite for Software-Programmable FPGAs. Int’l Symp. on Field-Programmable
Gate Arrays (FPGA) (Feb 2018).

25

https://docs.xilinx.com/v/u/en-US/wp477-ultraram
https://docs.xilinx.com/r/2020.2-English/ug1399-vitis-hls/Optimization-Directives
https://docs.xilinx.com/r/2020.2-English/ug1399-vitis-hls/Optimization-Directives
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Applying-Optimization-Directives-to-Templates
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Applying-Optimization-Directives-to-Templates
https://docs.xilinx.com/r/2020.2-English/ug1399-vitis-hls/Automatic-Loop-Pipelining
https://docs.xilinx.com/r/2020.2-English/ug1399-vitis-hls/Automatic-Loop-Pipelining
https://docs.xilinx.com/r/en-US/ug906-vivado-design-analysis/Floorplanning-With-Stacked-Silicon-Interconnect-SSI-Devices
https://docs.xilinx.com/r/en-US/ug906-vivado-design-analysis/Floorplanning-With-Stacked-Silicon-Interconnect-SSI-Devices
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1145/3041219
https://doi.org/10.1109/VDAT.2009.5158106
https://arxiv.org/abs/2111.08848
https://arxiv.org/abs/2111.08848
https://github.com/Xilinx/Vitis_Libraries/
https://github.com/Xilinx/Vitis_Libraries/

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	4 Problem Formulation
	4.1 Symbol Definition
	4.2 MILP Formulation

	5 Implementation
	5.1 Pre-processing
	5.2 Booting of FADO
	5.3 Directive Optimization
	5.4 Incremental Floorplanning
	5.5 Incremental Pipelining
	5.6 Exit Condition and External Tools

	6 Results
	6.1 Benchmarks and Experiment Settings
	6.2 Comparative Experiments
	6.3 Analysis of DSE Stages
	6.4 Optimality Analysis

	7 Conclusion
	Acknowledgments
	References

