
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

Integrating Prefetcher Selection with Dynamic
Request Allocation Improves Prefetching Efficiency

Mengming Li1†, Qijun Zhang1†, Yongqing Ren2∗, Zhiyao Xie1∗
1Hong Kong University of Science and Technology, 2Intel

{mengming.li, qzhangcs}@connect.ust.hk, yongqing.ren@intel.com, eezhiyao@ust.hk

Abstract—Hardware prefetching plays a critical role in hiding
the off-chip DRAM latency. The complexity of applications results
in a wide variety of memory access patterns, prompting the devel-
opment of numerous cache-prefetching algorithms. Consequently,
commercial processors often employ a hybrid of these algorithms
to enhance the overall prefetching performance. Nonetheless,
since these prefetchers share hardware resources, conflicts arising
from competing prefetching requests can negate the benefits
of hardware prefetching. Under such circumstances, several
prefetcher selection algorithms have been proposed to mitigate
conflicts between prefetchers. However, these prior solutions
suffer from two limitations. First, the input demand request
allocation is inaccurate. Second, the prefetcher selection criteria
are coarse-grained.

In this paper, we address both limitations by introducing an
efficient and widely applicable prefetcher selection algorithm—
Alecto1, which tailors the demand requests for each prefetcher.
Every demand request is first sent to Alecto to identify suitable
prefetchers before being routed to prefetchers for training and
prefetching. Our analysis shows that Alecto is adept at not
only harmonizing prefetching accuracy, coverage, and timeliness
but also significantly enhancing the utilization of the prefetcher
table, which is vital for temporal prefetching. Alecto outperforms
the state-of-the-art RL-based prefetcher selection algorithm—
Bandit by 2.76% in single-core, and 7.56% in eight-core. For
memory-intensive benchmarks, Alecto outperforms Bandit by
5.25%. Alecto consistently delivers state-of-the-art performance
in scheduling various types of cache prefetchers. In addition
to the performance improvement, Alecto can reduce the energy
consumption associated with accessing the prefetchers’ table by
48% (7% energy reduction on the entire memory hierarchy),
while only adding less than 1 KB of storage overhead.

I. INTRODUCTION

Hardware prefetching, a well-known technique to mitigate
the “memory wall” [52], has been exhaustively studied to
improve processor performance. Specific data structures and
data manipulation modes inherent in programs lead to diverse
memory access patterns associated with the memory request
addresses [9]. To efficiently predict these patterns, numerous
types of cache prefetchers have been developed [10]–[13],
[15], [19], [22], [24]–[30], [32], [33], [35], [36], [38], [39],
[44], [46], [48], [50], [51]. The most common among these
are stream prefetchers [22], [24], [28] and stride prefetchers
[10], [19], [30], which are leveraged to address stream and
stride patterns respectively. To address more complex patterns,
spatial prefetchers [12], [15], [25], [27], [29], [32], [35], [39],
[44], [46] and temporal prefetchers [11], [26], [36], [48], [50],
[51] have been developed.

No single prefetching algorithm can address all types of
memory access patterns. In commercial processors, designers

1The name Alecto stands for the combination of selection and allocation.

SPEC CPU2006 SPEC CPU2017
0

100

200

300

400

Pr
ef

et
ch

er
 T

ab
le

 M
is

se
s

 (T
ho

us
an

d)

Composite Prefetchers without DDRA (prior works)
Composite Prefetchers with DDRA (Alecto)

Fig. 1. Comparison of prefetcher table misses in the same composite
prefetchers without dynamic demand request allocation (DDRA) and Alecto
that utilizes DDRA. With efficient demand request allocation, Alecto proves
to significantly reduce conflicts that occur within the prefetchers’ table.

often hybrid several types of prefetchers, each specialized
for specific memory access patterns. Ideally, these prefetchers
should function independently, each concentrating on accu-
rately addressing the specific memory access patterns they
are responsible for [31]. By doing so, the overall prefetching
system can achieve maximal coverage of demand misses while
simultaneously maintaining optimal accuracy. However, it is
challenging to achieve this ideal separation among prefetchers.
First, these prefetchers accept the same upstream dataflow,
such as demand requests as training data. If a prefetcher
receives demand requests beyond its responsibility, it may (1)
waste the precious space of prefetcher tables to store the as-
sociated metadata; (2) generate duplicate prefetching requests
already produced by other prefetchers. Both of them affect
the overall prefetching performance. Second, prefetchers share
internal or downstream hardware resources like prefetch table
[37], prefetch queue, cache space, and DRAM bandwidth.
This sharing can result in conflicts among the sub-prefetchers,
where a prefetcher’s occupation in such hardware resources
slows down the prefetching progress of other prefetchers.

These issues will not only impair the benefits of hybrid
prefetchers but also affect system performance. To miti-
gate these side effects, several approaches for coordinating
prefetchers have been proposed [8], [14], [21], [31], [37], [53].
Their core idea is to identify and select suitable prefetchers
for handling incoming demand requests. Suitable prefetchers
should cover subsequent demand requests as much as possible
while ensuring that the prefetching requests they issue are both
accurate and timely. These strategies, however, fall short of
expectations for two major limitations.

Limitation 1: The input demand request allocation is

†Equal Contribution
*Corresponding Author

Execution Time
0

10

20

30
D

el
ta

 P
at

te
rn

s

PC=0x30b00
PC=0x30aca

Stream Pattern

Spatial Pattern

Fig. 2. Memory access patterns of 459.GemsFDTD.

inaccurate. Existing prefetcher selection algorithms mainly
focus on controlling the prefetchers’ output, such as the
prefetching degree and prefetcher’s on/off status. Though
these regulations can mitigate some inaccurate prefetches and
hardware conflicts, they do not prevent input demand requests
training the tables of irrelevant prefetchers. DOL [31] is the
sole solution that selectively uses demand requests to train
prefetchers. Nonetheless, it employs a static priority for all
demand request allocations, without taking the difference of
programs into account. Under existing solutions, prefetcher
tables are often updated inaccurately due to receiving inap-
propriate demand requests. This leads to the replacement of
original, potentially useful table entries, eventually causing an
increase in the prefetcher table miss rate. Figure 1 presents a
comparison of prefetcher table misses between prior works and
our prefetcher selection algorithm2 for scheduling the same
composite prefetchers. The results show that an appropriate
input allocation can significantly reduce the conflicts that occur
within the prefetchers’ table.

Limitation 2: The prefetcher selection criteria are
coarse-grained. Existing prefetcher selection algorithms ap-
ply identical selection rules across varying demand requests.
Figure 2 shows an example of memory access patterns, taken
from 459.GemsFDTD. It cannot be correctly handled by
prior prefetcher selection algorithms. In this example, two
distinct memory access patterns are interleaved over time. The
patterns from PC=0x30b00 should be handled by the spatial
prefetcher (e.g., SPP [29]) but could be erroneously handled
by the stride prefetcher. Prior works [31], [37] that use a
uniform rule to select prefetchers for all incoming demand
requests might prioritize the stride prefetcher over the spatial
prefetcher for PC=0x30b00. Moreover, previous works [21]
that establish the selection rules at runtime, without having PC-
grained identification of suitable prefetchers, may prioritize
the stream prefetcher for predicting PC=0x30aca, mistakenly
treating memory accesses generated by PC=0x30b00 as noise.

In this paper, we propose a general design principle named
dynamic demand request allocation (DDRA) — allocating de-
mand requests to suitable prefetchers to make each prefetcher
get the best training and minimize conflicts within prefetcher
tables. Based on the DDRA principle, we develop Alecto, an
efficient prefetcher selection framework applicable for archi-
tecture with multiple prefetchers, overcoming the aforemen-
tioned limitations. Alecto can dynamically allocate demand

2Our algorithm only allocates input demand requests to suitable prefetchers.

requests to suitable prefetchers. Upon identifying the suitable
prefetchers of a given memory access, Alecto only routes
the demand requests to these suitable ones, preventing the
pollution of demand requests across irrelevant prefetchers.

The dynamic demand request allocation in Alecto is sup-
ported by its ability to pinpoint suitable prefetchers with
fine-grained precision. Alecto leverages the locally collected
performance record of every prefetcher on each memory
access instruction to determine the rules for subsequent
prefetcher selections. The rules are tailored for each memory
access instruction, specifying which prefetchers are eligible to
receive the demand requests and their prefetching degree.

In summary, Alecto integrates prefetcher selection with
dynamic demand request allocation. For most of the cache
prefetcher algorithms, the generation of prefetching requests
is inherently linked to the training process of prefetchers. By
controlling which demand request a prefetcher can access, the
algorithm indirectly determines the outputs of prefetchers. The
contributions of this paper are summarized below:

• We thoroughly investigated existing prefetcher selection
algorithms and pinpointed two major limitations. Our
analysis encompasses a detailed review of all current
solutions, and we illustrate why each fails to effectively
address the critical issues inherent in prefetcher selection.

• We address limitations of existing prefetcher selection
algorithms in our proposed Alecto. Alecto is designed
to enhance any multi-prefetcher architecture, introduc-
ing three improvements over previous works: (1) dy-
namic demand request allocation; (2) fine-grained suit-
able prefetcher identification; (3) integration of prefetcher
selection and demand request allocation.

• Alecto delivers state-of-the-art performance, energy ef-
ficiency, and storage scalability in a single, integrated
framework. Extensive evaluations demonstrate Alecto
outperforms Bandit by 2.76% in single-core, 7.56% in
eight-core, and 5.25% on memory-intensive benchmarks.
Alecto offers broad adaptability in scheduling various
types of cache prefetchers. Additionally, Alecto reduces
energy consumption for prefetcher table access by 48%
(7% energy reduction on the entire memory hierarchy),
with storage overhead < 1 KB.

II. BACKGROUND AND MOTIVATION

In Section II-A, we will analyze existing prefetcher selection
solutions, illustrating why these approaches are inefficient in
selecting suitable prefetchers when confronted with diverse
memory access patterns. In Section II-B, we will outline the
objectives of our efficient and universally applicable prefetcher
selection framework that addresses these shortcomings.

A. Current Solutions

Figure 3 compares different prefetcher selection algorithms,
including the DOL [31], IPCP [37], and RL-based schemes
[8], [14], [21], [53]. DOL and IPCP utilize strategies es-
tablished at design time, statically prioritizing prefetchers
for handling every demand request, which is inefficient in

(a) DOL

P1 Pn

Prefetch Queue

Demand Request

……N N

Y Y Y

(b) IPCP

Prefetch Queue

Demand Request

……

MUX (P1> >Pn)…

(c) RL-based Schemes

P1 Pn

Prefetch Queue

Demand Request

……

RL-based Algorithm

ON/OFF Degree

(d) Alecto

P1 Pn

Prefetch Queue

Demand Request

Identifier

……

Allocation

Prefetch

P1 Pn

Prefetchers Identification

Fig. 3. Comparison of prefetcher selection algorithms. (a) DOL selects prefetchers in the allocation stage. It sequentially passes the demand request through all
prefetchers. (b) IPCP selects prefetchers in the prefetch stage. It statically prioritizes the prefetching requests from different prefetchers. (c) RL-based schemes
select prefetchers in the prefetch stage. It controls the outputs of prefetchers and applies identical rules for all memory accesses. (d) Alecto selects prefetchers
in the allocation stage. It identifies suitable prefetchers for each memory access, then dynamically allocates demand requests to identified prefetchers.

selecting suitable prefetchers. While RL-based schemes hold
promise for addressing this issue, they are challenged by the
storage overhead for precise prefetcher suitability assessment.
Additionally, all existing prefetcher selection solutions lack
mechanisms for efficient demand request allocation. They
either employ all demand requests for training all prefetchers
like IPCP and RL-based algorithms, or statically pass demand
requests through prefetchers such as DOL. Subsequent sec-
tions will illustrate these issues in detail.
(1) DOL [31] employs a coordinator to determine which
prefetcher each demand request is dispatched to. The co-
ordinator, based on the prefetching coverage, sequentially
passes demand requests through all prefetchers. For example, it
operates under the assumption that the coverage of prefetcher
P1 (T2 in the original paper) exceeds that of prefetcher P2 (P1
in the original paper). Therefore, as illustrated in Figure 3(a),
demand requests are initially routed to P1. Only if P1 is unable
to handle the demand request, is it then forwarded to P2,
followed by P3 (C1 in the original paper).

DOL faces inefficiencies in selecting prefetchers primarily
due to two reasons. First, statical priorities applied in allo-
cating demand requests are infeasible in identifying the most
suitable prefetchers for distinct demand requests. For instance,
consider a scenario where a PC exhibits a consistent stride
pattern of 1 (+1, +1, +1, +1). This pattern could potentially
be identified as both a StridePC, serviced by prefetcher P1,
and a DensePC, serviced by prefetcher P3. However, due to
its predetermined priorities, DOL rigidly chooses P1 and omits
P3. Despite P1 and P3 demonstrating equivalent accuracy and
coverage, P3 offers better timeliness than P1. This is because
P3 can prefetch an entire region at once, whereas P1 is limited
to prefetching a single block. As a result, DOL should have
selected P3 instead of P1 for higher timeliness yet it defaults to
P1 because of its static selection approach. Second, DOL does
not efficiently manage demand requests once the prefetchers
for a specific pattern have been identified. DOL sequentially
passes demand requests to P1, P2, and P3. One request might
be best suited to P3, but its associated metadata (e.g., memory
address and PC) could inadvertently leave traces in table

structures of P1 and P2. This unintended recording can lead
to the replacement of useful table entries in P1 and P2.
(2) IPCP [37] hybrids three distinct types of prefetchers:
P1 (GS, for stream patterns), P2 (CS, for stride patterns),
and P3 (CPLX, for irregular patterns). As Figure 3(b) shows,
these prefetchers accept all demand requests from the CPU
core or higher-level caches as training data, evaluating their
suitability for each request in parallel. When a single demand
request could be serviced by more than one prefetcher, IPCP
implements a static strategy to select the output of prefetchers
based on a predetermined priority: P1 > P2 > P3.

Unlike DOL, IPCP primarily focuses on prioritizing the out-
puts of all prefetchers without specifically allocating demand
requests to targeted prefetchers. This means every prefetcher
observes the same dataflow, formed by the incoming demand
requests. Consequently, each demand request contributes to
updating the tables within IPCP. This non-selective training
can lead to more conflicts in prefetcher tables and reduce the
duration that valuable table entries remain resident, diminish-
ing the overall prefetching effectiveness. In addition, IPCP’s
inflexible priority system cannot identify suitable prefetchers
like DOL. Consider an example where the PC displays a
sequence of strides (+1, +1, +1, +4), which could be precisely
predicted by P3. However, upon receiving the final (+1) stride,
P2 incorrectly predicts this pattern, leading to an erroneous
+1 request. The accurate requests, ideally produced by P3, are
dropped due to the prioritization system.
(3) RL-based Schemes [8], [21], [53] leverage Reinforcement
Learning (RL) to guide prefetcher decisions. One representa-
tive scheme is Bandit [21], as depicted in Figure 3(c). Bandit
employs an online learning strategy, which accepts the number
of committed instructions as a reward, to control the degree
of prefetchers. It turns off/on any prefetcher by crafting the
prefetcher’s degree to either zero or non-zero.

While Bandit represents an advancement over DOL and
IPCP, it suffers from scalability issues that hinder it from
identifying suitable prefetchers in a fine-grained manner and
dynamically allocating demand requests. Its principal en-
hancement lies in the dynamic determination of prefetchers’

outputs, with decisions driven by runtime metrics instead of
static, predefined rules. This adaptability allows prefetchers to
adjust to complex and varying memory access patterns more
effectively. However, Bandit and other RL-based prefetcher
selection schemes have two major defects. First, the stor-
age overhead associated with scaling these algorithms—for
instance, by increasing the number of features or actions is
non-negligible, even though lightweight solutions like Bandit
do not utilize “state” in their RL algorithm. Bandit employs
#actions#prefetcher arms (Section VI-H) for controlling each
prefetcher’s degree. This could lead to an exponential increase
in storage overhead. Second, existing RL-based schemes lack
mechanisms for allocating demand requests. Integrating such
functionality into RL-based frameworks is also challenging, as
these algorithms cannot distinguish different demand requests.

B. Our Goal
As shown in Figure 3(d), our goal is to develop a prefetcher

selection framework that meets the following conditions:
• The algorithm identifies the most suitable prefetchers for

each memory access instruction. With this level of fine-
grained precision, it tailors different prefetching strategies
to various memory access instructions, optimizing the
overall prefetching accuracy, coverage, and timeliness
based on the unique characteristics of each request.

• The algorithm dynamically allocates demand requests to
the identified prefetchers, ensuring that each prefetcher
processes only the demand requests that fall within their
designated fields. This targeted allocation not only pro-
vides each prefetcher with the specific training it needs
but also helps to reduce conflicts within prefetcher tables.

III. DESIGN OVERVIEW

In this section, we present Alecto, a scalable and efficient
prefetcher selection strategy that utilizes runtime information
for the fine-grained identification of suitable prefetchers and
the dynamic allocation of demand requests. Alecto integrates
the selection of prefetchers into the process of demand request
allocation, achieving the goals stated in Section II-B.

A. Core Idea
Since cache prefetchers depend on demand requests to train

their tables, Alecto allocates each demand request to the
identified suitable prefetchers, ensuring that every prefetcher
receives the necessary training. This allocation process re-
quires finely identifying the suitable prefetchers for each spe-
cific demand request. We have observed that demand requests
originating from a single memory access instruction often
display consistent patterns. Consequently, Alecto utilizes the
associated PC information from incoming demand requests to
pinpoint suitable prefetchers for these patterns. Specifically,
Alecto leverages historical performance data of prefetchers
to assess their suitability for specific memory instructions. In
our implementation, the suitability assessment is based on the
prefetching accuracy. By focusing on accuracy, Alecto aims to
make each prefetcher receive demand requests that fall within
their designated field and reduce hardware resource wastage.

Tag P1’s State P2’s State P3’s State ……

Demand

Counter

Dead

Counter

Tag PC(P1) Valid(P1) …… ……

PC, Address Allocation Table

Sandbox Table Sample Table

P1

Pn

…
…

Sandbox Table (indexed by accessed address)

Sample Table (indexed by PC address)

Allocation Table (indexed by PC address)

1 2

3

4

5

Tag IssuedByP1 ConfirmedP1 ……

Fig. 4. The overall framework of Alecto. It consists of an Allocation Table,
which enables fine-grained prefetcher identification and dynamic request
allocation. It also includes a Sample Table and Sandbox Table for information
collection. Additionally, the Sandbox Table functions as a prefetch filter.

B. Structure Overview

Figure 4 outlines the primary structures of Alecto. It pri-
marily encompasses three hardware components:

• Allocation Table: This table is the foundational compo-
nent of Alecto. It facilitates the fine-grained identification
of suitable prefetchers (Section IV-A) by documenting
the state of each prefetcher for every memory access
instruction. These states, informed by each prefetcher’s
historical performance, reflect the efficacy of prefetchers
in handling demand requests generated by the mem-
ory access instruction. Based on these states, this table
can dynamically allocate demand requests to suitable
prefetchers (Section IV-B).

• Sample Table: This table collects runtime information
and periodically forwards the accumulated data to the
Allocation Table, aiding in the process of updating the
states of prefetchers (Section IV-C).

• Sandbox Table: This table serves dual functions: (1)
recording recently issued prefetching requests and col-
lecting useful prefetches for the Sample Table (Sec-
tion IV-C), and (2) acting as a prefetch filter to eliminate
duplicate prefetching requests (Section IV-D).

C. Process Overview

At the beginning of our framework, the demand request,
including the PC and memory address, is simultaneously sent
to the Allocation Table (step ①) and the Sandbox Table
(step ④). According to the PC and documented states, the
Allocation Table generates an identifier to instruct the alloca-
tion of demand requests (step ②). Only prefetchers matched
with the identifier can accept this request and accordingly
generate prefetching requests. Subsequently, feedback from
these selected prefetchers—in the form of issued prefetching
requests—is utilized to update the Sandbox Table and Sample
Table (step ③). Combined with the step ④, the Sandbox Table
can make certain whether a previous prefetching request is
useful. This information is sent to the Sample Table (step ⑤),

IA_m

(0, M)

IB_n

(-N, 0)

UI

①ACC(i) >= PB

(x=i, IA_0)

①ACC(i) >= PB

(x≠i, IB_0)

③ACC(i) < DB

(x=i, IB_-N)

②ACC(i) < PB

(x=i && m=0

&& IA_0)

②ACC(i) < PB

(n=0 && No IA)

③No event

(n<0, IB_n+1)

④ACC(i) >= PB

(x=i && m<M,

IA_m+1)

④ACC(i) < PB

(x=i && m>0,

IA_m-1)

Example:

 event

(condition, next state)

i

Fig. 5. The state machine of Allocation Table. For every memory access
instruction, each prefetcher has three states: Un-Identified (UI) indicates
the suitability of this prefetcher is unidentified; Identified and Aggressive
(IA) means the prefetcher is efficient and its prefetching degree should be
promoted; Identified and Blocked (IB) applies when a prefetcher is deemed
unsuitable for processing the memory access instructions.

enabling it to derive a prefetcher’s accuracy for each memory
access instruction. Finally, the Sandbox Table is extended as
a prefetch filter, intercepting redundant prefetch requests and
routing the unfiltered requests to next-level caches (step ⑥).

IV. DESIGN IMPLEMENTATION

A. Fine-grained Prefetchers Identification

Alecto utilizes the Allocation Table to identify suitable and
unsuitable prefetchers for each memory access instruction,
guiding the allocation of demand requests to the identified
prefetchers. Figure 4 depicts the structure of the Allocation
Table, which is indexed by the address of memory access
instructions (PCs) and stores the state of each prefetcher.
The state information is critical for Alecto’s decision-making
process regarding the allocation of demand requests and
the regulation of prefetcher aggressiveness. To facilitate this,
Alecto designates three states for every prefetcher: the Un-
Identified (UI) state, Identified and Aggressive (IA) state,
Identified and Blocked (IB) state. Moreover, Alecto intro-
duces two thresholds to guide state transitions: the Proficiency
Boundary (PB) and Deficiency Boundary (DB). Metrics
gathered from the Sample Table are juxtaposed against these
thresholds to ascertain the appropriate state. Alecto adheres
to two principles when applying these states and bound-
aries to the identification of suitable prefetchers: (1) High-
performing prefetchers are prioritized by allocating demand
requests to them and withholding these requests for other
prefetchers. Concurrently, these high-performing prefetchers
are advanced to a higher level of aggressiveness, optimizing
their performance further. (2) Underperforming prefetchers
are temporarily restricted from receiving demand requests to
mitigate inefficiency. Recognizing that PC’s memory access
pattern changes over time, these prefetchers are only sus-
pended for a limited duration rather than being permanently
deactivated, allowing for future reevaluation and adjustment.

The ensuing discussion in this section will delve into the
significance of each state and elucidate how Alecto employs
these states in the selection process of prefetchers.

Firstly, we explain the meaning of each state:

• UI State: This state signifies a prefetcher’s suitability is
undetermined. Under this state, Alecto employs a prudent
approach by allocating demand requests to the prefetcher
while limiting its prefetching degree to a conservative
level, such as two.

• IA State: This state indicates a prefetcher is efficient.
Alecto allocates demand requests to this prefetcher and
elevates its prefetching degree. It encompasses M+1
substates, numbered from 0 to M, with higher values
indicating a larger prefetching degree assigned for the
prefetcher.

• IB State: This state applies when a prefetcher is deemed
unsuitable for processing the memory access instruc-
tion. Alecto closes the flow of demand requests to the
prefetcher. It has N+1 sub-states, ranging from -N to 0.
The smaller the value, the longer time the prefetcher will
be blocked.

Upon a new, unrecorded memory access instruction enters
into the Allocation Table, the initial state for all prefetchers is
set to UI until the Sandbox Table and Sample Table accumu-
late sufficient data to determine the suitability of prefetchers.
In our implementation, we use these two tables to calculate the
prefetching accuracy. To quantify what constitutes ‘sufficient
data,’ Alecto defines a timing epoch based on the volume of
demand accesses it encounters. According to our observations,
an epoch marked by 100 demand accesses is adequate. The
possible state transitions within the Allocation Table are illus-
trated in Figure 5:

• ① (UI→ IA 0, UI→ IB 0) occurs when the accuracy of
one or more prefetchers surpasses the PB. Prefetchers ex-
ceeding this accuracy threshold are elevated to the IA 0
state. Conversely, the remaining prefetchers that do not
meet this criterion are transitioned to IB 0. One exception
occurs when two or more prefetchers are considered for
promotion, and one of them is a temporal prefetcher. In
such cases, Alecto promotes the non-temporal prefetchers
and downgrades the temporal prefetcher. This approach
aims to optimize the metadata storage of the temporal
prefetcher. (Section IV-F)

• ② (IA 0→UI) arises when prefetchers, previously in the
IA 0 state, experience a drop in accuracy below the PB.
In such cases, Alecto downgrades the prefetchers back
to the UI state, reflecting uncertainty in their current
suitability. If this action results in the absence of any
prefetcher in the IA state, Alecto further initiates the
transition of prefetchers from IB 0 to UI (IB 0→UI).
This process facilitates a reassessment of the prefetchers
that have cooled down from lower IB n states to IB 0.

• ③ (UI→ IB -N) is triggered when a prefetcher’s accu-
racy falls below the DB. This situation indicates that the
prefetcher has generated an excessive number of inaccu-

rate prefetches, wasting valuable hardware resources. In
response, Alecto demotes the prefetcher’s state to IB -
N, signifying that this prefetcher should be temporarily
blocked for N epochs due to its inefficiency. During
these N epochs, the prefetcher undergoes a gradual tran-
sition (IB n→ IB n+1), incrementally moving towards
reevaluation. At the end of this process, if no prefetcher
remains in the IA state, the blocked prefetcher may be
reconsidered for promotion back to UI state, allowing it
another opportunity to evaluate its suitability.

• ④ (IA m→ IA m+1, IA m→ IA m-1) takes place
when the accuracy of prefetchers in IA m state surpasses
the PB or dips below the DB. For the former case,
we infer that these prefetchers possess the potential to
cover more cache misses and achieve better timeliness.
Therefore, Alecto elevates their state to IA m+1, granting
them an increased prefetching degree. The opposite state
transition adjusts the operations accordingly.

B. Dynamical Demand Request Allocation

When demand requests enter into the Allocation Table,
Alecto conducts a lookup using the PC to identify prefetchers
currently in the UI and IA m states. If a prefetcher belongs
to the UI state, Alecto generates an identifier that includes the
prefetcher’s sequence number and a conservative prefetching
degree c. Conversely, when a prefetcher is positioned in the
IA m state, Alecto pairs its sequence number with a more
aggressive prefetching degree, calculated as c + m + 1. To
efficiently manage cache space, Alecto prefetches c lines
directly into the cache where the prefetchers reside. For the
additional m+1 lines, Alecto prefetches them to the next-level
cache. The identifiers are routed along with demand requests
to a multiplexer, which then dynamically allocates demand
requests to designated prefetchers based on these identifiers.
Our demand request allocation methodology ensures that
prefetchers in different states are appropriately tasked based on
their demonstrated performance and potential for addressing
demand requests.

C. Runtime Metrics Gathering

Alecto utilizes two structures: the Sample Table, which is
indexed by the PC address, and the Sandbox Table, indexed
by the memory access address, to collect runtime metrics that
are periodically forwarded to the Allocation Table. The data
within these tables are updated in receiving demand requests
(step ① in Figure 4) and issuing prefetching requests (step ⑤
in Figure 4).

The Sample Table tracks the total number of prefetching
requests issued by each prefetcher (“IssuedByP1” in Figure 5),
as well as the number of requests hit by subsequent demand
requests (“ConfirmedP1” in Figure 5). The identification of
such hit information is facilitated by the Sandbox Table, which
records the addresses of recently issued prefetching requests
and the PC information. The PC indicates which memory
access instruction triggers those prefetching requests. When
a demand request aligns with an entry’s tag in the Sandbox

Table, Alecto then verifies if the PC of the demand request
matches the recorded PC for any prefetcher. If a match is
found, Alecto increments the confirmed counter in the Sample
Table by one. To efficiently manage the storage of PCs within
the Sandbox Table, Alecto utilizes common hash functions
found in Branch Prediction Unit (BPU) designs [23], [40]–
[42]. This approach involves dividing the PC address into
n segments and applying an XOR operation across these
segments to generate a final, compacted hash value for stor-
age in the Sandbox Table. By setting n to correspond with
the logarithm of the table’s entry count, Alecto significantly
decreases the storage overhead.

In addition to gathering data for calculating prefetching
accuracy, the Sample Table plays a crucial role in tracking the
number of demand requests encountered by Alecto (indicated
as the “Demand Counter” in Figure 4) and the instances when
Alecto does not issue any prefetch requests (“Dead Counter”
in Figure 4). The Demand Counter is instrumental in defining
the timing epoch to update the Allocation Table. Assigning
a separate Demand Counter (e.g., 100) for each PC ensures
that sufficient information is collected before any adjustments
are made to prefetcher behavior. Alecto resets the Demand
Counter when it reaches its threshold, triggering the state
transition of the associated PC. Furthermore, the Sample Table
employs the Dead Counter to prevent deadlock scenarios,
which occur when a PC remains in the IA m state but fails to
generate prefetch requests for a long period. These deadlock
scenarios can arise when the memory access pattern associ-
ated with a PC transitions to a different type, rendering the
previously identified pattern for that PC invalid. This counter
operates as a saturation counter and is not reset along with
the Demand Counter. It increments each time Alecto fails to
generate a prefetch request during a prediction and decreases
in other situations. Reaching a specific threshold with the Dead
Counter prompts Alecto to reset the states of prefetchers in
the Allocation Table back to UI, initiating a fresh search for
suitable prefetchers for the current memory access instruction.
Experimental findings indicate a low probability of deadlock,
leading to the threshold for the Dead Counter being set higher
than that for the Demand Counter, for example, at 150.

D. Duplicate Prefetch Requests Filtering

Alecto extends the functionality of the Sandbox Table to
a prefetch filter, which is leveraged to filter out duplicate
prefetching requests. As detailed in Section IV-C, this table
logs the recently issued prefetch requests from each prefetcher,
facilitating its role as an efficient prefetch filter. During step
⑥, Alecto queries the Sandbox Table with the address of
prefetching requests. If a request matches an existing tag in
the table (a tag hit), Alecto discards the request to prevent
redundant prefetching. If there’s no tag hit, the request is added
to the prefetch queue, enabling the prefetching of data blocks
into caches. This mechanism operates without imposing extra
storage demands. Further, as discussed in Section IV-E, the
Sandbox Table is critical in simultaneously maximizing the
prefetching accuracy and coverage.

All PC

Non-temporal

PC
Temporal PC

Stream, Stride,

Spatial PC
Remaining PC

Rare

Recurrence PC

Frequent

Recurrence PC

Filtered by event ③

Filtered by event ①
or higher level cache

Filtered by event ③

Fig. 6. The classification of memory access patterns for efficient metadata
storage in temporal prefetching. Alecto can filter demand requests that are (1)
non-temporal; (2) simultaneously handled by non-temporal prefetchers; and
(3) rare recurrence.

E. Why Alecto Achieves Our Goal?

We demonstrate that the prefetchers selection strategies
applied in Alecto achieve our goal mentioned in Section II-B.
Addressing the first requirement, Alecto assigns each memory
access instruction to specific states within the Allocation
Table. These states reflect the suitability of each prefetcher for
handling that particular instruction. Based on the states, Alecto
tailors prefetching strategies for maximizing the prefetching
accuracy, coverage, and timeliness. Specifically, Alecto ad-
vances prefetchers exhibiting sufficient accuracy (>PB) to
the IA m state, rather than only those with the absolute
highest accuracy. This approach is designed to balance the
overall accuracy and coverage. If we exclusively promote
the prefetcher with the highest accuracy, there is a risk it
may offer limited coverage. Alecto does not worry about
prefetchers in IA m state generating duplicate requests. This
is because, in the final phase of Alecto, the Sandbox Table acts
as a filter to eliminate these redundant prefetching requests.
Besides focusing on prefetching accuracy and coverage, Alecto
incrementally adjusts the aggressiveness of prefetchers in the
IA m state to a suitable level, i.e., either when accuracy falls
below the PB or when the maximum degree of aggressiveness
is reached. This approach not only maintains the accuracy and
coverage but also enhances the timeliness of prefetchers.

For the second requirement, Alecto inherently integrates
the process of prefetcher selection within the demand request
allocation. This ensures that as demand requests are allocated,
the suitable prefetchers are simultaneously selected. Specif-
ically, prefetchers identified as unsuitable are maintained in
the IB n state. As detailed in Section IV-B, Alecto does not
create identifiers for prefetchers in the IB n state, ensuring
that demand requests are not allocated to these prefetchers.
This mechanism intrinsically prevents unsuitable prefetchers
from receiving data that could lead to unnecessary training or
inaccurate prefetching.

F. Alecto on Temporal Prefetching

The dynamic demand request allocation technique adopted
by Alecto can significantly enhance the utilization of temporal

prefetcher’s metadata storage. We find that only a small portion
of demand requests should be used to train the table of
temporal prefetchers. To illustrate this idea, we have divided
the memory access patterns into several parts, as shown in
Figure 6. Firstly, non-temporal patterns, formed by a se-
quence of non-recurrence of memory accesses, should not
train the temporal prefetcher. For temporal patterns, temporal
prefetchers can logically process all such patterns. However,
we can further improve the metadata storage utilization by
filtering demand requests when (1) the recurring frequency
of these demand requests is too low so that the prefetcher
cannot preserve related metadata until the next recurrence; (2)
these requests can be simultaneously handled by non-temporal
prefetchers such as stream, stride, and spatial prefetchers with
lower storage overhead.

To the best of our knowledge, previous prefetcher selection
algorithms [8], [14], [21], [31], [37], [53] do not provide
a mechanism for allocating demand requests to temporal
prefetching. While the state-of-the-art temporal prefetcher—
Triangel [7] can filter non-temporal PCs and rare recurrence
PCs, it falls short in (1) lacking mechanism filtering PC
handled by non-temporal prefetcher, (2) suffering from high
storage overhead (> 17KB), and (3) being tightly coupled with
temporal prefetcher and failing to schedule other prefetchers.

Without any modification, Alecto serves as a lightweight (<
1KB) but efficient solution that can filter all excessive demand
requests for temporal prefetchers. Assume the system inte-
grates all types of prefetchers for maximizing the prefetching
chances, there are two scenarios:

• The temporal prefetcher and other non-temporal
prefetchers are located at the same cache level: Alecto
can filter out the demand requests beyond the temporal
prefetcher’s capacity by event ③ (Figure 5) and those
within non-temporal prefetchers’ capabilities by event ①.

• They are located at different cache levels: Non-
temporal prefetchers cause demand requests belonging to
the stream, stride, and spatial patterns hitting the higher
level cache. Consequently, the temporal prefetcher only
needs to filter demand requests outside its capacity, which
can be done by event ③.

V. EXPERIMENTAL METHODOLOGY

A. System Configuration

For an in-depth examination of different prefetcher selec-
tion algorithms’ performance, we utilize the execution-driven
simulator gem5 [17]. Our simulation environment adopts pa-
rameters almost consistent with those utilized in the Bandit
[21] studies, resembling the Intel Skylake processor [1]. The
primary system configurations are outlined in Table I.

B. Prefetchers Simulated

We compare Alecto against multiple existing prefetcher
selection algorithms from IPCP [37], DOL [31], and Bandit
[21]. We apply all selection algorithms to schedule exactly the
same set of prefetchers like Arm Neoverse V2 architecture [5],

TABLE I
SYSTEM CONFIGURATION.

Module Configuration
Core 1-8 cores, 256-entry ROB

6-width fetch, 6-width decode
8-width issue, 4-width commit
256-entry IQ, 72/56-entry LQ/SQ

TLBs 64-entry L1 iTLB/dTLB, 8-way
2048-entry shared L2 TLB, 16-way

Private L1 I/D cache 32 KB each, 8-way, 64B line, 16 MSHRs
LRU, 4 cycles round-trip latency

Private L2 cache 256 KB, 8-way, 64B line, 32 MSHRs
LRU, mostly inclusive
15 cycles round-trip latency

Shared L3 cache 2 MB per core, 16-way, 64B line
64 MSHRs per LLC Bank
CHAR [18], mostly exclusive
35 cycles round-trip latency

Main Memory SC: Single channel, 1 rank/channel
MC: #Core

2
channels, 2 ranks/channel

8 banks/rank, 2400 MTPS

containing a stream prefetcher (GS in [37]), a stride prefetcher
(CS in [37]), and a spatial prefetcher (PMP [27]).

For Alecto, we define N for the IB n state as 8, M
for the IA m state as 5, c for the conservative prefetching
degree as 3, set the Proficiency Boundary (PB) at 0.75, and
the Deficiency Boundary (DB) at 0.05. For IPCP, demand
requests are distributed to all prefetchers. The output from
these prefetchers is selected based on the static priority order:
stream prefetcher > stride prefetcher > spatial prefetcher.
For DOL, demand requests are sequentially passed to stream,
stride, and spatial prefetchers; the process halts when one
successfully processes the data, preventing further distribution.
For Bandit, we customize it to regulate the prefetching degree
of prefetchers. Bandit typically considers around 10 candidate
arms. Given our three-prefetcher setup, we designate two states
for the prefetching degree of each prefetcher—either 0 or X,
where X is a configurable parameter. This configuration leads
to 23 = 8 candidate arms. In our evaluations, X is set to 3
(Bandit3) or 6 (Bandit6).

For a fair comparison, all simulated prefetchers are imple-
mented within the L1 data cache and trained using virtual
address. Considering Alecto naturally has a prefetch filter, we
additionally add a prefetch filter for other configurations to
better reflect real-world conditions.

C. Evaluating Alecto on Temporal Prefetching

We evaluate the effectiveness of Alecto on temporal
prefetching by comparing it against Bandit and Triangel
[7]. We implement the temporal prefetcher using an on-
chip scheme like Triangel [7]. Figure 7 displays the three

TABLE II
PREFETCHERS BEING SELECTED.

Component Configuration
Stream prefetcher 64-entry IP table
(GS in [37]) 8-entry Region Stream Table (RST)
Stride prefetcher 64-entry IP table
(CS in [37])
Spatial prefetcher 16-entry Accumulation Table
(PMP [27]) 64-entry Pattern History Table (PHT)

L1

Cache
L1 pfts

L2

Cache
TP

(a)

Bandit

L1

Cache
L1 pfts

L2

Cache
TP

(b)

Triangel

L1

Cache
L1 pfts

L2

Cache
TP

Alecto

(c)

Fig. 7. The comparison of configurations between (a) Bandit; (b) Triangel;
and (c) Alecto on temporal prefetching (TP).

configurations evaluated. Referring to previous works [49]–
[51], the Bandit and Triangel configuration has the temporal
prefetcher training on every L2 access stream, which includes
both prefetching requests from L1 prefetchers (IPCP) and
demand requests from L1 cache. The difference is that Bandit
only controls the prefetching degree, while Triangel can further
manage the temporal prefetcher’s training requests. Different
from Bandit and Triangel, our solution only receives demand
requests from the L1 cache and uses Alecto to manage them
(Section IV-F). In these three configurations, we adopt the
same metadata format as in Triangle and set the maximum
prefetching degree of the temporal prefetcher to 1. For Trian-
gel, we use the code [6] open-sourced by its original paper
and preserve its complete implementation. But for Bandit
and Alecto, we disable Triangel’s metadata table management
strategies to accurately evaluate the impact of demand request
allocation on metadata table size. Both Alecto and Bandit are
configured with a 1MB L3 cache and a 1MB metadata table.

D. Workloads

We evaluate Alecto on a broad spectrum of workloads,
including the SPEC CPU2006 [3], SPEC CPU2017 [4], PAR-
SEC 3.0 [2], and Ligra [45]. For single-core simulation, we
use the SPEC06 and SPEC17 benchmarks and adopt simpoint
techniques [43] for generating checkpoints across all SPEC
benchmarks. In multi-core simulation, we use PARSEC and
Ligra. For PARSEC, we concentrate on each benchmark’s
Region of Interest (ROI), which includes the parallel code in
the program [20], [47]. We take checkpoints at the beginning
of the ROI to speed up our evaluations. According to our
observations, the simpoint and ROI techniques allow us to
capture typical patterns of each benchmark.

In our single-core experiments, each checkpoint is pinned
to an individual core, with a warm-up phase involving 100M
instructions followed by a simulation of the subsequent 100M
instructions. The reported performance metrics for each bench-
mark are calculated by aggregating the results from all its
checkpoints with weighted averages. In our multi-core exper-
iments, we evaluate homogeneous mixes and heterogeneous
mixes of SPEC benchmarks. For the homogeneous mixes, we
pin the same SPEC workload to every core. For the heteroge-
neous mixes, we randomly choose workloads from SPEC and
pin them to different cores. We also evaluate PARSEC and
Ligra. For SPEC and PARSEC, each checkpoint is warmed
up with 250M instructions, followed by simulation with an

ast
ar

bwav
es

bzip
2

ca
ctu

sA
DMgc

c

Gem
sF

DTD

gro
mac

s

hmmer lbm
les

lie
3d

lib
quan

tummcf
milc

om
netp

p
sop

lex

sp
hinx3

xa
lan

cb
mk

zeu
sm

p

Geo
mea

n-M
em

ca
lcu

lix
dea

lII

ga
mess

go
bmk

h26
4re

f
nam

d

perl
ben

ch

pov
ra

y
sje

ng
ton

to wrf

Geo
mea

n-A
ll

1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g

IPCP DOL Bandit3 Bandit6 Alecto

Memory Intensive

(2.13)

Fig. 8. IPC speedup compared to no prefetching on SPEC06 benchmarks. Memory-intensive workloads are highlighted within dotted blue line, and their
geomean speedup is calculated separately. All prefetcher selections algorithms schedule the same composite prefetcher: GS [37] + CS [37] + PMP [27].

bwav
es

ca
ctu

BSSN
ca

m4

fot
on

ik3d gc
c

lbm mcf

om
netp

p
rom

s

xa
lan

cb
mk xz

Geo
mea

n-M
em

blen
der

deep
sje

ng

ex
ch

an
ge

2

im
ag

ick lee
la nab

nam
d

pare
st

perl
ben

ch

pov
ra

y

Geo
mea

n-A
ll

0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g

IPCP DOL Bandit3 Bandit6 Alecto(1.92, 1.91, 1.83, 2.00, 2.65)

Memory Intensive

Fig. 9. IPC speedup compared to no prefetching on SPEC17 benchmarks. Memory-intensive workloads are highlighted within dotted blue line, and their
geomean speedup is calculated separately. All prefetcher selections schemes algorithms the same composite prefetcher: GS [37] + CS [37] + PMP [27].

IPCP DOL Bandit3 Bandit6 Alecto
0.0

0.5

1.0

1.5

Pr
ef

et
ch

er
 M

et
ri

cs

Covered, Timely Covered, Untimely Uncovered Overprediction

0.291

0.651

0.725

0.286

0.655

0.721

0.345

0.602

0.635

0.401

0.567

0.705

0.415

0.550

0.570

Fig. 10. The key performance metrics of prefetchers.

additional 250M instructions. For Ligra, we use the input
file rMatGraph_WJ_5_100 across all tests and execute the
entire benchmark.

VI. EVALUATION

A. Single-core Evaluation

Figure 8 and Figure 9 report the IPC speedup of all six
evaluated prefetchers over a non-prefetching baseline, across
the SPEC CPU2006 and SPEC CPU2017 benchmarks. For
SPEC06 benchmarks, Alecto outperforms IPCP by 8.14%,
DOL by 8.04%, Bandit3 by 4.77%, Bandit6 by 3.20%3. For
SPEC17 benchmarks, Alecto outperforms IPCP by 5.47%,
DOL by 5.65%, Bandit3 by 3.67%, Bandit6 by 2.32%.
Thus, on average, Alecto outperforms the previous state-of-
the-art prefetcher selection algorithm—Bandit by 2.76%. For
memory-intensive benchmarks, Alecto outperforms Bandit6 by
5.25%. These improvements are attributed to the fact that,
for most benchmarks, Alecto outperforms other prefetchers
or prefetcher selection algorithms. There are a few excep-
tions, such as mcf and omnetpp, which benefit from PMP’s
aggressive prefetching instructed by Bandit. Alecto falls below
Bandit in these cases because it employs a moderate approach

3In all our evaluations, IPCP, DOL, Bandit only refer to prefetcher selection
algorithms. They schedule exactly the same composite prefetcher (e.g.,
GS+CS+PMP) as Alecto, rather than the prefetchers in their original papers.

that is not overly aggressive. To validate this, we conducted
experiments where we lowered the DB for PMP and fixed
PMP’s prefetching degree in Alecto to 6, the same as Bandit6.
The results show that Alecto can achieve similar performance
gains (permance gap < 1%) to Bandit6 for mcf and omnetpp,
indicating that we can leverage Control and Status Register
(CSR) to fine-tune Alecto’s behavior on specific workloads.

To further validate Alecto’s efficiency, we assess the key
performance metrics of prefetchers across the entire suite
of SPEC benchmarks. Figure 10 displays the distribution
of covered misses with timely prefetches, covered misses
with untimely prefetches, uncovered misses, and overpredicted
prefetches for all the prefetcher selection algorithms under
review. These metrics provide insights into the prefetching
accuracy, coverage, and timeliness of each algorithm.

The experimental results indicate that Alecto is more
adept at harmonizing prefetching accuracy, coverage, and
timeliness, showcasing superior balance over competing
prefetchers and prefetcher selection algorithms. Alecto ob-
tains notable advancements in prefetching accuracy, surpassing
Bandit6 by 13.51%. These enhancements are achieved without
compromising prefetching coverage and timeliness.

B. Generality: Alecto on Diverse Prefetchers

To validate Alecto’s ability to schedule various prefetchers,
we conduct experiments where the original stride prefetcher
(CS) and spatial prefetcher (PMP) are substituted with Berti
[35] and CPLX [37]. PMP, Berti, and CPLX, originating from
SMS [46], BOP [32], and VLDP [44] respectively, represent
three state-of-the-art approaches in spatial prefetching. Fig-
ure 11 shows the performance speedup achieved with vari-
ous prefetcher selection algorithms using this new composite
prefetcher. On average, Alecto outperforms IPCP by 8.52%,
DOL by 8.68%, Bandit3 by 5.02%, and Bandit6 by 2.04%.

SPEC CPU2006 SPEC CPU2017 Geomean
1.00
1.05
1.10
1.15
1.20
1.25

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g IPCP DOL Bandit3 Bandit6 Alecto

Fig. 11. Performance speedup when using prefetcher selection algorithms
schedule another composite prefetcher: GS [37] + Berti [35] + CPLX [37].

After analyzing the behaviors of each spatial prefetcher
under different selection algorithms, we observe PMP and
CPLX show superior performance with Alecto compared to
Bandit. In contrast, Berti performs well under both Alecto
and Bandit, reducing the performance gap between them.
Given the more aggressive nature of PMP and CPLX, they
require precise selection strategies to mitigate the risk of cache
pollution. Berti, known for its accuracy and less aggressive
prefetching behavior, is less likely to cause cache pollution.
However, this does not imply that aggressive prefetching
should be avoided. Instead, when combined with meticulous
prefetcher selection, aggressive prefetching can substantially
enhance prefetching accuracy, coverage, and timeliness, often
outperforming conservative approaches.

C. Effectiveness: Comparison with Non-composite Prefetchers

SPEC CPU2006 SPEC CPU2017 Geomean
1.00
1.05
1.10
1.15
1.20
1.25

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g PMP Berti Alecto (GS+CS+PMP) Alecto (GS+Berti+CPLX)

Fig. 12. Performance speedup with non-composite prefetchers.

Figure 12 compare two composite prefetchers scheduled
by Alecto (evaluated in Section VI-A and Section VI-B)
with the state-of-the-art non-composite prefetchers—PMP and
Berti. Alecto (GS+CS+PMP) outperforms PMP by 9.10% and
Berti by 7.83%. Alecto (GS+Berti+CPLX) outperforms PMP
by 9.53% and Berti by 8.26%. We observe that compos-
ite prefetchers show superior performance to non-composite
prefetchers. Therefore, our results indicate the potential of
composite prefetchers and highlight the value of relevant
research.

D. Generality: Alecto on Temporal Prefetching

We use the configurations shown in Figure 7 to demonstrate
the efficiency of Alecto in managing temporal prefetching.

astar_lakes
gcc_166 mcf

omnetpp
soplex

sphinx3

xalancbmk

Geomean
1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 S
pe

ed
up

Bandit Triangel Alecto

Fig. 13. The performance speedup of temporal prefetching with different
demand request allocation policies.

128KB 256KB 512KB 1MB
Temporal Prefetcher Metadata Table Size

1.00

1.05

1.10

1.15

N
or

m
al

iz
ed

 S
pe

ed
up

0.0482

0.0644

0.0603
0.0839

Bandit
Alecto

Fig. 14. Geomean IPC speedup with varying metadata table size.

Figure 13 displays the performance speedup, calculated by
dividing IPC when both L1 composite prefetchers and an
L2 temporal prefetcher are enabled, by the IPC obtained
when only L1 composite prefetchers are enabled. Following
the methodology of previous studies [49]–[51], our experi-
ments are conducted on representative benchmarks that exhibit
temporal patterns. Our results show that Alecto outperforms
Bandit by 8.39%, Triangel by 2.18%.

Overall, Alecto’s dynamic demand request allocation tech-
nique greatly enhances the utilization of metadata storage.
Given the long latency of accessing the metadata storage and
limited memory bandwidth, simply adjusting the prefetching
degree like Bandit is inefficient for temporal prefetching.
Alecto and Triangel both support allocating demand requests
to temporal prefetchers. However, Triangel does not filter de-
mand requests that can be handled by non-temporal prefetchers
(Section IV-F). This results in its inefficiency.

To highlight the importance of demand request allocation
for temporal prefetching, we compare Alecto to Bandit across
varying metadata table sizes. As described in Section V-C,
we disable the resizing of the metadata table for Alecto and
Bandit. We vary the metadata table size while maintaining a
fixed LLC size. Figure 14 demonstrates that Alecto consis-
tently outperforms Bandit under the same metadata budget,
with performance gains ranging from 4.82% to 8.39%. Fur-
thermore, to achieve the same performance as Bandit with a
1MB metadata table, Alecto only requires less than 256KB.

E. Sensitivity: LLC Size

Figure 15 shows the geometric mean of IPC speedup over
no prefetching, across various LLC sizes per core for IPCP,
DOL, Bandit3, Bandit6, and Alecto. While an increase in LLC
size tends to diminish the benefits provided by prefetching,
Alecto consistently maintains superior performance over other
prefetcher selection algorithms, showcasing its effectiveness
regardless of the LLC size. The performance gain of Alecto

0.5 1 2 4
LLC Size (MB)

1.12

1.14

1.16

1.18

1.20

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g 0.0299 0.0296

0.0276

0.0310

IPCP DOL Bandit3 Bandit6 Alecto

Fig. 15. Geomean IPC speedup with varying LLC size.

DDR3-1600 DDR4-2400
1.100

1.125

1.150

1.175

1.200
N

or
m

al
iz

ed
 S

pe
ed

up

 o
ve

r
N

o
Pr

ef
et

ch
in

g IPCP DOL Bandit3 Bandit6 Alecto

Fig. 16. Geomean IPC speedup with varying DRAM bandwidth.

over Bandit6 varies between 2.76% and 3.10%. Notably,
Alecto’s performance advantage over Bandit does not decrease
as the LLC size grows. This suggests that Alecto tends to
provide high prefetching accuracy with smaller LLCs, and
conversely, it can dynamically increase its aggressiveness in
response to low cache pollution levels.

F. Sensitivity: Memory Bandwidth

Figure 16 displays the geometric mean of IPC speedup over
scenarios without prefetching, comparing two DRAM band-
width configurations for IPCP, DOL, Bandit3, Bandit6, and
Alecto. We have two observations. First, Alecto outperforms
other algorithms in both of these configurations. Specifically,
Alecto surpasses Bandit6 by 3.18% in DDR3-1600, and 2.76%
in DDR4-2400. Second, Alecto and Bandit6 can benefit more
from the elevated memory bandwidth than other prefetcher
selection algorithms. For Bandit6, the primary reason for its
performance improvement is attributed to its more aggressive
prefetching strategy. In contrast, Alecto’s performance stems
from its ability to balance prefetching accuracy and timeliness.

G. Scalability: Multi-core Evaluation

Figure 17 shows the performance speedup across all
prefetcher selection algorithms on an eight-core setup. On
average, Alector outperforms IPCP by 10.60%, DOL by
11.52%, Bandit3 by 9.51%, and Bandit6 by 7.56%. The perfor-
mance gap between the Alecto and Bandit becomes enlarged
in the eight-core scenario. With the increased core count,
Bandit suffers from its coarse-grained prefetcher selection.
To mitigate the scalability issue common to RL algorithms,
Bandit uses sampled IPC as the sole reward for training
its nTable and rTable. As noted in [21], such sampling is
prone to interference between different cores. One core’s
aggressive prefetching would make other cores get trapped in
suboptimal prefetching strategies. In contrast, Alecto controls
each prefetcher’s prefetching degree in a fine-grained manner,
effectively balancing the overall prefetching performance.

SPEC06 SPEC17 PARSEC Ligra Geomean
1.00
1.05
1.10
1.15
1.20
1.25

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g IPCP DOL Bandit3 Bandit6 Alecto

Fig. 17. Eight-core performance speedup compared to no prefetching on
SPEC06, SPEC17, PARSEC and Ligra benchmarks.

TABLE III
STORAGE OVERHEAD ANALYSIS.

Structure Entry Component Storage

Allocation Table 64
Valid (1 bit)

640 + 256× PTag (9 bits)
States (4× P bits)

Sample Table 64

Valid (1 bit)

1600 + 1024× P

Tag (9 bits)
Issued (8× P bits)

Confirmed (8× P bits)
Deads (7 bits)

Demands (8 bits)
Sandbox Table 512 Tag (6 bits)

3072 + 512× P(Prefetch Filter) Valid for Pi (P bits)
Overall: 5312 + 1792× P bits (≈ 1.30 KB when P = 3)
Exclude Sandbox Table: 2240 + 1280× P bits (≈ 760 B when P = 3)

H. Scalability: Storage Overhead

Table III details the storage requirements for each com-
ponent within Alecto. The total storage overhead is 5312 +
1792 × P bits, where P represents the number of prefetch-
ers, demonstrating a linear scalability with the number of
prefetchers. Notably, the Sandbox Table serves a dual purpose
by also acting as a prefetch filter, a feature that is essential
in all cache prefetcher systems, thereby offsetting the need
for additional storage to accommodate a separate prefetch
filter. Excluding the Sandbox Table, Alecto necessitates only
2240 + 1280 × P bits for the Allocation Table and Sample
Table. For the configurations used in our experiments (P=3),
the total storage overhead is approximately 760 bytes.

Alecto is more scalable than RL-based prefetcher selec-
tion algorithms, which typically face exponential growth in
storage requirements as the number of selected prefetchers
increases. Even Bandit [21], a relatively lightweight RL-based
prefetcher selection algorithm, is not exempt from scalability
challenges. Its storage overhead is calculated as 8 × #arm
bytes, where #arm = #actions#prefetcher. For Bandit, the
actions correspond to the adjusted prefetching degrees. In
Alecto, the prefetching degree of a prefetcher can take on
M + 3 potential values, such as 0, c, c + 1, ..., c + M + 1.
Extending Bandit’s model to include M+3 possible values for
the prefetching degree would result in a storage overhead of
8×(M+3)#prefetcher. Using the settings from our experiment
(M = 5), this calculation yields 8×83 bytes (4 KB), which is
5.4 times more than Alecto’s storage requirements. We have
implemented this extended version of Bandit and compared
it with Bandit6 and Alecto. We find that its performance
is lower than Bandit6 by 0.83% and Alecto by 3.59%. Our
experimental results suggest that Bandit struggles to converge
when too many actions are considered.

I. Efficiency: Energy Overhead

Bandit6 Alecto
0

300
600
900

1200
1500

Tr
ai

ni
ng

 O
cc

ur
re

nc
es

 (T

ho
us

an
d)

Stream Stride Spatial Geomean

Fig. 18. The number of each prefetcher’s training occurrences in Alecto
compared to Bandit.

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

A
D

M gc
c

G
em

sF
D

T
D

gr
om

ac
s

hm
m

er
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

om
ne

tp
p

so
pl

ex
sp

hi
nx

3
xa

la
nc

bm
k

ze
us

m
p

bw
av

es
_1

7
ca

ct
uB

SS
N

_1
7

ca
m

4_
17

fo
to

ni
k3

d_
17

gc
c_

17
lb

m
_1

7
m

cf
_1

7
om

ne
tp

p_
17

ro
m

s_
17

xa
la

nc
bm

k_
17

xz
_1

7
G

eo
m

ea
n

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g

Bandit6 Alecto_fix Alecto

Fig. 19. On memory intensive benchmarks, performance speedup for Bandit6,
Alecto with the fixed prefetching degree, and complete Alecto.

We evaluate the energy efficiency of Alecto at both the
system and prefetcher levels. At the system level, we utilize
CACTI [34] to model the energy consumption of the memory
hierarchy under a 22 nm technology node. At the prefetcher
level, we estimate the energy consumption of prefetchers based
on their training occurrences. This estimation is supported by
two key observations: First, the dynamic power of prefetchers
accounts for the vast majority of their total power consump-
tion. Second, prefetchers’ primary source of dynamic power
consumption is accessing their internal tables, which directly
correlates with their training occurrences. Our experiments
show that, at the system level, Alecto achieves an average
energy reduction of 7% for the memory hierarchy compared to
Bandit6. At the prefetcher level, as shown in Figure 18, Alecto
reduces training occurrences of each prefetcher by 48%.

VII. DISCUSSION

A. Alecto’s Features: Ablation Study

We prove that the primary performance gain of Alecto is
contributed by demand request allocation. Alecto consists of
two parts: (1) demand request allocation; and (2) dynamic
prefetching degree adjustment for the allocated prefetchers. To
study the impact of each component on overall performance,
we modify the state machine in Figure 5 to isolate Alecto with
prefetching degree adjustment. Specifically, we decouple the
IA m state with the prefetchers’ prefetching degree. Once a
prefetcher is promoted to IA m state, it is configured to issue
up to 6 prefetch requests, similar to Bandit6. Figure 19 shows
that Alecto without prefetching degree adjustment outperforms
Bandit6 by 4.34%, compared to a 5.25% when prefetching
degree adjustment is enabled (Section VI-A).

B. Prefetching Degree Study

To further validate the results discussed in Section VII-A,
we calculate the average prefetching degree for Alecto and
compare it to Bandit6. The stream prefetcher scheduled
by Alecto issues 79% of the prefetch requests, the stride
prefetcher issues 124%, and the spatial prefetcher issues 94%.
This indicates Alecto’s overall aggressiveness is comparable to
Bandit6. Additionally, the temporal prefetcher issues 156%,
demonstrating that the temporal prefetcher under Alecto re-
ceives better training than Bandit6, because (1) the temporal
prefetcher is limited to issue a maximum of one prefetch
request per training occurrence (Section V-C), and (2) the
temporal prefetcher under Alecto thus have more opportunities
to generate prefetch requests.

as
ta

r
bw

av
es

bz
ip

2
ca

ct
us

A
D

M gc
c

G
em

sF
D

T
D

gr
om

ac
s

hm
m

er
lb

m
le

sl
ie

3d
lib

qu
an

tu
m

m
cf

m
ilc

om
ne

tp
p

so
pl

ex
sp

hi
nx

3
xa

la
nc

bm
k

ze
us

m
p

bw
av

es
_1

7
ca

ct
uB

SS
N

_1
7

ca
m

4_
17

fo
to

ni
k3

d_
17

gc
c_

17
lb

m
_1

7
m

cf
_1

7
om

ne
tp

p_
17

ro
m

s_
17

xa
la

nc
bm

k_
17

xz
_1

7
G

eo
m

ea
n

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

N
or

m
al

iz
ed

 S
pe

ed
up

 o

ve
r

N
o

Pr
ef

et
ch

in
g IPCP+PPF_Agg IPCP+PPF_Con Alecto

Fig. 20. On memory intensive benchmarks, performance speedup for IPCP,
IPCP+PPF Aggressive, IPCP+PPF Conservative, and Alecto. They schedule
the same composite prefetcher: GS+CS+PMP.

C. Prefetch Filtering Study

We prove that dynamic demand request allocation is more
effective than prefetch filtering only, such as PPF (Perceptron-
based Prefetch Filtering) [16]. Alecto’s dynamic demand re-
quest allocation allows each scheduled prefetcher to receive
better training while simultaneously filtering out unnecessary
prefetch requests that would otherwise be generated during
training. Figure 20 compares Alecto to PPF [16]. We use
features from PPF’s original paper [16] to train PPF. We apply
PPF to filter requests generated by the composite prefetcher.
To isolate the impact of prefetcher selection, we use IPCP to
schedule the composite prefetcher in PPF’s configuration.

We tune PPF into two versions: PPF Aggressive and
PPF Conservative. The former is more aggressive in identi-
fying and filtering useless prefetch requests than the latter.
Our experiments reveal that though PPF improves prefetch-
ing accuracy, it incorrectly filters out many useful prefetch
requests. For example, in the case of PPF Aggressive on
GemsFDTD, prefetching accuracy increases from 0.53 to
0.9, but prefetching coverage drops from 0.67 to 0.35.
Consequently, Alecto outperforms IPCP+PPF Aggressive by
18.38%, and IPCP+PPF Conservative by 14.98% across all
memory intensive workloads. Alecto’s dynamic demand re-
quest allocation increases both the prefetching accuracy and
coverage (Section VI-A), resulting in better performance.

VIII. CONCLUSION

In this paper, we proposed Alecto, a prefetcher selection
framework with dynamic demand request allocation. Alecto
adopts fine-grained prefetchers identification that identifies
suitable and unsuitable prefetchers for each memory access
instruction. Based on the identification, Alecto can tailor opti-
mal prefetching strategies to each memory access instruction,
thereby optimizing the overall prefetching accuracy, coverage,
and timeliness. We quantified the performance of Alecto across
extensive prefetcher settings and benchmarks, which showed
that Alecto outperforms state-of-the-art prefetcher selection
algorithms and non-composite individual prefetchers.

ACKNOWLEDGEMENTS

This work is supported by Hong Kong Research Grants
Council (RGC) ECS Grant 26208723, National Natural Sci-
ence Foundation of China (92364102, 62304192), and AC-
CESS – AI Chip Center for Emerging Smart Systems, spon-
sored by InnoHK funding, Hong Kong SAR.

REFERENCES

[1] “6th Generation Intel® Processor Family,” https://www.intel.com/
content/www/us/en/processors/core/desktop-6th-gen-core-family-spec-
update.html.

[2] “PARSEC,” http://parsec.cs.princeton.edu/.
[3] “SPEC CPU 2006,” https://www.spec.org/cpu2006/.
[4] “SPEC CPU 2017,” https://www.spec.org/cpu2017/.
[5] “Hot Chips 2023: arm’s neoverse v2,” https://hc2023.hotchips.org/

assets/program/conference/day1/CPU1/HC2023.Arm.MagnusBruce.
v04.FINAL.pdf, 2023.

[6] “Github: gem5-triangel,” https://github.com/SamAinsworth/gem5-
triangel, 2024.

[7] S. Ainsworth and L. Mukhanov, “Triangel: A high-performance, accu-
rate, timely on-chip temporal prefetcher,” in ISCA, 2024.

[8] E. S. Alcorta, M. Madhav, S. Tetrick, N. J. Yadwadkar, and A. Gerst-
lauer, “Lightweight ml-based runtime prefetcher selection on many-core
platforms,” arXiv preprint arXiv:2307.08635, 2023.

[9] G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan, “Classifying
memory access patterns for prefetching,” in ASPLOS, 2020, pp. 513–
526.

[10] J.-L. Baer and T.-F. Chen, “An effective on-chip preloading scheme
to reduce data access penalty,” in Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, 1991, pp. 176–186.

[11] M. Bakhshalipour, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Domino
temporal data prefetcher,” in HPCA, 2018, pp. 131–142.

[12] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in HPCA, 2019, pp. 399–411.

[13] M. Bakhshalipour, S. Tabaeiaghdaei, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Evaluation of hardware data prefetchers on server processors,”
CSUR, pp. 1–29, 2019.

[14] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney,
and O. Mutlu, “Pythia: A customizable hardware prefetching frame-
work using online reinforcement learning,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, 2021.

[15] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “Dspatch: Dual
spatial pattern prefetcher,” in MICRO, 2019, pp. 531–544.

[16] E. Bhatia, G. Chacon, S. Pugsley, E. Teran, P. V. Gratz, and D. A.
Jiménez, “Perceptron-based prefetch filtering,” in ISCA, 2019, pp. 1–13.

[17] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, 2011.

[18] M. Chaudhuri, J. Gaur, N. Bashyam, S. Subramoney, and J. Nuzman,
“Introducing hierarchy-awareness in replacement and bypass algorithms
for last-level caches,” in PACT, 2012, pp. 293–304.

[19] F. Dahlgren and P. Stenstrom, “Effectiveness of hardware-based stride
and sequential prefetching in shared-memory multiprocessors,” in
HPCA, 1995, pp. 68–77.

[20] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S. W. Keckler, “Running
parsec 2.1 on m5,” The University of Texas at Austin, Department of
Computer Science, Tech. Rep, 2009.

[21] G. Gerogiannis and J. Torrellas, “Micro-armed bandit: Lightweight &
reusable reinforcement learning for microarchitecture decision-making,”
in MICRO, 2023.

[22] M. He, H. Wang, K. Zhou, K. Cui, H. Yan, C. Guo, and R. He, “Dsdp:
Dual stream data prefetcher,” in PACT, 2022, pp. 372–383.

[23] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantita-
tive approach, 2011.

[24] I. Hur and C. Lin, “Memory prefetching using adaptive stream detec-
tion,” in MICRO, 2006, pp. 397–408.

[25] Y. Ishii, M. Inaba, and K. Hiraki, “Access map pattern matching for
data cache prefetch,” in ICS, 2009, pp. 499–500.

[26] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in MICRO, 2013, pp. 247–259.

[27] S. Jiang, Q. Yang, and Y. Ci, “Merging similar patterns for hardware
prefetching,” in MICRO, 2022, pp. 1012–1026.

[28] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” ACM
SIGARCH Computer Architecture News, vol. 18, no. 2SI, pp. 364–373,
1990.

[29] J. Kim, S. H. Pugsley, P. V. Gratz, A. N. Reddy, C. Wilkerson, and
Z. Chishti, “Path confidence based lookahead prefetching,” in MICRO,
2016, pp. 1–12.

[30] S. Kim and A. V. Veidenbaum, “Stride-directed prefetching for sec-
ondary caches,” in ICPP, 1997, pp. 314–321.

[31] S. Kondguli and M. Huang, “Division of labor: A more effective
approach to prefetching,” in ISCA, 2018.

[32] P. Michaud, “Best-offset hardware prefetching,” in HPCA, 2016, pp.
469–480.

[33] S. Mittal, “A survey of recent prefetching techniques for processor
caches,” CSUR, pp. 1–35, 2016.

[34] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0:
A tool to model large caches,” HP laboratories, vol. 27, p. 28, 2009.

[35] A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibáñez, V. Viñals-
Yúfera, and A. Ros, “Berti: an accurate local-delta data prefetcher,” in
MICRO, 2022, pp. 975–991.

[36] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in HPCA, 2004, pp. 96–96.

[37] S. Pakalapati and B. Panda, “Bouquet of instruction pointers: Instruction
pointer classifier-based spatial hardware prefetching,” in ISCA, 2020.

[38] B. Panda, “Clip: Load criticality based data prefetching for bandwidth-
constrained many-core systems,” in MICRO, 2023, pp. 714–727.

[39] S. H. Pugsley, Z. Chishti, C. Wilkerson, P.-f. Chuang, R. L. Scott,
A. Jaleel, S.-L. Lu, K. Chow, and R. Balasubramonian, “Sandbox
prefetching: Safe run-time evaluation of aggressive prefetchers,” in
HPCA, 2014, pp. 626–637.

[40] A. Seznec, “A 64-kbytes ittage indirect branch predictor,” in JWAC-2:
Championship Branch Prediction, 2011.

[41] A. Seznec, “A new case for the tage branch predictor,” in MICRO, 2011,
pp. 117–127.

[42] A. Seznec, “Tage-sc-l branch predictors,” in JILP-Championship Branch
Prediction, 2014.

[43] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” ACM SIGPLAN Notices,
pp. 45–57, 2002.

[44] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address pat-
terns,” in MICRO, 2015, pp. 141–152.

[45] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming,
2013, pp. 135–146.

[46] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” ACM SIGARCH Computer Architecture
News, pp. 252–263, 2006.

[47] G. Southern and J. Renau, “Analysis of parsec workload scalability,” in
ISPASS, 2016, pp. 133–142.

[48] T. F. Wenisch, M. Ferdman, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Practical off-chip meta-data for temporal memory streaming,” in HPCA,
2009, pp. 79–90.

[49] H. Wu, K. Nathella, M. Pabst, D. Sunwoo, A. Jain, and C. Lin,
“Practical temporal prefetching with compressed on-chip metadata,”
IEEE Transactions on Computers, pp. 2858–2871, 2021.

[50] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and C. Lin,
“Temporal prefetching without the off-chip metadata,” in MICRO, 2019,
pp. 996–1008.

[51] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata
management for irregular data prefetching,” in ISCA, 2019, pp. 449–461.

[52] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[53] P. Zhang, R. Kannan, A. Srivastava, A. V. Nori, and V. K. Prasanna,
“Resemble: reinforced ensemble framework for data prefetching,” in SC,
2022.

	Introduction
	Background and Motivation
	Current Solutions
	Our Goal

	Design Overview
	Core Idea
	Structure Overview
	Process Overview

	Design Implementation
	Fine-grained Prefetchers Identification
	Dynamical Demand Request Allocation
	Runtime Metrics Gathering
	Duplicate Prefetch Requests Filtering
	Why Alecto Achieves Our Goal?
	Alecto on Temporal Prefetching

	Experimental Methodology
	System Configuration
	Prefetchers Simulated
	Evaluating Alecto on Temporal Prefetching
	Workloads

	Evaluation
	Single-core Evaluation
	Generality: Alecto on Diverse Prefetchers
	Effectiveness: Comparison with Non-composite Prefetchers
	Generality: Alecto on Temporal Prefetching
	Sensitivity: LLC Size
	Sensitivity: Memory Bandwidth
	Scalability: Multi-core Evaluation
	Scalability: Storage Overhead
	Efficiency: Energy Overhead

	Discussion
	Alecto's Features: Ablation Study
	Prefetching Degree Study
	Prefetch Filtering Study

	Conclusion
	References

