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ABSTRACT
Interconnect spacing is getting increasingly smaller in advanced
technology nodes, which adversely increases the capacitive cou-
pling of adjacent interconnect wires. It makes crosstalk a signi�cant
contributor to signal integrity and timing, and it is now imperative
to prevent crosstalk-induced noise and delay issues in the earlier
stages of VLSI design� ow. Nonetheless, since the crosstalk e�ect
depends primarily on the switching of neighboring nets, accurate
crosstalk evaluation is only viable at the late stages of design� ow
with routing information available, e.g., after detailed routing. There
have also been previous e�orts in early-stage crosstalk prediction,
but they mostly rely on time-expensive trial routing. In this work,
we propose a machine learning-based routing-free crosstalk predic-
tion framework. Given a placement, we identify routing and net
topology-related features, along with electrical and logical features,
which a�ect crosstalk-induced noise and delay. We then employ ma-
chine learning techniques to train the crosstalk prediction models,
which can be used to identify crosstalk-critical nets in placement
stages. Experimental results demonstrate that the proposed method
can instantly classify more than 70% of crosstalk-critical nets after
placement with a false-positive rate of less than 2%.
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ing methodologies! Machine learning approaches.
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1 INTRODUCTION
Crosstalk-induced noise and delay variation have emerged as a
serious concern in advanced technology nodes. Through capacitive
coupling, a signal switching of one net causes crosstalk noise at its
neighboring nets [27]. Noise amplitude can even reach up to 30% of
+⇡⇡ [21], whichmay exceed the threshold voltage of transistors and
lead to glitches, which impose a risk of logic errors and unwanted
switching power consumption. Moreover, the coupling capacitance
itself serves as extra load increasing both signal delay and internal
power dissipation; the incremental delay due to coupling capaci-
tance along a timing path can reach 300?B [22], comparable to clock
periods of modern high-performance processors.

Nontheless, an accurate estimation of crosstalk e�ects is only
possible after exact routing topology is available, i.e., after detailed
routing. As it is among the last few steps in physical design, few
rooms may remain to� x all the crosstalk-induced design problems
even if we identify every crosstalk issue [27]. More� exibility for
design changes can be found at global routing stage [18, 30]. Esti-
mating crosstalk, however, becomes much harder at this point as
exact routing topology is not determined yet. There may also be
still insu�cient opportunities to� x signi�cant crosstalk-induced
problems even at the global routing stage.

In this regard, many research e�orts have been undertaken to
estimate and mitigate crosstalk problems at earlier design stages,
e.g., placement [16, 22]. There is usually a greater degree of design
�exibility at earlier stages, which helps us resolve all the signi�cant
crosstalk issues if identi�ed. The key problem of such an early-stage
estimation, however, is the absence of routing information. It is
mostly impossible to estimate crosstalk accurately with placement
alone. Indeed, crosstalk driven placement [16, 22] resorts to global
routing or trial routing for obtaining an approximate estimate of
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routing landscape and thereby capacitive coupling of nets. An evi-
dent drawback here is that global or trial routing is time-consuming
and thus induces huge runtime costs.

1.1 Motivation
There is a tradeo� between accuracy of crosstalk prediction and de-
sign �exibility across three main relevant stages: placement, global
routing, and detailed routing. An ideal crosstalk avoidance �ow
could be such as:

(1) During placement, signi�cant crosstalk risks are identi�ed
and resolved by leveraging the greater design �exibility.

(2) Most of the remaining crosstalk risks are eliminated in global
routing via layer assignment [28] and area routing [25].

(3) In detailed routing, complete crosstalk avoidance is achieved
with the precise crosstsalk evaluation.

While crosstalk avoidance at routing stages has been well stud-
ied [18, 25, 27, 30], the placement stage solutions [16, 22] are still far
from being practical largely due to the dependence on trial/global
routing, which can easily take more than a half hour for a modern
design. Indeed, pre-routing crosstalk prediction is a major weak
link in realizing the ideal crosstalk avoidance �ow.

One might consider employing existing routing congestion pre-
diction methods [29] and use the results as a proxy of predicted
crosstalk hotspots, since coupling capacitance correlates with rout-
ing congestion. Despite the correlation, Figure 1 shows there exists
di�erence between the routing congestion hotspot and the crosstalk-
induced noise hotspot. One important reason for the mismatch is
that noise is determined by not only coupling capacitance, but also
electrical and logical parameters.

1.2 Contributions
In this paper, we present a predictive method that can quickly iden-
tify a majority of crosstalk prone nets at placement stages, without
any routing information. Such predictive identi�cation would not
only assist crosstalk driven placement [16, 22], but also make other
crosstalk mitigation techniques viable at placement stage, such as
gate sizing [4] and bu�er insertion [3]. Note that it is not necessary
to identify all problematic nets as the goal of placement-stage tech-
niques is to reduce crosstalk risk and make subsequent avoidance
techniques feasible rather than completely solve all crosstalk prob-
lems. At the same time, the prediction must be very fast, at least an
order of magnitude faster than global/trial routing.

We identify routing and net topology-related features, together-
with electrical and logical features, which a�ect crosstalk-induced
noise and delay. Our approach leverages recent progresses on ma-
chine learning (ML) such as XGBoost [7]. In addition, graph-based
ML techniques including GraphSage [12] and graph attention net-
works [26] are investigated for the crosstalk prediction. Given a cell
placement solution for a design, the proposed approach predicts
coupling capacitance, peak noise and crosstalk induced incremen-
tal delay for every signal net. Experimental results show that it
can identify over 70% of nets with top crosstalk problems at false
positive rate no greater than 2%. At the same time, its computa-
tion speed is two orders of magnitude faster than a conventional

Crosstalk-induced noise hotspot Routing congestion hotspot

Figure 1: Routing congestion and crosstalk-induced noise
hotspots.

approach based on global routing. Detailed analysis of feature im-
portance is also performed. To the best of our knowledge, this is
the �rst approach to routing-free crosstalk prediction.

2 RELATEDWORK
Due to the importance of crosstalk avoidance, crosstalk estimation
has been extensively studied in the past [1, 6, 15, 21]. Regardless
accuracy and computation speed, all the previous methods require
wire adjacency information, which is not available until detailed
routing [27] or area routing [25]. Crosstalk estimation has also
been studied targeting global routing [5, 18] and layer assignment
stages [28]. Since no wire adjacency is available at these stages, the
number of wire segments in a global routing cell is instead used to
infer crosstalk in a probabilistic manner.

Crosstalk avoidance has also been addressed at placement [16,
22]. Such methods employ trial or global routing to get rough rout-
ing topology from placement. Based on the routing congestion
information from the rough routing, coupling capacitance is es-
timated through curve-�tting from data of previously completed
designs. Based on the estimated coupling capacitance and the rout-
ing routing topology, crosstalk noise is then computed using a
simpli�ed model, e.g., [22]. There have also been attemps to ad-
dress crosstalk in even earlier design stages including technology
mapping [10] and high-level synthesis [23]. Crosstalk avoidance is
particularly investigated for bus design [9] where wire permutation
is decided.

An ML-based crosstalk estimation is introduced in [13], to take
crosstalk induced incremental delay into account within STA of
routed designs. Instead of relying on the time-consuming signal
integrity (SI) modes of STA tools, an ML model accounts for the
e�ect of crosstalk during STA without turning on the SI mode.
However, it can be only applied to routed designs. To the best of
our knowledge, there is no previous work that can predict crosstalk
without using any routing information. This is a void to be �lled by
our work for addressing crosstalk at placement and post-placement
optimizations, such as gate sizing and bu�er insertion.

3 METHODOLOGY
3.1 Overall �ow
Crosstalk prediction by machine learning (ML) classi�cation is
a more attainable approach than ML regression. Moreover, clas-
si�cation results usually su�ce for crosstalk avoidance in early
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x A: Nets with large coupling 
capacitance;

x B: Nets with large crosstalk-
induced noise;

x C: Nets with long incremental 
delay.

Figure 2: The Venn diagram of three crosstalk-critical net
categories. The value on each region shows the proportion
of the nets belonging to the region, normalized against the
total number of crosstalk-critical nets.
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Figure 3: Crosstalk modeling �ow.

design stages. We target at solving three classi�cation tasks at the
placement stage, to identify

(1) The nets likely to have large coupling capacitance.
(2) The nets likely to have large crosstalk-induced noise.
(3) The nets likely to have long incremental delay due to crosstalk.

Figure 2 shows the Venn diagram of the above three sets of crosstalk-
critical nets according to our experiment data. We can �nd that
these sets have overlaps but they are not identical.

The crosstalk modeling �ow is shown in Figure 3. Input features
and ground truth information are extracted from the placement and
the post-routing databases, respectively, and they further constitute
theML database. By training and evaluating prediction performance
of candidate ML models, e.g., XGboost, with the labeled data stored
in the ML database, the most e�ective feature sets and the best
models for three crosstalk classi�cation problems are determined,
which can be used to fast identi�cation of problematic nets in new
placement instances.

The raw input to crosstalk prediction engine includes placed
DEF �le, standard cell libraries, and the static timing analysis (STA)
results generated after placement. The placed DEF contains the
circuit netlist, and the locations of cells and input/output ports
after placement. The standard cell library �les are used to get the
physical, electrical and logical properties of the cells in the circuit.
The STA results generated after placement give timing information

such as cell delays, wire delays, and transition times. Net-based
features are extracted from these �les and then fed into ML models.

The ground truth information is extracted from the parasitic
information �le and the timing report in SI mode generated after
detailed routing. For coupling capacitance prediction, the ground
truth of a placement sample is represented by a binary vector of
length =, where = is the total number of nets in a design. Each
entry in the vector corresponds to a net, indicating whether its total
coupling capacitance is larger than a given threshold. Crosstalk
noise is measured at receiver pins. For each net, we calculate the
peak noise amplitude and noise width product, denoted by �, , at
the sink pins, because the noise susceptibility of digital logic gates
is usually characterized by a noise amplitude pulse width plot. The
ground truth of a placement for noise prediction is denoted by a
binary vector of length =. Similarly, we obtain a vector denoting
whether the nets in a placement have crosstalk-induced incremental
delays larger than a given threshold.

3.2 Feature Selection
3.2.1 Probabilistic Congestion Estimation. Routing conges-
tion strongly correlates with crosstalk, since coupling capacitance
tends to occur in congested areas. A probabilistic technique for
congestion analysis [24] is employed in our work due to its great
runtime advantage over other techniques and its good correlation
with the post-routing solution.

Rectangular Uniform wire DensitY (RUDY) of a net [24] is ob-
tained via dividing the total wire volume going through the bound-
ing box of the net by the bounding box area. We call two nets
neighbors if their bounding boxes overlap. For the 8-th net in a
placement, with its neighboring nets denoted by # (8), the total
wire volume wireVolume(8) that go through its net-bounding-box
is calculated as

wireVolume(8) = HPWL(8) +
’

9 2# (8)
HPWL( 9) overlapArea(8, 9)

area( 9) , (1)

where HPWL( 9) is the half perimeter wire length (HPWL) of net 9 ,
area( 9) is the bounding box area of net 9 , and overlapArea(8, 9) is
the overlap area of the bounding boxes for nets 8 and 9 . The RUDY
of the 8-th net is then given by

RUDY(8) = wireVolume(8)
area(8) . (2)

Nets can be divided into long-range nets and short-range nets
according to their HPWL1. In [29], it is shown that routing con-
gestion has a stronger correlation with long-range nets than with
shorter ones. In this regard, we also extract a feature, which we call
longRangeRUDY, in a similar way as (1) and (2). The di�erence is
that only long-range nets are taken into account when computing
the total wire volume.

3.2.2 Net Topology Estimation. Net topology is necessary for
crosstalk estimation. Because di�erent routing topology of a net
exposes it to di�erent aggressors. Also, it leads to di�erent electrical
characteristics of interconnects, which have impacts on crosstalk
noise and incremental delay. A few net-topology-related features
are extracted as follows.
1We used 25�m for the long-range net threshold in this work.
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• HPWL of the net-bounding-box.
• area of the net-bounding-box.
• fan-out of the source, i.e., the number of sinks of the net.
• max-ss-distance: the maximal distance between the source
cell and the sink cells.

3.2.3 Product of the Wire-length and Congestion. As illus-
trated in [16], the total coupling capacitance of a net is proportional
to the product of its wire-length and the unit coupling capacitance.
We use the product of the HPWL and the RUDY/long-range-RUDY
of a net as an indicator of its coupling capacitance.

• HPWL-RUDY/HPWL-longRangeRUDY: the product of
HPWL and RUDY/longRangeRUDY of a net.

3.2.4 Electrical and Logical Features. The electrical proper-
ties of cells play an important role in crosstalk. For example, the
crosstalk noise is a�ected by the source cell’s resistance [22]. Also,
the logic type of the source cell may a�ect the switching activity of
the net, and consequently a�ect the noise and incremental delay.
However, given the complicated timing models used by modern
cell libraries, it is di�cult to capture all crosstalk-related properties
of a cell. To address this problem, we propose to use a logic-based
encoding, along with the output capacitance, to represent a cell.
First, library cells are consolidated into groups according to logic
types. Each group contains cells with the same logic, but can have
di�erent fan-in count (e.g., a two input NAND and a three input
NAND belong to the same group) and di�erent sizes. We use a vari-
ant of the one-hot encoding to encode the gate groups. Speci�cally,
a vector of length #6 , the total number of gate groups, with only
one non-zero entry is used to describe which group the cell belongs
to. Unlike assigning 1 to the non-zero entry in the one-hot encod-
ing, we assign the cell’s fan-in to the non-zero entry. An additional
feature, output capacitance, is used to capture the size of the gate. A
few other electrical and logical structure features are also extracted.

• ;0 to ;#6 : the logic-based encoding of the source cell.
• sourceCap: output capacitance of the source cell.
• sinkCap: the sum of the input capacitance of sink cells.
• fan-in: the fan-in of the source cell.

3.2.5 Timing Information. The pre-routing timing report gives
a rough estimation of wire delays and slews, which is informative
for crosstalk prediction. For example, smaller slew often means
stronger drive strength, consequentlymore resistant to aggregator’s
e�ect in term of incremental delay.

• wireDelay : the longest wire delay from the source to the
sinks. Note it is a rough prediction from the pre-routing STA.

• outputSlew of the source cell from the pre-routing STA.
We also tried clock period, toggle rate and other timing related

features. But we have not observed improvement brought by these
features in our experiments.

3.2.6 Neighboring Net Information. Crosstalk noise and incre-
mental delay depend not only on coupling capacitance, but also on
the coupling location [22] (near the source or sink cells) and the
aggressors’ drive strength. We estimate the coupling location via
the relative location of the net’s bounding box and its neighbors’
bounding boxes.

• #Neighboring nets: number of neighboring nets.

• #Neighboring long-range-nets: number of neighboring
long-range-nets.

• mean-, std-, max-overlapArea: the average/standard devi-
ation/maximum of overlap areas between the net’s bounding-
box and neighboring nets’ bounding-boxes.

• mean-dist-source-overlap: the average distance between
the source cell and the geometric centers of overlap regions.

• weighted-dist: the average distance between the source cell
and the geometric centers of overlap regions, weighted by
the area of each overlap region.

• dist-source-maxOverlap: the distance between the source
cell and the geometric center of the largest overlap region.

We use the sourceCap and outputSlew to represent the drive
strength of a net. If a net is surrounded by nets with strong drive
strength, then its aggressors is likely to have strong drive strength.
The following features are employed to capture neighboring nets’
drive strength.

• mean-, std-sourceCap: the average/standard deviation of
sourceCap of neighboring nets.

• sourceCap-maxOverlap: the sourceCap of the neighbor-
ing net that has the largest overlap with the target net.

• mean-, std-outputSlew: the average/standard deviation of
outputSlew of neighboring nets.

• outputSlew-maxOverlap: the outputSlew of the neighbor-
ing net that has the largest overlap with the target net.

Note that we do not use the electrical and logical features, and
timing information in coupling capacitance prediction, since cou-
pling capacitance is mainly determined by layout information.

3.3 Machine Learning-Based Crosstalk
Estimation Models

Four popular ML techniques, logistic regression, neural network,
random forest and XGboost, were used to model the mappings from
the extracted features to coupling capacitance, crosstalk-induced
noise and incremental delay. For each technique, three independent
models were trained and �ne-tuned for the three classi�cation tasks.
Implementation details about the models are shown as follows.

• Logistic regression (LR): It is a linear classi�cation model. We
used scikit-learn [20] for the implementation, employing !2 reg-
ularization to mitigate over�tting.

• Neural network (NN): Multilayer perceptron neural-networks,
implemented via the Pytorch [19], were employed. We imple-
mented a narrow network with 3 layers for coupling capacitance
prediction, and used deeper networks with 5 layers for crosstalk
noise prediction and incremental delay prediction, since the map-
pings from input features to crosstalk noise and to incremental
delay are considered to be more complex than the mapping from
input to coupling capacitance. We also �ne-tuned learning rate
and other hyper-parameters to achieve the best performance.

• Randomforest (RF): A random forest consists of independently-
trained decision trees, and the classi�cation results are obtained
by averaging the decisions of all trees or by voting [14]. Larger
number of trees and deeper trees can make the model more ex-
pressive, but may result in over�tting; if a forest is too small and
narrow, it may fall into under�tting. We tuned these parameters
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carefully to achieve balance between over�tting and under�tting.
In our experiment, there were 100 trees with the maximum depth
of 5 in the random forest implementation.

• XGboost (XG): We employed the Gradient Boosted Regression
Trees (GBRT) available in XGboost [7]. In GBRT, model trees are
trained sequentially, where each training depends on the errors
of previous ones. The �nal decision is the sum of decisions of
all trees. In our experiment, the best results were obtained by 25
trees with the maximum depth of 8.
We also investigated the e�ectiveness of graph-based ML tech-

niques for the crosstalk prediction. Two net-centric graphs were
generated: A dual circuit graph (DCG) and a proximity graph (PG).
In a DCG, each node E8 represents a net, and a directed edge exists
between a pair of nets (E8 , E 9 ) if a sink of E8 is the source of E 9 . It can
capture electrical connection information. A PG is used to capture
the physical proximity among nets in the layout. Each node repre-
sents a net, and a unidirectional edge is created between two nets
if the overlap area of their bounding boxes are larger than a given
threshold2. The weight of edge is the area of the overlap region.
Based on these two graphs, three ML models were implemented.
• GraphSAGE with NN (on DCG): GraphSAGE [12] is a popular
convolutional operation on graphs, which can learn a representa-
tion for each node integrating the information of the node itself
and from its neighborhood. We used GraphSAGE operations on a
DCG to integrate the information among electrically-connected
nets, which is useful for crosstalk prediction. In particular, two
GraphSAGE layers, implemented by Pytorch Geometric [11],
were used to propagate electrical and logical features on the
DCG, and output a learned feature vector for each net. Then the
feature vector was concatenated with other features proposed in
Section 3.2 and fed to a NN for �nal classi�cation.

• GraphSAGE with XG (on DCG): It is the same as the above,
except that the �nal classi�cation is done with an XGBoost model
instead of a NN.

• NN with GraphAttention (on PG): GraphAttention [26] is an
operation on graphs, suitable to capture dependency of neigh-
boring nodes. For crosstalk prediction, there may be depen-
dency among neighboring nets, since crosstalk occurs between
physically-close nets. We use GraphAttention operations to cap-
ture such dependency on a PG. Firstly a multilayer perceptron
neural network was applied to each net to output a rough classi-
�cation result. Then two GraphAttention layers, implemented
using Pytorch Geometric, were used to propagate rough classi�-
cation result on the PG to get the �nal classi�cation result.

4 DESIGN OF EXPERIMENTS
Our experiments were conducted on 12 designs from the IWLS 2005
benchmarks [2]. We generated a total of 304 placements with over 3
million labelled nets, by running a commercial design �owwith var-
ious yet realistic parameter settings. Logic synthesis was performed
using Synopsys Design Compiler and physical design was conduced
with Cadence Innovus. We used ASAP7 standard cell library [8], an
open-source 7-nm library. The clock period varied from 250ps to
400ps. The average number of nets and registers after placement as
well as runtime of global routing (with the globalRoute command in
2We used 15�m2 for the threshold in this work.

Table 1: Benchmarks used in our experiment. The groups
are for training/testing data partitioning (Section 4.1.1).

Design #Nets #Registers GR Runtime Group ID
systemcdes 3590 190 3s 1

tv80 4950 353 9s 2
systemcaes 5308 685 13s 3
mem_ctrl 6473 936 8s 4
wb_dma 6936 486 5s 4
ac97_ctrl 8397 1820 9s 3
usbf_funct 8629 132 13s 2

fpu 14416 542 41s 1
pci 19318 174 20s 1

aes_core 37105 527 21s 2
ethernet 47051 10002 109s 3
vga_lcd 74467 16038 203s 4

Innovus) for each design are listed in Table 1. After detailed routing
and RC extraction, STA was performed by Synopsys PrimeTime-SI
and the analysis results were used as ground truth. The synthesis
�ow was conducted on a Linux server equipped with an Intel Xeon
E5-2680 CPU.

The ground truth of coupling capacitance, crosstalk-induced
noise and incremental delay are real numbers. They were trans-
formed into binary classi�cation labels via pre-de�ned thresholds
(called ground truth thresholds). The thresholds used for coupling
capacitance, noise and incremental delay classi�cations were 0.5fF,
2+ps and 2ps, respectively3.

4.1 Model Training and Testing
4.1.1 Training & Testing Schemes. For the labelled data that we
can obtain, two di�erent partition schemes between training and
testing sets were applied for the model evaluation.
• Scheme 1: Testing on nets from unseen placement instances. For
each design, we randomly chose three placement solutions and
used their labelled net samples as testing data, while nets from
other solutions were used as training data. Please note testing
placement instances may involve some same designs as those in
the training set, although their placements were di�erent.

• Scheme 2: Testing on nets from unseen designs. The 12 designs
were divided into four groups according to their number of nets,
as shown in Table 1, making the four groups have similar amount
of net samples. Four-fold cross-validation was performed. To be
speci�c, four rounds of experiments were ran and their results
were averaged. In each round, all net samples from three groups
were taken as training data, while nets from the only remaining
group were used as testing data. Each round had distinct testing
designs. This is a stricter testing scheme than scheme 1 as not
only the testing placement instances but also the testing designs
are completely unseen during training.

4.1.2 Baseline Method. A global routing-based method similar to
[22] was implemented as the baselinemethod.We ran global routing

3Coupling capacitance of 0.5fF is about 60% of the input capacitance of a bu�er in the
ASAP7 library. Also, 2ps is about 1% of the clock period. In Section 5.5, we investigate
how classi�cation performance changes with the ground truth thresholds.
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to get congestion of each global routing cell (gcell). Then, we gener-
ated coupling capacitance of each gcell⇠ (8, 9) via curve-�tting as in
[22]. The total coupling capacitance of each net ⇠⇠ was estimated
to be ⇠⇠ =

Õ
8, 9 ⇠ (8, 9), where (8, 9) is a gcell traversed by the net.

The noise of each net # was estimated as # =
Õ
8, 9 '1 (8, 9)⇠ (8, 9),

where '1 (8, 9) = 013 (8, 9) +11 and 3 (8, 9) is the Manhattan distance
from the driver to (8, 9). Similarly, the incremental delay was es-
timated as ⇡ =

Õ
8, 9 '2 (8, 9)⇠ (8, 9), where '2 (8, 9) = 023 (8, 9) + 12.

The coe�cients 01,11,02 and 12 were obtained via curve-�tting.
The ⇠⇠ , # and ⇡ were then used to identify problematic nets.

4.2 Performance Metrics
The proportion of crosstalk-critical nets to the total nets in a design
is typically small. The positive samples (i.e., crosstalk-critical nets)
in our classi�cation problems is hence much less than the negative
samples in general. In this regard, we evaluate prediction perfor-
mance with the following four metrics widely used for imbalanced
data set [17], based on TP (the number of true positive samples),
FP (false positive), TN (true negative) and FN (false negative).

• False positive rate: FPR = FP
FP+TN .

• True positive rate: TPR = TP
TP+FN .

• F1 score: F1 = 2 ⇥ TPR⇥Precision
TPR+Precision , where Precision = TP

FP+TP .
• Balanced accuracy: BAcc = (1�FPR)+TPR

2 .

The raw output of our crosstalk prediction engine is a scalar in
[0, 1] for each net, which can be viewed as the probability of the net
being crosstalk-critical in terms of coupling capacitance, noise or
incremental delay. A classi�cation threshold is required to turn the
raw output into binary prediction label. A high threshold will lead to
high TPR, but also high FPR; otherwise the vice. Receiver Operating
Characteristic (ROC) curve indicates the trade-o� between TPR and
FPR varying the classi�cation thresholds. A large area under curve
of ROC-curve (AUC of ROC), implies better prediction performance.
It is 1 for the perfect prediction and 0.5 for a random guess.

5 RESULTS
5.1 Crosstalk Prediction: Scheme 1
The classi�cation results from Scheme 1 are shown in Tables 2,
3, and 4. Overall, XGboost models achieved the best performance,
even beating the baseline method in all the three classi�cation tasks,
in terms of most of the performance metrics we used. The random
forest models achieved the second best results.

For coupling capacitance prediction, the four modeling tech-
niques gave similar results. It means that there is a strong correla-
tion between the extracted features and the coupling capacitance of
nets. Thus, even the linear classi�cation model, logistic regression,
can capture such correlation verywell. However, the performance of
logistic regression was obviously inferior to non-linear techniques
in the noise and incremental delay prediction, especially in the
latter. It suggests the mappings from extracted features to crosstalk-
induced noise and incremental delay are largely non-linear, which
can not be captured well by linear models. One other observation is
that ensemble tree-based modeling, i.e., random forest and XGboost,
outperformed the neural network approach in our tasks.

Table 2: Coupling capacitance prediction results (Scheme 1).

Model FPR TPR F1 BAcc AUC
Baseline 1.10% 79.49% 52.67% 89.20% 0.993

LR 1.04% 81.98% 47.64% 90.47% 0.905
NN 1.01% 81.65% 48.24% 90.32% 0.994
RF 1.01% 82.45% 48.48% 90.72% 0.993
XG 0.94% 83.17% 50.58% 91.12% 0.994

Table 3: Crosstalk noise prediction results (Scheme 1).

Model FPR TPR F1 BAcc AUC
Baseline 1.30% 50.45% 40.19% 74.58% 0.974

LR 1.38% 68.99% 43.40% 83.81% 0.838
NN 1.23% 67.51% 44.85% 83.14% 0.987
RF 1.16% 68.82% 46.77% 83.83% 0.987
XG 0.99% 70.25% 50.65% 84.63% 0.990

Table 4: Incremental delay prediction results (Scheme 1).

Model FPR TPR F1 BAcc AUC
Baseline 4.04% 57.18% 21.18% 76.57% 0.947

LR 2.08% 61.44% 30.70% 79.68% 0.797
NN 2.08% 70.85% 34.58% 84.38% 0.980
RF 2.03% 72.78% 35.80% 85.37% 0.978
XG 1.88% 77.01% 39.17% 87.56% 0.986

Table 5: Coupling capacitance prediction results (Scheme 2).

Model FPR TPR F1 BAcc AUC
Baseline 1.06% 78.93% 53.14% 88.94% 0.993

LR 1.03% 80.91% 50.98% 89.94% 0.899
NN 0.98% 80.73% 51.90% 89.87% 0.959
RF 0.90% 81.62% 54.16% 90.36% 0.994
XG 0.89% 81.87% 54.62% 90.49% 0.994

Table 6: Crosstalk noise prediction result (Scheme 2).

Model FPR TPR F1 BAcc AUC
Baseline 1.56% 50.88% 37.47% 74.66% 0.970

LR 1.62% 75.15% 47.17% 86.77% 0.868
NN 1.45% 66.56% 45.09% 82.55% 0.846
RF 1.31% 76.34% 52.27% 87.51% 0.987
XG 1.28% 78.37% 53.69% 88.54% 0.990

Table 7: Incremental delay prediction results (Scheme 2).

Model FPR TPR F1 BAcc AUC
Baseline 4.35% 52.83% 18.71% 74.24% 0.937

LR 2.43% 69.29% 33.19% 83.43% 0.834
NN 2.39% 73.10% 35.07% 85.35% 0.939
RF 2.10% 74.74% 38.45% 86.32% 0.978
XG 1.80% 76.25% 42.35% 87.23% 0.986

Figure 4 shows the trade-o� between TPR and FPR in XGboost
models. It can be seen that the coupling capacitance, crosstalk-
induced noise and incremental delay predictions are progressively
more di�cult.
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Figure 4: ROC curves of the XGboost prediction results.

5.2 Crosstalk Prediction: Scheme 2
Results from Scheme 2 are similar to those from Scheme 1. Among
the four modeling techniques, XGboost achieved the best perfor-
mance in all three classi�cation tasks. Detailed results for coupling
capacitance, noise and incremental delay predictionns are listed
in Tables 5, 6 and 7, respectively. Note that Scheme 2 is stricter
than Scheme 1 in that not only the testing placement solutions but
also the testing designs are completely unseen during training. But
the prediction results from Scheme 2 were similar to those from
scheme 1, meaning the proposed modeling generalized well on
unseen designs.

5.3 Crosstalk Prediction: Graph-Based Models
For coupling capacitance prediction, we did not adopt “GraphSAGE
+ NN” and “GraphSAGE + XG” models, which act on the DCG, since
coupling capacitance does not depend on electrical connection. The
TPR of the “NN + GraphAttention” model was approximately 1%
higher than that of the NN model, at the same FPR, but still inferior
to the XGboost model.

Tables 8 and 9 show the results of graph-basedmodels for crosstalk-
induced noise and incremental delay prediction using Scheme 1. It
seems that graph-based learning techniques did not help improve
prediction performance. The reason might be that electrical connec-
tion information is not signi�cant for crosstalk prediction at early
stages, so the DCG is not helpful; physical proximity information
can be well captured by extracted features, such as RUDY, so it
might not be necessary to use the PG. Among the graph-based
techniques the GraphSAGE + XGboost model achieved the best
result, similar to that of the XGboost method. The results of these
two approaches were also fairly consistent. In particular, 94% and
95% of the classi�ed positive samples were identical in the two
models, for noise and incremental delay predictions, respectively.

5.4 Feature Importance Analysis
One important advantage of tree-based models over neural network
models is that they are more interpretable. After training a tree-
based model, users can check which features are most important
in building the decision trees. Importance can be de�ned from
various aspects. One commonly-used metric is “Gain”, which is
the improvement in accuracy brought by a feature. Figure 5 shows
the top-10 important features in coupling capacitance, crosstalk-
induced noise and incremental delay predictions, in term of “Gain”.

Table 8: Results of graph-based models with dropping some
features for noise prediction (Scheme 1).

Model FPR TPR F1 BAcc AUC
XG 0.99% 70.25% 50.65% 84.63% 0.990

GS + NN 1.10% 63.27% 44.89% 81.09% 0.987
GS + XG 1.03% 70.91% 50.22% 84.94% 0.990
NN + GA 1.18% 65.89% 44.92% 82.36% 0.988

Layout only 1.26% 57.45% 39.10% 78.09% 0.981
No timing info. 1.01% 69.40% 49.86% 84.19% 0.989
Binary encoding 0.99% 69.78% 50.34% 84.39% 0.990

Table 9: Results of graph-based models with dropping some
features for incremental delay prediction (Scheme 1).

Model FPR TPR F1 BAcc AUC
XG 1.88% 77.01% 39.17% 87.56% 0.986

GS + NN 2.09% 62.70% 31.15% 80.31% 0.822
GS + XG 1.95% 76.77% 38.23% 87.41% 0.984
NN + GA 1.94% 65.27% 33.65% 81.67% 0.861

Layout only 2.66% 61.50% 26.28% 79.42% 0.966
No timing info. 2.09% 73.45% 35.45% 85.68% 0.983
Binary encoding 1.90% 76.39% 38.74% 87.25% 0.986

It can be seen that the layout features played an important
role in the three crosstalk prediction because crosstalk heavily
depends on layout. It is noteworthy that HPWL-longRange-RUDY
was evenmore important than HPWL-RUDY. It seems that crosstalk
is more relevant to long-range-nets than to short-range-nets. As for
crosstalk-induced noise and incremental delay prediction, we can
see that electrical features (e.g., sourceCap and sinkCap), logical fea-
tures (e.g., logic-based encoding for the source cell: ;6, ;10 and ;11),
the timing information (e.g., outputSlew) and the neighboring net in-
formation (e.g., the weighted-dist and the max-dist-source-overlap)
also have great importance. To better show their importance, we
conducted additional experiments where only layout features were
used. From the last three rows of Table 8 and Table 9, we can �nd
that prediction accuracy dropped signi�cantly without electrical
and logical features as well as timing information. Moreover, we
explored the e�ects of dropping timing information alone, i.e., the
wire delay and slew-related features. It is interesting that dropping
these features does not hurt the noise prediction, but does hurt
incremental delay prediction noticeably. Also, we found a small de-
crease in prediction performance if we use the conventional binary
encoding of cells instead of the proposed encoding.

5.5 Impact of Ground Truth Threshold and
Training Sample Counts

We investigated how F1-score and AUC of ROC change with the
ground truth thresholds using XGboost. In Figure 6, we can �nd
that a higher ground truth threshold led to a larger AUC of ROC.
For the prediction of crosstalk-induced noise and incremental delay,
however, the 0.5⇥ threshold resulted in the highest F1-score.

If we train one classi�cation model with the original threshold
and train another one with the 2⇥ threshold, their prediction results
might not be consistent, in the sense that a net might be predicted
larger than the 2⇥ threshold by one model but predicted smaller
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Figure 5: Top-10 important features: (a) in coupling capacitance, (b) in crosstalk noise, and (c) in incremental delay predictions.

Figure 6: Impact of ground truth threshold in XGboost. (a)
F1-score, and (b) AUC of ROC.

Figure 7: Impact of training sample counts in XGboost.

than the 1.0⇥ threshold by the another. We also investigated the
consistency of the XGboost model. From our experimental data
we can �nd that, for coupling capacitance, all the nets predicted
positive with the 2⇥ threshold by the XGboost were also predicted
positive with the original threshold. In terms of crosstalk-induced
noise and delay, among all the nets predicted larger than the 2⇥
threshold, 99.77% and 97.26% were also predicted larger than the
original threshold, respectively. This indicates that the XGboost
model is stable and consistent.

The number of training samples also has a signi�cant impact on
prediction performance. Figure 7 shows how the TPR of XGboost
models changes with the number of training samples, at the same
FPR. We can observe an about 4% drop in TPR if we only use one
third of training samples.

5.6 Runtime and Memory Usage
Given the extracted features illustrated in Section 3.2, the inference
time of three XGboost models on an Intel XeonE5-2680 CPU only
took 0.003B–0.006B for one placement instance of various sizes in

our benchmarks. Compared to the global routing runtime in Table 1,
the XGboost models can achieve over 500⇥ speedup. For large
industrial designs, the runtime advantage of the proposed method
will be more outstanding. Besides, the training of three XGboost
models takes only about 10B on a RTX 2080Ti GPU. Moreover, a
XGboost model consumes less than 300KB. And the peak runtime
memory usage of XGboost-based prediction is about 1GB. As such,
the proposed crosstalk prediction approach is very runtime- and
memory-e�cient.

6 CONCLUSION
In this work, we present a routing-free ML-based crosstalk predic-
tion framework. Given a placement, we extract net topology-related
features, along with electrical, logical, and timing-related features.
Machine-learning techniques are then employed to train crosstalk
prediction models, which classify the nets that are likely to have
large coupling capacitance, crosstalk-induced noise, or incremental
delay. Experimental validation on 12 benchmark circuits shows that
the proposedmethod can classifymore than 70% of crosstalk-critical
nets after placement with a FPR of less than 2%. The computation
speed is two orders of magnitude faster than a conventional method
based on global routing. These results demonstrate that the pro-
posed framework can serve as an accurate early-stage crosstalk
evaluation engine that does not require routing information.
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