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Abstract—The rise of machine learning technology inspires a
boom of its applications in electronic design automation (EDA)
and helps improve the degree of automation in chip designs.
However, manually crafted machine learning models require
extensive human expertise and tremendous engineering efforts.
In this work, we leverage neural architecture search (NAS) to
automate the development of high-quality neural architectures
for routability prediction, which can help to guide cell placement
toward routable solutions. Our search method supports various
operations and highly flexible connections, leading to architec-
tures significantly different from all previous human-crafted
models. Experimental results on a large dataset demonstrate
that our automatically generated neural architectures clearly
outperform multiple representative manually crafted solutions.
Compared to the best case of manually crafted models, NAS-
generated models achieve 5.85% higher Kendall’s τ in predicting
the number of nets with DRC violations and 2.12% better
area under ROC curve (ROC-AUC) in DRC hotspot detection.
Moreover, compared with human-crafted models, which easily
take weeks to develop, our efficient NAS approach finishes the
whole automatic search process with only 0.3 days.

I. INTRODUCTION

Modern digital IC design is usually a large engineering
project that consists of many interacting complicated steps.
Although EDA tools have highly automated most design
steps, many significant imperfections and challenges persist
in existing design methodologies. For example, an early-step
solution might turn out to work poorly in practice, as it lacks a
credible prediction for its impact on subsequent design steps.
As a result, designers need to spend many design iterations to
reach an optimized design quality, and this largely increases
the overall turnaround time.

Machine learning (ML) techniques have been popularly
adopted to improve the interactions between design steps by
enabling early-stage predictions [1]–[6]. For example, ML
models are applied to predict whether decisions at early
design steps will lead to satisfactory design objectives in
subsequent steps. With fast feedback from these ML models, a
design converges to a high-quality solution with significantly
fewer iterations than traditional EDA flows, and the overall
turnaround time is shortened. In existing works, convolutional
neural network (CNN) models [3], [5], [7] and generative ad-
versarial network (GAN) models [4], [8] are popular choices
of the applied ML models. However, the development of
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models is challenging as it requires extensive expertise and
tremendous engineering efforts on both ML and EDA. For
example, designing a neural network architecture for indus-
trial applications can easily take months to complete for an
experienced developer. Such challenge significantly prolongs
the development cycle of ML-based EDA tools and greatly
exacerbates EDA development/application cost.

Automated machine learning (AutoML), especially neural
architecture search (NAS), enables design automation of a
large variety of ML models without (or with minimum)
human interventions. Neural network architectures provided
by NAS [9] have outperformed state-of-the-art manual designs
with significantly improved model accuracy and computation
efficiency. Given a target task such as image classification
and segmentation, NAS firstly identifies an architecture search
space and then applies certain search strategies, such as
reinforcement-learning-based [10] methods or evolutionary-
guided [11] methods to judiciously discover promising archi-
tectures. As chip layouts can be represented and processed
like images [3], [4], it is natural to use CNN-based models for
layout applications and leverage associated NAS techniques
to automate the ML model development process.

In this work, we propose a NAS-based method to automate
the development of ML models for routability prediction.
Routability prediction estimates the routability of design
solutions at the placement stage [12] with the following
two application scenarios: violated net count prediction [3]
and DRC hotspot detection [3], [4], [6]. Violated net count
prediction evaluates the number of nets with DRC violations
in the entire layout. DRC hotspot detection identifies the
locations of design rule violations, which can be used to
guide DRC violation mitigation techniques. Our NAS search
space is abstracted as graphs that allow rich and flexible
interactions among components within the model to better
capture congestion patterns. Then we obtain the best model
in the graph search space by adopting sub-graph sampling as
our search strategy.

Our main contributions are summarized as follows:

• We propose a NAS-based method to automatically de-
velop routability estimators without human interference.
To the best of our knowledge, our NAS-based method-
ology is the first research effort on automatic ML devel-
opment for EDA problems.



• We design a large search space allowing various types
of operations and highly flexible connections, some of
which are never adopted in previous routability estima-
tors. This ensures diversity in its candidate models.

• Our NAS-crafted model outperforms several represen-
tative routablity estimators [3], [4], [6] by 5.8% in
Kendall’s τ and 9.7% in correlation for violated net count
prediction, and achieves 2.1% better ROC-AUC for DRC
hotspot detection. This is evaluated on a comprehensive
dataset, which comprises more than 7,000 layouts from
74 designs.

• Our NAS method is highly efficient in automatic model
development. The whole search process takes only 0.3
days while the human developers easily spend weeks to
months for a promising model.

• We provide a detailed analysis on the search output, i.e.
the NAS-crafted model, which differs significantly from
human-developed estimators. This may benefit future
routablity estimator development.

II. PRELIMINARIES

A. Machine Learning for Routability Prediction

Early routability prediction enables designers or EDA tools
to perform preventive measures such that DRC violations can
be avoided in a proactive manner. This is a representative
topic in ML for EDA, with its benefit to chip quality well
demonstrated in many previous works [3], [5]–[7], [13], [14].
In recent years, deep neural network methods including CNN
and fully convolutional network (FCN) become the dominant
solutions [3], [5]–[7] to routability prediction. The CNN
models are typically used for violation number prediction [3].
As for DRC hotspot detection, which requires pinpointing
specific locations with DRC hotspots in a two-dimensional
layout, it shares a similar setting with semantic segmentation
in identifying pixel-wise properties. Thus, the FCN, as a
popular technique for semantic segmentation, is used in DRC
hotspot detection [3], [5], [6].

Among representative routability estimators in recent years,
RouteNet [3] and J-Net [5] propose U-Net-like FCN struc-
tures, PROS [6] adopts an encoder-decoder FCN framework,
and Yu et al. [4] propose a conditional generative adver-
sarial network [4] (cGAN)-based model. To the best of our
knowledge, all previous routability estimators [3], [5]–[7],
[13], [14] are designed by human developers. Thus, they
require both ML and EDA expertise and easily take weeks of
model development time. In addition, previous works develop
their models mostly based on hierarchical structures, with
a limited number of branch structures. In comparison, our
graph-based search space enables highly flexible connections
and rich branches, thus providing significantly different model
structures. The details of our search space are presented in
Section IV-A. Since the complex pattern behind routabil-
ity prediction may be reflected by complicated interactions
among features in a wide layout region, branch structures
can capture combined information from different sources and
benefit model performance.
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Fig. 1: Overview of Neural Architecture Search.

B. Neural Architecture Search

Neural architecture search [10] automatically conducts ar-
chitecture engineering to find effective and efficient neural
network models for specific tasks without (or with mini-
mum) human interventions. Recent works demonstrate great
potential of NAS in applications including image classifi-
cation [10], object detection [10], and semantic segmenta-
tion [15]. NAS contains three key ingredients: search space,
evaluation strategy, and search strategy. Search space defines
a family of candidate architectures that can be explored in
NAS. Evaluation strategy determines the way to estimate the
design metrics (e.g., accuracy) of a candidate architecture and
provides feedback to the search process. Search strategy is
the method to explore the search space and guide the search
process toward a correct choice of the promising ML model.
The overall procedure of NAS is sketched in Fig. 1.

Our NAS approach abstracts neural architecture search
space into graphs and includes various types of operations as
search options. Then, our NAS approach performs proxyless
evaluation [16] to evaluate the performance of candidate
models on the target dataset. Finally, our NAS approach
develops a search strategy based on a progressively graph
updating and sampling algorithm [17] to efficiently explore
ML models.

III. PROBLEM FORMULATION

We apply NAS techniques to assist the design of ML
models for routability prediction. After placement, a layout is
tessellated into w×h tiles, then its input feature Xi ∈ Rw×h×c

is comprised of c different two-dimensional feature maps. The
ground-truth label is collected after detailed routing finishes.
Based on the extracted features and label, the routability
prediction tasks can be formulated below:

Problem 1 (NAS for violated net count prediction): Given a
set of placement solutions and the defined search space SC , it
aims to generate the input feature Xi, explore the architecture
AC ∈ SC of the neural network model fAC

to predict the
violated net count yi such that the performance of fAC

is
maximized, where

fAC
: Xi ∈ Rw×h×c → yi ∈ R.

Problem 2 (NAS for DRC hotspot detection): Given a set
of placement solutions, it aims to generate the input feature
Xi and the defined search space SL, explore the architecture
AL ∈ SL of the neural network model fAL

to detect the
locations of DRC hotspots Yi such that the performance of
fAL

is maximized, where

fAL
: Xi ∈ Rw×h×c → Yi ∈ {0, 1}w×h.



Input 
features

Down-
sampling

Sampling Sampling

Down-
sampling

Sampled architecture

Shortcut

GPU

Training & 
Evaluation

Update the weight 𝑤! of each edge 𝑒 selected in ⋃"#$% 𝑆&
Metrics 𝜇

Down-
sampling

Regression
head

Segmentation
head

Violated net

DRC hotspot

Shortcut Shortcut

Search Space: a set of guide-DAGs 𝐺$ to 𝐺%

…
𝐺$ 𝐺' 𝐺%

Sampled-
DAG 𝑆!

Sampled-
DAG 𝑆"

Sampled-
DAG 𝑆#

Sampled-
DAG 𝑆$

Sampled-
DAG 𝑆%

Sampled-
DAG 𝑆&

Fixed part

Changeable part

Fig. 2: Overview of our graph-based NAS method. We sample multiple DAGs from the search space to form a sampled model. After
training for several epochs, we get the evaluation metrics, i.e., Kendall ranking coefficient or ROC-AUC, and utilize it to update the weight
of each edge in guide-DAGs.

The performance of model fAC
is evaluated by Kendall

ranking coefficient τ , while the performance of fAL
is eval-

uated by ROC-AUC [18]. The Kendall’s τ ∈ [−1, 1] captures
the rank-based correlation between the violated net count
labels and predictions from fAC

. A higher τ indicates that
fAC

ranks layouts more accurately (identical if τ = 1). Re-
ceiver operating characteristic (ROC) curve plots the tradeoff
between true positive rate versus false positive rate by varying
classification threshold. We use the area under the ROC (ROC-
AUC) as the metrics of diagnostic ability of the model. A
higher ROC-AUC indicates that higher precision of DRC
hotspot detection can be achieved at the cost of the same
number of false alarms.

IV. METHODOLOGY

In this section, we first introduce our neural architecture
search procedure, including search spaces, evaluation strate-
gies, and search strategies for both violated net count predic-
tion and DRC hotspot detection. Then, we present the input
features extracted from placement solutions for routability
prediction.

A. Neural Architecture Search

We propose a graph-based NAS method motivated by [17]
to automate the design of neural networks for high-quality
violated net count prediction and DRC hotspot detection. In
the following, we introduce three key components of our NAS
method in detail: 1) search space, 2) evaluation strategy, 3)
search strategy.
Search Space.

In our NAS-based model, we can partition the architecture
into two parts: one part is iteratively changed during the search
process, while the other is fixed. Our model is shown in
Fig. 2. The yellow rectangles represent the fixed part with
widely-adopted structures, and the six blue rectangles indicate
the changeable part. In the following, we demonstrate the
architectures of the fixed part and the changeable part.

In the fixed part, as Fig. 2 shows, there are three down-
sampling layers, which are convolution layers with a stride of
2 to reduce feature maps. For violated net count prediction,
there is one fixed regression head at the end. This regres-
sion head is a mean pooling layer followed by two dense

layers with output sizes 32 and 1, which maps the output
from the previous blocks to a scalar representing predicted
violated net count. For DRC hotspot detection, the structure
at the end is the segmentation head. It is composed of three
transposed convolution layers to recover feature maps with
a total upsampling factor of 8 and one convolution layer to
compress feature maps to a DRC hotspot solution. This is
a two-dimensional output that pinpoints locations with DRC
hotspots. In addition, we add one shortcut between every
two downsampling layers to further boost the performance
as proposed in the famous ResNet [19] model.

As for the changeable part, we start with deciding all candi-
date operations in the search space. First, regular convolution
layers with different numbers of filters are included. Besides,
atrous convolution, also named dilated convolution [20], is
selected as a promising candidate operation since it can
effectively enlarge receptive fields of filters. This operation
can thus help to capture large patterns, such as congestions
caused by nets spanning a large region. In addition, the
work of [21] introduces a new mixed depth-wise convolution
(MixConv) that separates channels into groups and applies
different kernel sizes to each group. Compared with a regular
convolution that can only observe patterns in a fixed size area,
this operation can identify congestion patterns of different
sizes when applied in routability prediction. Thus, MixConv
is a good fit for our work since routability can be affected
by the relations of nets and standard cells in different regions
within a layout. Among these candidate operations, to our
best knowledge, atrous convolution is only adopted in a
recent routability estimator [6], and MixConv is never used in
routability predictions. Adopting various promising operations
can improve diversity in candidate models and help cover
more potential high-quality models in the search space. As
a result, the candidate operations OP include the following
four types:
• 3× 3 convolution with 32 filters
• 3× 3 convolution with 64 filters
• 3× 3 atrous convolution with dilation rate 2, 32 filters
• mixed convolution with 4 groups, kernel size
[7, 9, 11, 13]

By viewing CNN/FCN as a set of operations and the
connections of operations, a model can be regarded as a graph.
Specifically, vertices represent operations and edges indicate
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the directed connections of operations. Therefore, we view the
six blue changeable parts {S1, S2, . . . , S6} in Fig. 2 as DAGs,
named sampled-DAGs. There are two parallel sampled-DAGs
between every two downsampling layers. The changes of them
are restricted and guided by six guide-DAGs {G1, G2, . . . ,
G6}. Each guide-DAG Gi(Vi, Ei) represents a combination of
the candidate operations and the propagation of data tensors.
It is composed by a set of completely ordered vertices Vi,
with each vertex v ∈ Vi representing a candidate operation
OPv . Each edge e(u, v) ∈ Ei represents the propagation of
the output tensor of vertex u to the input of v. Edge e(u, v)
is constructed if u < v in their order, which makes the
guide-DAG Gi completely ordered with maximum edges to
provide all possible connections. Fig. 3 (a) shows an example
of a guide-DAG, where the complete order of vertices is
1 → 2 → · · · → 7. Each vertex concatenates all its input
tensors from the incoming edges and produces the output
tensor by its operation. Specifically, given a vertex v with
OPv and input tensors iu1

, iu2
, . . . , iuk

from incoming edges
e(u1, v), e(u2, v), . . . , e(uk, v), the output tensor ov of this
vertex is

ov = OPv(Concat(iu1 , iu2 , . . . , iuk
)).

Concatenation with all the input tensors of each vertex can
help the model to discover different feature combinations to
enhance the observation of routability information.

In our search space, the parallel sampled-DAG structures
between every two downsampling layers can produce dif-
ferent feature representations, and pass their aggregation to
the next sampled-DAG structures after downsampling. More
importantly, our search space can develop many parallel prop-
agations of tensors within a sampled-DAG since the topology
of the graph Gi contains all possible connections. In summary,
our method provides a large search space and sufficient
flexibility to seek for more different features representations
and enable high performance routability prediction.

Evaluation Strategy.
Previous work [16] suggests to conduct NAS on the target

dataset to improve the performance of our searched models.
Thus, we directly apply search on the training split of our
target dataset and use the performance on the validation split
as the search objective. More specifically, for violated net

Algorithm 1 Connection weights updating in the meta graph

Input: A set of guide-DAGs {Gi, i = 1 to 6}, baseline
metrics β, learning rate α

1: for i = 1 to 6 do
2: G′i = Preprocess(Gi) . pseudo vertex v0 insertion
3: while η not converge do
4: for i = 1 to 6 do
5: Si = Sampling(G′i) . Algorithm. 2
6: M = ConstructModel({Si, i = 1 to 6})
7: η = Eval(M)
8: for i = 1 to 6 do
9: for all edge e in G′i do

10: if e is selected in Si then
11: we = we ∗ exp (α(η − β))
12: else
13: we = we

14: β = average of top five metrics of all sampled graphs

count prediction, we use the Kendall’s τ evaluated on the
validation split as the search objective. For DRC hotspot
detection, we use ROC-AUC [18] as the search objective.

Search Strategy.
Given the large size of our search space, exhaustively

examining every subgraph in the search space is neither
efficient nor practical. Our solution is to sample edges from
the guide-DAG Gi with probabilities and define a weight
on each edge to control its sampling probability. We will
gradually update weights through our search process to find
a promising model within the search space. The flow of
our search strategy is detailed in Algorithm 1. First, in the
preprocessing step (line 1-2), we construct a pseudo vertex v0
and add v0 to Vi. Vertex v0 represents the downsampling layer
before Gi. An edge e(v0, v) is constructed for each v ∈ Vi.
These edges provide all possible input connections from the
downsampling layer v0 to all vertices v ∈ Vi. The graph after
preprocessing is denoted by G′i(V

′
i , E

′
i). The edge weights in

E′i are set to 1. An example of G′i is shown in Fig. 3 (b),
where the new green vertex with index 0 is a pseudo vertex,
representing the downsampling layer before Gi in Fig. 3 (a).

After preprocessing, we enter the iterations to optimize our
model by its performance (line 3 of Algorithm 1). In each iter-



Algorithm 2 Sampling(G′i)

Input: G′i(V ′i , E′i)
Output: Si(VSi , ESi)

1: VSi
= {v0}, v0 ∈ V ′i

2: ESi
= ∅

3: for each vj ∈ V ′i do
4: if vj ∈ VSi then
5: for each e(vj , uk) ∈ E′i do
6: p =

exp(we(vj,vk))∑7
l=j exp(we(vj,vl)

)

7: random r(0, 1)
8: if p > r then . sample by probability p
9: VSi

= VSi
∪ {vk}

10: ESi
= ESi

∪ {e(vj , vk)}
11: return Si(VSi , ESi)

ation, we apply the sampling function in Algorithm 2 on each
G′i to sample the corresponding Si (line 4-5). In the remaining
paragraph, we will cover the Algorithm 2, which takes Gi

as the input and outputs a sampled-DAG Si(VSi
, ESi

). First,
we initialize VSi

with v0 (lines 1), the vertex that represents
the downsampling layer. For each vertex vj ∈ V ′i , if vj is
in VSi , we iterate through all its edges e(vj , vk) to perform
the edge selection (lines 3-5). During the edge selection,
for each e(vj , vk), its edge selection probability p is set to
the normalized weight of we(vj ,vk) over the weights of all
outgoing edges of vj . This normalization is performed with
a softmax function (line 6). Note that a larger weight edge
means a higher probability to be sampled, and the softmax
function can further enhance the difference between weights
and reflect it on the probability. If e(vj , vk) is selected, we add
e(vj , vk) and vk into ESi

and VSi
, respectively (lines 8-10).

In later iterations, the outgoing edges of vk will be extracted
and performed sampling. Finally, Si is returned after iterating
through all the vertices. Fig. 3 (b) and (c) demonstrate an
example of subgraph sampling. In Fig. 3 (b), red edges in
G1 are selected by Algorithm 2. According to the red edges,
S1 is constructed in Fig. 3 (c). Vertices without any outgoing
edge are connected to the right downsampling layer.

After sampling each Si, we construct our model through
the architecture in Fig. 2 and measure our evaluation metrics
η with our evaluation strategy in Algorithm 1 (lines 6-7).
According to η, we iterate all edges in each Gi and update
the edge weights which are sampled in Si in this iteration
(lines 8-13). The weight we of edge e is defined as

we = we ∗ exp (α(η − β)),

where α is the updating rate, and β is the baseline metrics. The
weights are updated according to the difference between the
evaluation metrics η and the baseline metrics β. We utilize
an exponential function to boost the weight update. If the
sampled model has a higher performance than the baseline,
the edge weights will increase by this updating equation.
The sample probabilities of these high-performance edges will
grow accordingly in the next iteration. The baseline metrics
β will be set to the mean of the top five evaluation metrics of
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Fig. 4: Wire density feature examples. (a) RUDY. (b) Bounding box.
(c) Pair-wise flight lines. (d) Star flight lines. (e) Source-sink flight
lines. (f) MST flight lines.

all history sampled models (line 14). This setting can prompt
the search process to seek higher-performance models through
iterations. This sample and weight updating process continues
until the model performance converges.

B. Feature Extraction

We extract input features that correlate with routability. The
features capture both locations of cells and the connectivity
between instances, denoted as cell density features and wire
density features, respectively.

The cell density features include five features:
• Macro density
• Cell density of all cells
• Cell density of D Flip-Flop cells
• Cell density of clock tree cells
• Pin density in all cells

The macro density captures the region occupied by macros.
In addition to the cell and pin density of all cells, we note that
cells with different functions would have different impacts on
routability. To capture this effect, density distributions of the
D Flip-Flips and clock tree buffers are generated separately.
These four cell density features form a 5-channel tensor in
Rw×h×5.

For the wire density features, to differentiate nets in dif-
ferent sizes, nets are categorized into two groups depending
on whether the fanout size is larger than a threshold. Then,
wire density features are measured separately for each group.
Fig. 4 illustrates an example of each wire density feature, and
the detailed descriptions are provided below:
• RUDY: RUDY [3] is derived by the total uniform wire

volume spreading in the bounding box of nets in one
group.

• Bounding box: Compared with RUDY, we directly draw
the outline of the bounding box for each net in this
feature. We then summarize the total number of outlines
passing every tile to construct the overall density map.



To estimate the wire density and connectivity, we adopt
a heuristic named flight line, which is a line that connects
two pins. Flight lines are used as features in [4], but only for
routability prediction on FPGA. In comparison, we adopted
four different types of flight lines that reflect wire congestions
in ASIC designs. The density of each flight line type forms a
two-dimensional feature map ∈ Rw×h.
• Pair-wise flight lines: For each net, the pair-wise flight

lines are connected from each pin to all other pins of the
same net.

• Star flight lines: For each net, the star flight line connects
each pin to the center of the pins in the net.

• Source-sink flight lines: In timing optimization, tools
tend to connect sinks with the source through the short-
est path. To capture this effect, source-sink flight line
connects the source pin with all sink pins in the same
net.

• MST flight lines: The three aforementioned flight line
features tend to overestimate the routing usage. In tra-
ditional routing, minimum spanning tree (MST) is an
effective algorithm to guide the router. Thus, the flight
line connects all the edges in its MST.

With 6 different types of features and 2 groups of the nets,
there are 12 two-dimensional feature maps for wire density
features. In summary, all above features are stacked together
to form an input feature tensor X ∈ Rw×h×17.

V. EXPERIMENTAL RESULTS

In this section, we first describe our experimental setups on
dataset construction, neural architecture search, and feature
extraction along with training details. We then present our
evaluations on two routability prediction benchmarks: violated
net count and DRC hotspot detection.

A. Experiment Setup

Dataset Construction.
We construct a comprehensive dataset using 74 designs

with largely varying sizes from multiple benchmarks. There
are 29 designs from ISCAS’89 [22], 13 designs from
ITC’99 [23], 19 other designs from Faraday and OpenCores
in the IWLS’05 [24], and 13 designs from ISPD’15 [25].
For each design, multiple placement solutions are generated
with different logic synthesis or physical design settings.
Altogether 7,000 placement solutions are generated from these
74 designs. We apply Design Compiler® for logic synthesis
and Innovus® [26] for physical design with the NanGate 45nm
technology library [27]. The input feature maps are collected
at the post-placement stage, and the ground-truth DRC results
are available after detailed routing finishes.
NAS and Accuracy Measurement.

We adopt the NAS in Section IV-A to explore the search
space defined for the violated net count prediction and the
DRC hotspot detection. The constructed dataset is firstly
separated into two splits of different designs. The training
split contains layouts from 51 designs, and the validation split
contains layouts from 23 designs. This is the setting for the
evaluation strategy during our NAS process. Then the final
model evaluation is performed under 5-fold cross-validation.

More specifically, our dataset is randomly separated into 5
folds of different designs. We perform validation for each
fold after training our model with all other 4 folds. Finally,
we average the validation results for each fold and obtain
the 5-fold cross-validation metrics. Note that the placement
layouts generated from the same designs are assigned to the
same fold for the fairness of evaluation. With cross-validation,
we can thoroughly measure the generalization capability of
our model in all partitions of the dataset. To maximize the
performance of our NAS-crafted models, we select the top-5
models produced by our NAS method and pick up the top-
performance one with best cross-validation criteria as the final
NAS-crafted model.

The overall search process runs for 0.3 days on 8 NVIDIA
TITAN RTX GPUs with Intel® Xeon® E5-2687W CPU. Note
that an ML expert may take up to 2 months to design a
promising CNN model based on [3]. This search time shows
that NAS process substantially shortens the development cycle
of ML models on EDA prediction.
Feature Extraction & Training.

For each layout in the target dataset, we follow Sec-
tion IV-B to perform feature extraction. Each feature tensor
uses 224× 224 resolution and contains 17 channels. We em-
ploy the following hyperparameters to conduct model training
for both searching and final evaluation in our experiments:
We train our model for 45 epochs with Adam optimizer [28],
a batch size of 48, and a fixed learning rate of 0.0005. To
combat overfitting and improve generalization, we use a L2
weight decay of 10−5 and ReLU activation.
Baseline Methods.

We implement multiple representative or state-of-the-art
routability estimators by our own and use them as baselines
to compare with our solutions. They include RouteNet [3],
PROS [6], and the cGAN-based method [4]. We compare
the DRC hotspot detection accuracy with all three baselines.
In comparison, only RouteNet [3] proposes its solution on
estimating the routability of the whole placement. Thus, for
violated net count prediction, we can only measure and
compare with the accuracy of RouteNet [3].

B. Violated Net Count Prediction

In this section, we evaluate the effectiveness of our model
on violated net count prediction using the metrics Kendall’s
τ in the 5-fold cross-validation. For the baseline method,
RouteNet [3] utilizes ResNet-18 structure to predict the
overall routability. In practice, during chip design, designers
typically focus on optimizing a specific design and care
about the routability between different layout solutions of the
same design. Therefore, the prediction performance within
each design is important. In TABLE I, we first compare
Kendall’s τ evaluated on the placement solutions of some
specific designs. We select four designs with distinct number
of nets ranging from 270 to 73.1k in the target dataset and
show their Kendall’s τ for both RouteNet and our NAS-
crafted model. More importantly, we then report the averaged
Kendall’s τ over all 74 designs under 5-fold cross-validation
to demonstrate the overall performance. Our NAS-crafted



TABLE I: Comparison of the violated net count prediction

Models Kendall’s τ on designs (#nets) Kendall’s τ Pearson’s correlation
s349 (270) mem ctrl (9.3k) b17 (33.8k) DSP (73.1k) on all 74 designs on all 74 designs

RouteNet [3] 0.3620 0.1547 0.1779 0.4414 0.5264 0.7224
NAS-crafted model 0.6369 0.4657 0.2683 0.7302 0.5572 0.7930

Fig. 5: ROC curves (focus on left-half region) measured on all 74
designs. Comparisons between the previous works RouteNet, PROS,
and our NAS-crafted model.

model achieves average Kendall’s τ of 0.5572 and clearly out-
performs RouteNet by around 0.03 in absolute value, which
is 5.85% improvement. In addition, we also apply Pearson’s
correlation coefficient, another widely adopted metric for
correlation measurement, to evaluate the performance. Our
NAS-crafted model achieves average Pearson’s correlation of
0.7930, which also outperforms RouteNet by around 0.07 in
absolute value, showing 9.7% improvement.

C. DRC Hotspot Detection

The quality of DRC hotspot detection is measured with
the ROC-AUC. TABLE II shows the average ROC-AUC
comparison with all three previous works under 5-fold cross-
validation. Our NAS-crafted model achieves ROC-AUC of
0.865 when evaluated on all 74 designs. It clearly outperforms
the best human-crafted model among our three baselines by
0.018 in absolute value, which is a 2.1% improvement. It shall
be noted that this whole automatic search process takes only
0.3 days, demonstrating the high efficiency of our search al-
gorithm. Fig. 5 further demonstrates the average ROC curves,
corresponding to the averaged ROC-AUC in TABLE II. It
focuses on the left-half region since it demonstrates most
accuracy information in this case. At the same cost of false
alarms in the x-axis value, the true positive rate of NAS-
crafted model at the y-axis is obviously higher than PROS
and RouteNet. TABLE II also shows the ROC-AUC on the

placement solutions of four specific designs (same as in
TABLE I). In each design, the NAS-crafted model reports
1.0% to 4.3% higher ROC-AUC than the best human-crafted
model among baselines.

Previous works PROS and the cGAN-based model show
significantly low ROC-AUC on many designs. After putting
our best effort in optimization and hyperparameter tuning,
these are the best results we can achieve currently. One
possible reason is that compared with other baselines like
RouteNet, PROS and cGAN, architectures are over-complex,
and thus their models may suffer from the data heterogeneity
among training and testing designs from different bench-
marks.

VI. DISCUSSION

We compare the structures of our NAS-crafted models and
the manually-crafted models (e.g., RouteNet [3], PROS [6]
and cGAN [4]), and give a brief analysis. This may provide
some insights to future routability estimator development.
Violated Net Count Prediction.

Fig. 6(a) shows the most promising architecture discovered
by our NAS method for violated net count prediction. As
mentioned in Fig. 2, there is a fixed shortcut from each
DS layer to the next DS layer or regression/segmentation
head. In sampled-DAGs 1 and 2, we observe that using wider
convolution layers (larger number of filters) as parent vertices
can help to improve performance because later operations can
exploit richer feature representation. In sampled-DAGs 3 and
4, due to the nature of violated net count prediction, our NAS
method prefers a compact structure composed of only two
atrous convolutions and one mixed convolution. Since both
atrous convolution and mixed convolution can utilize large-
scale input patterns by increasing the receptive field, they are
good fits of distilling the features that spans a wide layout
region. Finally, in sampled-DAGs 5 and 6, the two regular
convolutions with different numbers of filters and the shortcuts
simply enrich the representation extracted by the previous
operations and pass it to the regression head.

However, human developers can hardly explore structures
that are similar to the NAS-crafted model. For violated net
count prediction, most human-crafted models only support a
limited number of operators (typically regular convolution),
and thus have limited ability to learn the large-scale input

TABLE II: Comparison of the DRC hotspot detection

Models ROC-AUC on designs (#nets) ROC-AUC on all 74 designs
s349 (270) mem ctrl (9.3k) b17 (33.8k) DSP (73.1k)

RouteNet [3] 0.829 0.844 0.902 0.866 0.847
PROS [6] 0.487 0.483 0.478 0.489 0.676
cGAN [4] 0.516 0.515 0.521 0.517 0.510

NAS-crafted model 0.865 0.891 0.911 0.884 0.865
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Fig. 6: (a) The NAS-crafted model for violated net count prediction. (b) The NAS-crafted model for DRC hotspot detection.

patterns. They also adopt a highly hierarchical architecture
that lack the ability to aggregate different levels of features.
In contrast, our NAS method supports operators that process
features very differently. The variation of operations of ver-
tices on the branches greatly increase the diversity of feature
representations that can be explored by our NAS method.
Moreover, it can also construct a number of scalable parallel
branches and explore flexible interactions among them, which
is inherent in the topology of the guide-DAGs. Thereby, our
NAS method can extract feature representations of large-
scale patterns, which is critical to improving the accuracy of
violated net count prediction.

DRC Hotspot Detection.
Fig. 6 (b) shows the most promising architecture discovered

by our NAS method for DRC hotspot detection. In sampled-
DAGs 1 and 2, we observe that our NAS method adopts
a complex model with rich interactions among atrous con-
volution, mixed convolution, and regular convolution with
different filters. Such structure is able to extract both small-
scale and large-scale input patterns by utilizing rich interac-
tions among parallel branches. In sampled-DAGs 3 and 4,
the structure is much more compact than in Sampled-DAGs 1
and 2, but all branches contain at least one atrous convolution
layer, which highlights the importance of larger receptive
fields of the filters. In sampled-DAGs 5 and 6, we observe
that the NAS highly prefers a complex combination of mixed
convolution layers, which effectively learns from both small-
scale and large-scale input patterns. Such structure reflects the
nature of DRC hotspot detection that both local patterns and
global patterns of a layout influences the routability at each
point. Similar to violated net count prediction, human-crafted
models [3], [4], [6] designed for DRC hotspot detection also
adopt highly hierarchical architectures with limited types of
operations and thus have similar disadvantages.

Compared with violated net count prediction, DRC hotspot
detection is much more challenging because it requires de-

tailed pixel-wise prediction of hotspot locations. Such an
essential difference between these two routability prediction
tasks is clearly captured and reflected by the two discovered
models in Fig. 6 (a) and (b). Our search algorithm generates a
significantly more complex model for DRC hotspot detection
in Fig. 6 (b), especially near its output at segmentation head.
These complex structures help to better utilize input patterns
of various scales and thus improve the accuracy of the fine-
grained prediction on DRC hotspot locations.

VII. CONCLUSION

In this paper, we propose a NAS-based method to automate
the design of ML models for two routability prediction
applications. We believe this is the first research effort on
automatic ML development for EDA problems. Based on a
large search space with various operations and highly flexible
connections, the NAS method efficiently generates a high-
performance model in 0.3 days. The automatically generated
model proves to outperform previous representative routability
estimators on a large dataset.

Besides proposing the NAS-based method, we provide our
analysis on the automatically generated model and hope it
benefits future routability estimator development. In addition,
considering the similarities in solutions between routabil-
ity estimation with other essential ML for EDA problems
like IR drop estimation, clock tree prediction, lithography
hotspot detection, optical proximity correction, etc., NAS-
based solutions may ultimately also benefit the solving of
these problems.
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