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ABSTRACT
Accurate and efficient on-chip power modeling is crucial to runtime

power, energy, and voltage management. Such power monitoring

can be achieved by designing and integrating on-chip power me-

ters (OPMs) into the target design. In this work, we propose a new

method named DEEP to automatically develop extremely efficient

OPM solutions for a given design. DEEP selects OPM inputs from

all individual bits in RTL signals. Such bit-level selection provides

an unprecedentedly large number of input candidates and supports

lower hardware cost, compared with signal-level selection in prior

works. In addition, DEEP proposes a powerful two-step OPM input

selection method, and it supports reporting both total power and

the power of major design components. Experiments on a com-

mercial microprocessor demonstrate that DEEP’s OPM solution

achieves correlation 𝑅 > 0.97 in per-cycle power prediction with

an unprecedented low area overhead on hardware, i.e., < 0.1% of

the microprocessor layout. This reduces the OPM hardware cost

by 4 − 6× compared with the state-of-the-art solution.

1 INTRODUCTION
Power efficiency has become one of the primary design objectives

for modern compute systems, ranging from low-end embedded sys-

tems, mobile computing to high-end data centers. As such, accurate

while efficient power estimation is not only essential for design-time

hardware design decisions, but also vitally important for power,

energy, and voltage management during circuit runtime [38].

In practice, runtime circuit management techniques raise differ-

ent requirements on the on-chip power estimation. The dynamic

voltage and frequency scaling (DVFS), for example, only requires

coarse-grained temporal resolution in power-tracing, where each

estimation can be the average power over microseconds in duration.

In contrast, techniques for fast power management [19], voltage

boosting [13], or voltage noise mitigation [7, 17, 37] require much

more fine-grained temporal resolution, updating power estimations

within 10s of clock cycles. Therefore, ideal on-chip power monitor-

ing in modern compute systems needs to be accurate, efficient, and

support fine-grained temporal resolution. In addition, it should also

be easily extensible to novel designs with automation. Despite ex-

tensive prior explorations, such a perfect on-chip power estimator

is largely unattained.
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Previous works have utilized event counters to model runtime

power in real microprocessors [3, 4, 6, 12, 14, 31]. These power

models are based on counter-values of specific micro-architectural

events, like cache misses and the number of retired instructions,

across thousands or millions of clock cycles. These events do not

naturally support power tracing in more fine-grained temporal

resolution. Moreover, the development of such models requires

extensive designer’s knowledge of the target design to define the

hardware events, and cannot be easily transferred to novel designs.

In recent years, on-chip power meter (OPM) based on selected

RTL signals [9, 23, 25, 41] has been designed to improve temporal

resolution and enable automated development, at the expense of

high hardware implementation cost. Most recently, a solution [38]

makes great progress by reducing the OPM hardware cost to <

1% area overhead in commercial microprocessors. However, 1%

overhead of cutting edge microprocessor design is non-negligible

and there is still huge room for improvement.

In this work, we propose a new methodology named DEEP to

automatically construct an extremely low-cost on-chip power meter

(OPM) in any given circuit design
1
. DEEP supports a truly negligible

implementation cost thus making it feasible to be implemented

in almost any design. The major contributions in this work are

summarized below.

• We propose DEEP, which automatically develops OPM with

4−6× lower cost compared with the state-of-the-art solution.

It achieves correlation 𝑅 > 0.97 in power prediction with

area overhead < 0.1% of the microprocessor layout. This

model accuracy is measured based on accurate post-layout

power simulations, and hardware cost is verified on the

actual OPM implementation on the design layout.

• DEEP proposes to select OPM input from all individual bits

in RTL signals. Compared with signal-level selection in prior

works, such bit-level selection provides an unprecedentedly

large number of candidates and leads to a significantly lower

hardware cost.

• DEEP proposes an innovative two-stagemethod to efficiently

select high-quality OPM inputs from a huge number of input

candidates.

• Besides estimating the power of the whole design, DEEP

extends the OPM to also report the power of selected design

components without extra hardware cost or accuracy loss.

2 PREVIOUS WORKS
There have been many prior studies in runtime on-chip power

modeling. Besides a few analog solutions [5], popular previous

methods can be categorized into two major types, counter-based

1
The power model development methodology will be open-sourced in
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Baseline Methods

Model Input Candidate 𝑉𝑀 Input Selection Power Estimation Temporal Claimed OPM

(Candidate Count𝑀) Method Level Resolution Area Overhead

B1. MICRO’21 [38] All RTL signals (178 K) MCP Design-level Per-cycle < 1%

B2. MICRO’19 [20] All RTL signals (178 K) K-means Design-level 100s cycles N/A

B3. DATE’18 [25] Registers (67 K) Lasso Design-level > 1K cycles 7%

B4. DATE’18 [41] Module I/O signals (< 178K) Increase by level Component-level 100s cycles 4 − 10%

B5. ASPDAC’15 [39] Registers (67 K) No Selection Design-level Per-cycle 16%

DEEP (this work) All bits of RTL signals (578 K) Two-step Selection Component-level Per-cycle < 0.1%

Table 1: Overview of representative works in proxy-based on-chip power estimation.

and proxy-based. Most counter-based solutions [3, 4, 6, 10, 11, 14–

16, 18, 24, 27–30, 36] utilize already existing performance counters

in industrial designs like microprocessors or digital signal proces-

sors (DSPs). Such counters can be treated as free and the associated

area overhead is minimum. However, the development of such

counter-based power models requires extensive designers’ knowl-

edge of the specific design to define related hardware events. It

restricts the automation of these power modeling models. More-

over, these counter-monitored hardware events manifest multiple

cycles after the causal trigger event. It restricts the temporal reso-

lution of estimations to thousands to millions of cycles.

In comparison, proxy-based runtime power models can be more

friendly to automation, applicable to multiple designs, and support

more fine-grained temporal resolutions. Prior works [9, 23, 25, 38,

41] select the most power correlated signals, named proxies, as

inputs of the power model. Most of them target the best trade-

off among hardware implementation cost, accuracy, and temporal

resolution.

Besides these runtime power estimators, some works [8, 20, 32,

39] utilize proxy-based models to accelerate design-time power sim-

ulation by emulating on FPGA or other platforms. In the strict sense,

these works are originally proposed to benefit power simulation at

design time instead of runtime. But these power models actually

can be extensible to runtime power monitoring when implemented

on-chip.

Table 1 summarizes representative proxy-based power estima-

tion methods with their power model input candidates, tempo-

ral resolution, and claimed OPM hardware cost measured in area

overhead. The most recent and state-of-the-art work [38] reduces

overhead to < 1% of the design layout.

In this work, DEEP satisfies almost all desired properties of an

‘ideal’ OPM development method. It automatically develops ac-

curate OPMs for per-cycle temporal resolution with a negligible

< 0.1% hardware overhead. Moreover, it enables reporting the

power of selected components/modules, which supports more flex-

ible and component-level power, energy, and voltage management

techniques.

3 METHODOLOGY
The power consumption of circuits consists of both dynamic and

leakage components. Since the leakage power remains rather invari-

ant to the switching activity and code execution, it generally does

not affect the runtime circuit management. Therefore, like many

previous works [20, 38], DEEP focuses on developing OPM to mon-

itor the runtime dynamic power of a given design. Since dynamic

power is linearly proportional to charging/discharging of gate/wire-

capacitance, which is reflected in signal transitions/toggling, the

toggling of signals is detected on-chip and used as power model

inputs. As demonstrated in many prior works [20, 38, 39], based on

togging activities, the dynamic power can be reasonably approxi-

mated by an efficient linear power model.

3.1 Power Modeling Framework Overview
We first introduce DEEP’s framework in developing proxy-based

runtime OPM, as shown in Figure 1. There are three major stages.

First, given an arbitrary design RTL and corresponding testbenches,

signal waveforms and ground-truth power values are generated

through simulation. Second, a power model is automatically devel-

oped for the given design. Third, the power model is implemented

on hardware as the OPM and integrated as part of the target design.

To reduce OPM hardware cost, only the most power-correlated de-

sign signals, named power proxies, can be selected as power model

inputs.

DEEP targets per-cycle power prediction, which provides the

best temporal resolution and is a most challenging scenario [38].

Given a design with altogether 𝑀 input variable candidates 𝑉𝑀 ,

DEEP selects a subset 𝑉𝑄 ⊂ 𝑉𝑀 with 𝑄 = |𝑉𝑄 | ≪ 𝑀 , as power

proxies, and𝑄 is the number of proxies. Then a linear power model

can be easily trained with these𝑄 proxies as model inputs. For such

per-cycle power model, it is deployed to estimate the power at the

𝑖𝑡ℎ clock cycle,

𝑝 [𝑖] =
𝑄∑︁
𝑗=1

𝑤 𝑗 · 𝑥 𝑗 [ 𝑖] (1)

where 𝑥1 [𝑖], 𝑥2 [𝑖], ..., 𝑥𝑄 [𝑖] ∈ {0, 1} are input features indicating
the per-cycle togglings or transitions of 𝑄 proxies in the 𝑖 𝑡ℎ clock
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RTL
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Power
Simulation

Select 𝑸
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Integrate with
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Figure 1: The DEEP OPM development framework.
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Figure 2: (a) Toggle detection of one bus signal 𝑠𝑋 [3 : 0] as
one model input in previous works [38]. (b) Toggle detection
of only one individual bit 𝑠𝑋 [2] as one model input in DEEP.

cycle, 𝑤1,𝑤2, ...,𝑤𝑄 ∈ R+ are trainable weights. Selecting power

proxies 𝑉𝑄 from 𝑉𝑀 with 𝑄 ≪ 𝑀 can greatly reduce the hard-

ware cost for runtime OPM. The choice of 𝑄 controls the trade-off

between accuracy and efficiency.

3.2 Proxy Candidates in Power Model
Deciding the proxies 𝑉𝑄 as power model input is the key model

development step since it determines the OPM accuracy and effi-

ciency. This involves first deciding the candidates of model inputs

𝑉𝑀 and then selecting 𝑉𝑄 from it.

In many previous works [20, 38, 41], inputs candidates 𝑉𝑀 are

all or part of available RTL signals. Once selected as proxies, the

signal’s toggling activities will be detected as model inputs. An

example of toggle detection in recent prior work [38] is shown in

Figure 2(a). To detect the toggling of a signal 𝑠𝑋 with a width of 4,

every bit in 𝑠𝑋 is registered with one flip-flop and then monitored

with a 1-bit toggle detector (one flip-flop and one XOR). As a result,

its toggling activity is set to 1 if any bit in 𝑠𝑋 flips, otherwise it is 0.

Assume 𝑠𝑋 is the 𝑗𝑡ℎ proxy, its toggling activities are model input

𝑥 𝑗 [1], ..., 𝑥 𝑗 [𝑁 ] ∈ {0, 1} in Equation 1. Besides this binary toggling

value as model input, some other works [20, 41] adopt non-binary

numbers for the toggling activity for each signal. This makes toggle

detection and subsequent power calculation even more complex.

In the development framework, the OPM hardware cost is not

known until OPM implementation finally finishes, making hardware-

cost-aware model development difficult. Prior works [20, 38] thus

use the proxy number 𝑄 as a metric to evaluate OPM hardware

cost during model development. In this way, the proxy selection

algorithm only needs to minimize 𝑄 for lower OPM cost. How-

ever, since they use RTL signals as candidates, this metric is very
misleading, because the hardware cost to detect different signals as
proxies can be largely different. As Figure 2(a) demonstrates, wide

data bus signals, which are important proxies in practice, require

much more circuitry to detect their toggling than single-bit signals.

Therefore, the number of proxies𝑄 does not accurately reflect OPM

cost. In addition, using RTL signals as candidates forces selection

algorithms either choose a wide bus signal or drop it, without other

alternatives.

Algorithm 1 Power Proxy 𝑉𝑄 Selection Step 1

Input: Toggling activities 𝑋 ∈ {0, 1}𝑁×𝑀
. Power Label 𝑦 ∈ R𝑁 . 𝑁

is number of cycles,𝑀 is the number of all candidate variables.

Step 1: Pruning:
1: Initiate intermediate selection list 𝑉𝐼 = []
2: Initiate a linear model with 𝑀 weights 𝑤 ′

𝑗
. For the 𝑖𝑡ℎ cycle,

power prediction is 𝑜 [𝑖] = ∑𝑀
𝑗=1𝑤

′
𝑗
· 𝑋 [𝑖, 𝑗]

3: Define MSE as error term L = | |𝑜 − 𝑦 | |2
4: Define MCP penalty term P =

∑𝑀
𝑗=1 𝑃𝑀𝐶𝑃 (𝑤 ′

𝑗
)

5: Training𝑤 ′
𝑗
= 𝑎𝑟𝑔𝑚𝑖𝑛(L + P) with coordinate descent. Con-

strain𝑤 ′
𝑗
>= 0 during training

6: for 𝑗 ∈ [1, 𝑀] do
7: add variable 𝑗 to 𝑉𝐼 if𝑤

′
𝑗
≠ 0

Output: The intermediate variable selection list 𝑉𝐼

In this work, DEEP proposes to select proxies at more the fine-

grained bit-level instead of signal-level. In other words, DEEP allows

the power model inputs 𝑉𝑀 to be every individual bit instead of

whole signals. As Figure 2(b) shows, it supports selecting individual

bits like the 𝑠𝑋 [2] from this bus signal. This difference leads to

essentially different solutions. First, compared with the number

of selected signals, the number of selected bits, which is 𝑄 in this
work, can much more accurately reflect the real OPM hardware

cost. This is because the cost to detect every bit is similar (two

flip-flops and one XOR). Only in this case, minimizing 𝑄 leads to

the most efficient OPM solutions. Second, by selecting individual

bits instead of whole signals, for the same number of proxies 𝑄 ,

the hardware cost is greatly reduced, as indicated by the difference

between Figure 2(a) and Figure 2(b). Third, this provides much

more input candidates and flexible solutions. For the commercial

microprocessor in our experiment, as shown in Table 1, there are

155 K RTL signals but altogether 578 K individual bits in the design.

Therefore𝑀 = 578 K in the experiment. It indicates a larger solution

space with potentially better OPM solutions, compared with using

RTL signals [20, 38, 41] or only registers [25, 39] as 𝑉𝑀 . This is

further validated by results in Section 5.1.

3.3 Proxy Selection in Power Model Design
After candidates 𝑉𝑀 are determined, DEEP proposes a two-step

method to select proxies 𝑉𝑄 from 𝑉𝑀 . In the first step, a powerful

top-down pruning method is performed to narrow down the scope

of variables from 𝑉𝑀 to an intermediate input list 𝑉𝐼 , where 𝐼 = 𝑉𝐼
and 𝑄 < 𝐼 < 𝑀 . This pruning is a highly efficient method when

exploring a huge number of candidates, but it does not directly

lead to well-optimized final solution. This is further elaborated in

Section 5.1. In the second step, a bottom-up selection method selects

finalized 𝑉𝑄 from such intermediate result 𝑉𝐼 .

The pruning-based first step is introduced in Algorithm 1. In this

step, DEEP prunes all candidates with minimax concave penalty

(MCP) [40] as defined below.

For weight𝑤 ∈ R, 𝑃𝑀𝐶𝑃 (𝑤) =
{
𝜆 |𝑤 | − 𝑤2

2𝛾 if |𝑤 | ≤ 𝛾𝜆

1

2
𝛾𝜆2 if |𝑤 | > 𝛾𝜆

MCP’s superior performance over Lasso in OPM development has

been proved in the latest prior work [38]. Compared with the popu-

lar Lasso penalty using L1 norm of weights, it protects large weights

3
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Algorithm 2 Power Proxy 𝑉𝑄 Selection Step 2

Input: Toggling activities 𝑋𝐼 ∈ {0, 1}𝑁×𝐼
of selected bits 𝑉𝐼 .

Power Label 𝑦 ∈ R𝑁 . 𝑁 is number of cycles.

Step 2: Bottom-up Selection:
1: function selectOneBestVar(𝑉𝑄 )

2: // Select one variable that adds most to accuracy

3: Set 𝑅2
𝑏𝑒𝑠𝑡

= 0, 𝑗𝑏𝑒𝑠𝑡 = 0

4: for signal 𝑗 in [1, 𝐼 ] from 𝑉𝐼 do
5: Set temporary proxy list 𝑉𝑇 = 𝑉𝑄 + [ 𝑗]
6: Select toggle activities of 𝑉𝑇 , denote as 𝑋𝐼 [𝑉𝑇 ]
7: Train a linear model𝑀 with 𝑋𝐼 [𝑉𝑇 ] and 𝑌
8: if Model𝑀’s accuracy 𝑅2 > 𝑅2

𝑏𝑒𝑠𝑡
then

9: 𝑅2
𝑏𝑒𝑠𝑡

= 𝑅2; 𝑗𝑏𝑒𝑠𝑡 = 𝑗

10: return 𝑗𝑏𝑒𝑠𝑡

11:

12: Initialize the proxy list 𝑉𝑄 = []
13: repeat Q times

14: 𝑉𝑄 .append( selectOneBestVar(𝑉𝑄 ) )

15: while 𝑉𝑄 still changes do
16: for each proxy 𝑣 in 𝑉𝑄 do
17: // Check if better variable than 𝑣 exists

18: Remove 𝑣 from 𝑉𝑄
19: 𝑉𝑄 .append( selectOneBestVar(𝑉𝑄 ) )

Output: The selected proxy list 𝑉𝑄

under strong penalty strength. 𝛾 and 𝜆 are hyper-parameters decid-

ing the penalty strength and the threshold of large weights. When

the weight𝑤 > 𝛾𝜆, the penalty of it 𝑃𝑀𝐶𝑃 (𝑤) becomes a constant.

Algorithm 1 starts with a linear model with all 𝑀 candidate

variables as inputs and corresponding weights𝑤 ′
𝑗
. After training

with penalty P in the loss function, most weights will shrink to zero

during training. Only variables with non-zero weights are added to

the intermediate list 𝑉𝐼 .

After the pruning, a bottom-up selection algorithm is performed

to determine the finalized proxy list 𝑉𝑄 based on the intermediate

selection 𝑉𝐼 . It is based on the idea of best subset selection [21, 35],

which targets to select a near-optimal subset of variables from 𝑉𝐼
that yields the best performance. As Algorithm 2 shows, we first de-

fine a straightforward function named selectOneBestVar. It scans

each of the variables in 𝑉𝐼 and selects the one that adds the most

to model accuracy, measured with the coefficient of determination

𝑅2 [22].

In Algorithm 2, proxies 𝑉𝑄 are selected incrementally one-by-

one. In each iteration, as line 14 shows, one signal that adds the

most to model accuracy is selected and added to 𝑉𝑄 . This iteration

does not stop here. Instead, it then goes through every already

selected proxy 𝑣 in 𝑉𝑄 and searches if any other variable would

add more accuracy by replacing it. This is achieved by removing

each 𝑣 signal from𝑉𝑄 , then search the whole candidate list𝑉𝐼 with

selectOneBestVar in line 18 and 19.When there is no better signal

than 𝑣 , the selectOneBestVar will return the originally removed

signal 𝑣 , which is added back to the𝑉𝑄 . This remove-replace process

will continue until 𝑉𝑄 no longer changes (line 15).

The heuristic method in Algorithm 2 claims to find near-optimal

subset solution efficiently [21, 35]. But compared with pruning

in the first step, it is significantly slower when 𝑉𝐼 is large and as

FFFF
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Figure 3: OPM hardware implementation with quantized
weights. The outputs are per-cycle power values.

𝑉𝑄 grows. It is prohibitively time-consuming if directly applied to

the huge candidate list 𝑉𝑀 . Therefore, we adopted the two-step

selection, with the first step efficiently narrowing down a huge

scope and the second step finalizing high-quality proxies.

3.4 Hardware Implementation
After proxies 𝑉𝑄 are determined, the final power model defined in

Equation 1 is trained and implemented on hardware as OPM. Since

we adopt individual bits as input variables, the OPM implementation

is straightforward. As Figure 3 shows, it consists of two main parts.

The interface part detects the toggling activities of proxies, and the

computation part implements the linear power model by summing

up all weights of toggling signals. For DEEP-OPM, the interface part

takes up more area overhead than computation. The OPM output

is per-cycle power estimation. Based on such per-cycle power, it is

straightforward to further calculate multi-cycle average power if

necessary.

To reduce the hardware cost of OPM, weight quantization is

performed before implementing OPM on hardware. In DEEP, all

weights are quantized to integers, which greatly reduces the hard-

ware cost with limited accuracy loss. As Figure 3 shows, differ-

ent weight values as integers correspond to different numbers of

weight bits in the power computation part. These weights will be

determined during OPM design time and will not be tuned after

fabrication. At runtime, the OPM power estimations will be com-

pared with preconfigured thresholds to initiate power or voltage

management. To handle possible inter-chip variations, instead of

adjusting model weights on a per-chip basis, post-silicon calibration

of those preconfigured thresholds will be sufficient.

3.5 Component-Level Implementation
We have introduced the development of an OPM to estimate the

total power of a design. In this work, DEEP can also estimate the

power of selected major components in the design. To achieve

this, the power model development method is applied to design

components separately, resulting inmultiple sub-OPMs. This means

developing a sub-OPM for each component/module by restricting

variable candidates𝑉𝑀 , toggling activities𝑋 , and power label𝑦 only

to this component. An exception is for some memory components,

where only I/O signals of the RAM macros are available on-chip.

In this case, its candidates 𝑉𝑀 can be selected from the whole

design. Based on all these sub-OPMs, their outputs are summed

up to report total the power of the design. Our experiment shows

that this component-level DEEP does not lead to an extra OPM

implementation cost.

4
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#RTL Signal #Register #RTL Bit #Standard Cell #Macro

155 K 67 K 578 K 603 K 66

Table 2: Basic statistics of the microprocessor.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
Our experiment is performed on a 64-bit high-efficiency commercial

microprocessor. It is two-way superscalar and supports SIMD and

floating-point operations. In our experiment, this microprocessor

is configured with one CPU core, 32 KB L1 instruction cache, 32

KB L1 data cache, and 1024 KB L2 cache. The L2 memory system

includes the L2 cache pipeline and all logic required to maintain

memory coherence.

We implement this design with an industrial 28nm technology

node at 1 GHz. Design Compiler [1] and IC Compiler II [33] are

adopted for logic synthesis and design layout, respectively. The RTL

simulation is based on Synopsys VCS [2] and per-cycle power is sim-

ulated with PrimePower [34]. Different from some prior works [38]

using inaccurate RTL-level power as the label, in this work, all

power labels are simulated based on the post-routing layout solu-

tions. The total area of the microprocessor layout is 4.05𝑚𝑚2
, with

standard cells occupying 0.74𝑚𝑚2
of the layout area.

Table 2 shows some basic statistics of this microprocessor im-

plementation. There are around 155 thousand RTL signals and 67

thousand registers in the design. In comparison, when using all bits

in RTL signals as candidates in this work, there are altogether 578

thousand bits as candidates 𝑉𝑀 .

Figure 4 shows decomposed input candidate count and ground-

truth power of major components/modules. According to this, to

verify our component-level DEEP, we develop sub-OPMs for five

selected major submodules in the microprocessor, including L1

cache with table lookaside buffer (TLB), L2 cache with the logic

maintaining memory coherence, data processing unit (DPU) of core,

instruction fetch unit (IFU) of core, and all other logic in the CPU

core except DPU and IFU. They all contribute more than 10% of the

total power consumption in implementation. Based on these sub-

OPMs, the power of CPU core, CPU core+L1, and CPU core+L1+L2

(total power) are also calculated by the OPM. As mentioned, only

I/O signals of RAM blocks in L1 and L2 caches are available in 𝑉𝑀 ,

thus they only account for a very small portion of bits in Figure 4(a).

Therefore, when developing sub-OPM for the L1 cache, its 𝑉𝑀 is

not limited to the L1 cache itself, but can be from the whole design.

As for the L2 cache, as Figure 4(a) shows, there are many signals in

the non-RAM logic. Thus like other components, the 𝑉𝑀 of L2 is

still within the L2 component.

(a) (b)

Figure 4: (a) Decomposition of all 578KRTL bits as candidates
𝑉𝑀 . (b) Decomposition of averaged power.

In this experiment, two strictly separated types of workloads

are generated and simulated on the microprocessor to generate

training (including validation) and testing data. Following the prac-

tice in [38], all testing workloads are designer-crafted represen-

tative power indicative workloads, including dhrystone, saxpy,

cache_miss, maxpower, etc. Altogether the testing set consists of six

designer-crafted workloads, with altogether 𝑁𝑡𝑒𝑠𝑡 = 26, 000 cycles.

In comparison, workloads used in model training are first generated

based on a random combination of various instructions, then se-

lected to achieve good coverage of power consumption [38]. There

are seven automatically generated workloads with 𝑁𝑡𝑟𝑎𝑖𝑛 = 17, 000

cycles in the training data.

The model development methods for both DEEP and all baselines

are implemented with Python3. Some proxy selection baselines are

based on scikit-learn [26]. The MCP algorithm with coordinate

descent optimization is implemented from scratch. In the exper-

iment, the two-step selection method in DEEP finishes in hours,

with MCP converging in 100 epochs. The layout of microprocessor

takes days to finish. Key hyperparameters are tuned based on the

performance on validation data and are reported below. The 𝛾 in

MCP is set to 5, and penalty strength 𝛼 controls the size of 𝑉𝐼 . We

do not strictly control 𝑉𝐼 size as we report many OPM solutions

to demonstrate the accuracy and efficiency trade-off curve. As a

rule of thumb according to our experiment, a reasonable range is

𝐼 ∈ [3×𝑄, 30×𝑄]. The proxy size of DEEP𝑄 ∈ [100, 300] provides
a good range of OPM accuracy and overhead.

4.2 Baseline Methods and Metrics
We compare DEEP with representative prior works on OPM design

in Table 1. To measure OPM accuracy, we evaluate it with mean

absolute error (MAE) percentage and Pearson correlation𝑅 between

power label 𝑦 ∈ R𝑁 and prediction 𝑝 ∈ R𝑁 . For the hardware cost

of OPM solutions, we define two area overhead metrics 𝐴𝑂𝐿 and

𝐴𝑂𝐶 .𝐴𝑂𝐿 equals the total gate area of all OPM components divided

by the area of the whole layout region (4.05𝑚𝑚2
). Considering the

layout consists of many hard macros, to avoid underestimating the

cost, 𝐴𝑂𝐶 divides the total gate area of OPM only by the area of all

standard cells in the design (0.74𝑚𝑚2
).

MAE =

∑𝑁
𝑖=1 |𝑦 [𝑖] − 𝑝 [𝑖] |∑𝑁

𝑖=1 𝑦 [𝑖]
, 𝐴𝑂𝐿 =

OPM gate area on layout

The layout area

Almost all baselines are not open-sourced and we replicate them

ourselves for comparisons. For baselines B2-B5 in Table 1, we fo-

cus on the replication of proxy selection methods to generate 𝑉𝑄 ,

which is the key part of OPM development. But we adjust some

of their OPMs design with more efficient hardware implementa-

tion. For example, we eliminate all multipliers and perform weight

quantization. Therefore the measured hardware cost in our experi-

ment is much lower than they originally claimed in Table 1. But for

the strongest baseline B1 [38], we strictly follow their originally

proposed method for a fair comparison.

When comparing OPM solutions, the trade-off between accuracy

vs. area overhead is the focus. We write an area overhead estimator

to evaluate the gate count in an OPM and its area overhead 𝐴𝑂𝐿

based on proxies and weights in its power model. To ensure its

correctness, this area estimator is calibrated with accurate area

values measured by synthesizing multiple OPM implementations.
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(a) (b)

(c) (d)

Figure 5: OPM hardware cost (𝐴𝑂𝐿) vs. per-cycle power pre-
diction accuracy. Comparison with baselines B1 to B5. (a)(c)
Accuracy measured in MAE percentage. (b)(d) Accuracy mea-
sured in R correlation.

In later sections, we will also validate the estimated area overhead

with ground-truth area measurements on OPM-integrated layouts.

4.3 Performance Comparison
We first compare DEEP with all baseline methods in Figure 5, which

shows OPM accuracy vs. the hardware cost in area overhead 𝐴𝑂𝐿 .

Figure 5(a)(c) present accuracy in MAE percentage and (b)(d) show

accuracy in 𝑅 correlation. The top two subfigures present com-

parisons with all baselines B1-B5, with 𝐴𝑂𝐿 range in [0, 1%]. The

bottom two subfigures further zoom in the comparison between

DEEP with the strongest baselines B1 with 𝐴𝑂𝐿 range in [0, 0.3%].

In Figure 5(a)(b), we first observe that the most recent baseline

B1 [38] indeed achieves a significantly superior accuracy-efficiency

trade-off than the other four baseline solutions B2-B5. For baseline

B5, since it uses all registers as the initial model input without

explicit selection, there is no trade-off in the plot. We view B1 as

the state-of-the-art solution and focus on comparisons with it in

Figure 5(c)(d).

In Figure 5(c)(d), both versions of DEEP are shown, one only

reporting the total power while the other reporting both total power

and components’ power. Their overall performances are very close.

In Figure 5(c)(d), DEEP significantly outperforms the B1 baseline.

For the DEEP-Component solution achieving MAE = 9.5% and

correlation 𝑅 = 0.954, the area overhead 𝐴𝑂𝐿 is only around 0.04%

of the whole layout area. This equals 0.24% of the total standard cell

area. Compared with B1 at the same accuracy, the area overhead

is reduced by 4×. For a more accurate DEEP solution with MAE

= 7.5% and correlation 𝑅 = 0.973, the 𝐴𝑂𝐿 is 0.08% of the layout,

which equals 0.42% of total standard cell area. In comparison, the

OPM area overhead in B1 at this accuracy is 6× of the DEEP.

(a)

(b)

Figure 6: Component-level DEEP-OPM accuracy. (a) DEEP-
OPM with total overhead 𝐴𝑂𝐿 = 0.04%. (b) DEEP-OPM with
total overhead 𝐴𝑂𝐿 = 0.08%.

To further study the component-level DEEP solution, Figure 6

reports the accuracy and area overhead at different component

levels. Figure 6(a) reports a DEEP-Component OPM with total 𝐴𝑂𝐿

= 0.04% and (b) reports a more accurate yet costly solution with

total 𝐴𝑂𝐿 = 0.08%. As mentioned, the whole OPM consists of five

major sub-OPMs, monitoring L1, L2, CPU.DPU, CPU.IFU, and other

parts of CPU core. The total area overhead 𝐴𝑂𝐿 is roughly the

summation of these five sub-OPMs. The addition of their outputs

further provides the power of the CPU core, CPU core+L1, and CPU

core+L1+L2 (total power). For each component, we measure the

correlation between the ground-truth simulated power and power

estimation of this part of circuit.

In Figure 6, the horizontal black dashed line indicates 𝑅 corre-

lation equals to 0.95. The overall accuracy of most components is

high. For OPM with 𝐴𝑂𝐿 = 0.04%, the correlation 𝑅 > 0.94 for all

components except the single L1 cache. Similarly, for OPM with

𝐴𝑂𝐿 = 0.08%, the correlation 𝑅 >= 0.96 for all components except

L1. The inferior accuracy in L1 is caused by the limited available

signals and bits in the L1 cache, as indicated in Figure 4(a). Although

this challenge is already handled by setting 𝑉𝑀 of L1 to be from

the whole design, there are still fewer variables that correlate well

with L1 power. The 𝑅 = 0.9 for L1 in OPM with 𝐴𝑂𝐿 = 0.08%.

4.4 Hardware Solution
We verify DEEP’s OPM solution on hardware implementation. The

DEEP-component OPM with estimated overhead 𝐴𝑂𝐿 = 0.04% and

𝑅 = 0.954 mentioned in both Figure 5 and Figure 6(a) is implemented.

We integrate this OPM design into the microprocessor and generate

the whole layout, as shown in Figure 7. In this layout, all cells in

the OPM are colored in red. The large macros are L2 data RAMs

and smaller macros are for L1 cache, TLB, and tag RAMs. Then we

measure the ground-truth OPM area overhead on this post-layout

microprocessor. The actual overhead turns out to be indeed 𝐴𝑂𝐿

= 0.04%, which validates that our area estimator is correct and

accurately calibrated.

In comparison, a microprocessor layout with baseline B1’s OPM

is shown in Figure 8. Note that the macro locations are not fixed

and are automatically placed by IC Compiler II, leading to a slightly
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Figure 7: Microprocessor layout with DEEP component-level
OPM integrated. The red region is OPM. Area overhead 𝐴𝑂𝐿

= 0.04% when measured on this layout. The MAE = 9.5% and
𝑅 = 0.954.

Figure 8:Microprocessor layoutwith state-of-the-art baseline
B1 [38]-OPM. The red regions is OPM. Area overhead 𝐴𝑂𝐿 =
0.16%. The MAE = 9.5% and 𝑅 = 0.951. Its overhead is 4× of the
DEEP solution.

different floorplan solution. The actually measured 𝐴𝑂𝐿 on the lay-

out in Figure 8 is 0.16%. Its accuracy is very close to the DEEP OPM

shown in Figure 7 but with 4× area overhead. This measurement

on layout implementation is consistent with the observation in

Figure 5. When visually comparing the two layout solutions, the

red OPM region in Figure 8 is also obviously larger than Figure 7.

5 DISCUSSION
5.1 Result Analysis
To better understand the unprecedented high efficiency of this

DEEP algorithm, we decompose the contribution of two major new

policies in DEEP through ablation studies in Figure 9(a). Compared

with baseline B1, DEEP adopts a two-step proxy selection method

on all individual bits. The contribution of using bits instead of

signals as 𝑉𝑀 is reflected by the superior performance of the blue

curve ‘MCP on Bits’ over B1 baseline in Figure 9(a). In addition,

we also measure only using registers as 𝑉𝑀 in ‘MCP on Registers’,

as adopted by baselines B3 and B5 in Table 1. The performance

(a) (b)

Figure 9: (a) Analysis of model development policies in DEEP.
(b) The correlation among proxies 𝑉𝑄 measured by variance
inflation factor (VIF).

turns out to be very bad. This observation is consistent with the

trend of adopting all RTL signals rather than only registers as input

candidates in recent works [20, 38].

We also measure the accuracy of applying the two-step selection

method on all signals as candidates, as the pink curve ‘Two-step

on Signals’ in Figure 9(a) shows. Its superior performance over

baseline B1 shows the contribution of adopting the two-step proxy

selection over simple MCP.

5.2 Proxy Analysis
Besides ablation study on the accuracy, we also look into selected

proxies 𝑉𝑄 , which directly determines OPM quality. Figure 9(b)

calculates the averaged variance inflation factor (VIFs) of all prox-

ies. The VIF reflects the collinearity or correlation among selected

proxies. A high VIF generally implies less independence among

selected proxies and high variance in the model, which can be im-

proved. In Figure 9(b), DEEP shows better VIF than both baseline

B1 and MCP selection on all bits as candidates. This implies that the

two-step selection algorithm in DEEP tends not to select correlated

candidates as proxies simultaneously, partially explaining the better

performance of DEEP OPM.

Figure 10 further analyzes the source of proxies 𝑉𝑄 . There are

244 bits selected as inputs in DEEP-OPM with 𝐴𝑂𝐿 = 0.08%. Fig-

ure 10(a) inspects all original RTL signals from which these input

bits are selected. Only 30% input bits are from per-bit signals and all

other 70% input bits are selected from buses. Figure 10(b) presents

the source of these selected input bits in terms of components.

(a) (b)

Figure 10: Analysis of 244 proxies 𝑉𝑄 in a DEEP OPM with
𝐴𝑂𝐿 = 0.08%. (a) Width of original RTL signals from which
these bits proxies are selected. (b) Components where these
bit proxies are selected.

7



ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Zhiyao Xie, et al.

MSBLSB

(a)

MSBLSB

(b)

Figure 11: Histogram of proxy bit position in bus signals:
MSB tends to be selected. (a) DEEP-OPM with 𝐴𝑂𝐿 = 0.04%.
(b) DEEP-OPM with 𝐴𝑂𝐿 = 0.08%.

This distribution is similar to the distribution of candidates 𝑉𝑀 in

Figure 4(a).

Another interesting analysis is which bit in a bus signal tends

to be selected as proxies. Figure 11 analyzes the selected bits from

bus signals with width larger than 4. It inspects the ‘bit position’ of

selected bits in𝑉𝑄 . For a bus signal named 𝐵𝑆 [𝜔 −1 : 0] with width

𝜔 , assuming one bit 𝐵𝑆 [𝑘] in this bus is selected as a proxy, we

define its bit position to be 𝑘/(𝜔−1), which ranges from 0 to 1, with

0 representing the least significant bit (LSB) and 1 representing the

most significant bit (MSB). As shown in two histograms in Figure 11,

MSBs tend to be selected as inputs. This trend is very reasonable

since toggles in MSB tend to capture more arithmetic activities due

to carrying.

5.3 Weight Analysis
Besides proxies, the number of bits of weights after quantization

also provides insights into understanding the OPM hardware cost.

Table 3 reports the distribution of weight bits after quantization.

Please do not confuse these weight bits with the width of RTL

signals. For the OPM with overhead equal to 0.08%, the maximum

weight bits is 6. In this OPM,more than 80% of weights only take less

or equal to 3 bits. It indicates the importance of weight quantization.

DEEP-OPM W bits 1 2 3 4 5 6

(𝐴𝑂𝐿 = 0.08%) Count 6 77 120 28 8 5

Table 3: Post-quantization weight bits distribution.

6 CONCLUSION
In this work, we present an extremely efficient runtime OPM de-

velopment method named DEEP. It reduces the hardware cost of

OPM to < 0.01% area overhead, making per-cycle on-chip power

estimation affordable in almost any design. We believe this provides

an ‘ideal’ runtime power estimator that supports all desired proper-

ties of OPM, including accuracy, low hardware cost, good temporal

resolution, automated development, and reporting component-level

power values.
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