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ABSTRACT
The automated generation of design RTL based on large language
model (LLM) and natural language instructions has demonstrated
great potential in agile circuit design. However, the lack of datasets
and benchmarks in the public domain prevents the development
and fair evaluation of LLM solutions. This paper highlights our
latest advances in open datasets and benchmarks from three per-
spectives: (1) RTLLM 2.0, an updated benchmark assessing LLM’s
capability in design RTL generation. The benchmark is augmented
to 50 hand-crafted designs. Each design provides the design de-
scription, test cases, and a correct RTL code. (2) AssertEval, an
open-source benchmark assessing the LLM’s assertion generation
capabilities for RTL verification. The benchmark includes 18 de-
signs, each providing specification, signal definition, and correct
RTL code. (3) RTLCoder-Data, an extended open-source dataset
with 80K instruction-code data samples. Moreover, we propose a
new verification-based method to verify the functionality correct-
ness of training data samples. Based on this technique, we further
release a dataset with 7K verified high-quality samples. These three
studies are integrated into one framework, providing off-the-shelf
support for the development and evaluation of LLMs for RTL code
generation and verification. Finally, extensive experiments indicate
that LLM performance can be boosted by enlarging the training
dataset, improving data quality, and improving the training scheme.

CCS CONCEPTS
• Hardware → Hardware description languages and com-
pilation; • Computing methodologies → Natural language
processing.
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Figure 1: This paper presents open-source benchmarks and
dataset for LLM-assisted RTL generation and verification.

1 INTRODUCTION
In recent years, large language models (LLMs) such as GPT [34]
have demonstrated remarkable performance in natural language
processing (NLP). Inspired by this progress, researchers have started
exploring the adoption of LLMs in agile hardware design [8]. A
promising direction that attracts the most attention is automatically
generating design RTL based on natural language instructions [4, 7,
15, 25, 27–29, 31, 32, 38, 45, 46, 53, 55, 57]. In modern VLSI design
flow, design teams typically exert great effort to implement precise
design functionality in design RTL using hardware description
languages (HDLs). Now given design functionality descriptions in
natural language (e.g., specification), LLM solutions target directly
generating corresponding HDL code such as Verilog, VHDL, and
Chisel from scratch. This LLM-based design generation technique
can potentially revolutionize the existing HDL-based VLSI design
process, relieving designers from the tedious HDL coding tasks.
Compared with well-explored predictive machine learning (ML)-
based solutions in EDA [39, 51], such generative methods may
benefit the hardware design process more directly.

In addition to the generation of RTL (i.e., HDL code) itself, the
verification of RTL correctness is equally important and challenging
in modern VLSI design. Functional verification ensures the RTL im-
plementation satisfies its specification. Assertion-based verification
(ABV) [50] employs assertions derived from specifications to verify
the functional behavior of RTL designs. ABV can be conducted
through either simulation or formal property verification (FPV),
with assertions often expressed using SystemVerilog Assertions
(SVAs). However, a major challenge in ABV is to obtain sufficient,
high-quality assertions. Existing research on automating assertion
generation includes dynamic assertion mining based on simulation
traces [10, 14, 48], static generation using predefined design-specific
templates [11, 35], and the direct translation of natural language
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LLM-Assisted RTL Generation

Prompt Engineering [4, 7, 29, 31, 32, 46]

Closed Dataset
VerilogEval [27], BetterV [38], ChipNemo [25]

Chang et al. [6], OriGen [9], CodeV [57]

Open Benchmark
RTLLM [29], VerilogEval [27], RTL-repo [2]

RTLLM 2.0 (Section 2)
Open Dataset

Thakur et al. [45], Wang et al. [49]
(code only)

Open Dataset RTLCoder [28], MG-Verilog [55], Goh et al. [15]
(instruction-code) RTLCoder-Data (Section 4)

LLM-Assisted RTL Verification & Debugging

Prompt Engineering [3, 12, 18, 20, 26, 30, 36, 42, 47, 52]
Closed Dataset HDLdebugger [54]

Open Benchmark AssertEval (Section 3)

Table 1: Existing explorations in LLM-aided design RTL gen-
eration and verification, with a focus on works that adopt or
propose new datasets and benchmarks.

specifications into assertions [1, 13, 17, 20–23, 36, 37, 42, 56]. LLM
solutions [3, 12, 20, 26, 30, 36, 42] turn out to be also promising in
generating assertions for design RTL verification.

Many existing works directly prompt commercial LLMs like
GPT-3.5/GPT-4 for RTL code generation [4, 7, 29, 31, 32, 46] or
verification [3, 12, 18, 47, 52, 53], without proposing new datasets
or models. However, reliance on commercial LLM tools limits in-
depth research exploration and further model customization. More
importantly, users of commercial LLM solutions unavoidably have
data privacy concerns, since all instructions have to be uploaded to
LLM providers like OpenAI. Such privacy concerns are especially
critical in the IC design industry. In addition, commercial LLMs
may not ensure reliable service with a low response latency.

To develop our own customized or open-source LLM solutions
for RTL generation or verification, a primary challenge is the lim-
ited availability of circuit data. Unlike the huge amount of text and
image resources in the public domain, circuit designs are the most
important intellectual property (IP) of semiconductor companies,
who typically strongly oppose sharing their designs. Such limited
circuit data sharing is a long-standing issue not only for academia
but also among different design teams within a single company.
This data availability problem leads to a lack of datasets and bench-
marks, preventing both the development and fair evaluation of LLM
solutions in hardware design.

Table 1 summarizes existing efforts in LLM-assisted RTL gener-
ation and verification, with a focus on open-source datasets and
benchmarks. Open benchmarks [2, 27, 29] are vitally important
for a fair evaluation of LLM solutions. In addition to prompting
GPT, many works tried to construct their own LLMs with either
open-source [15, 28, 46, 49, 55] or closed-source [6, 9, 25, 27, 38, 57]
datasets. Among the open-sourced dataset, several of them [46, 49]
only provide RTL code, without alignment with the RTL genera-
tion tasks based on natural language instructions. In comparison,
some open datasets [15, 28, 55] provide a pair of natural language
instruction (i.e., LLM input) and code (i.e., expected LLM output)
as one data sample. These datasets are better aligned with the RTL
generation task and benefit the LLM fine-tuning process.

In this paper, as summarized in Table 1 and Figure 1, we highlight
our latest advances in open datasets and benchmarks for LLM-
assisted design and integrate them into a unified framework. It
consists of three major components.

(1) In Section 2, we present an open-source benchmark named
RTLLM 2.0 for evaluating the performance of LLM-
assisted RTL generation1. It provides 50 RTL designs. It
is an extension of our proposed benchmark RTLLM [29],
which originally provided 30 designs. For each design, we
provide the functionality description, test cases, and correct
RTL design handcrafted by human engineers.

(2) In Section 3, we present an open-source benchmark named
AssertEval for LLM-assisted RTL verification2. It pro-
vides 18 designs to evaluate the generation of assertions by
LLMs. These designs cover a diverse spectrum of applica-
tions. For each design, we provide the specification docu-
ment, golden RTL code, and the script for FPV.

(3) In Section 4, we present an open-source dataset named
RTLCoder-Data for training the LLM for RTL genera-
tion3. This dataset provides 80K (thousand) samples, with
each sample being a code generation instruction and cor-
responding RTL code. This is an extension of the dataset
released in our proposed RTLCoder [28], which originally
provided 27K samples.

In addition, a challenge in dataset generation is the difficulty
in checking the correctness of data samples. RTLCoder [28] has
proposed both instruction checker and code checker, evaluating the
diversity introduced by new instructions and the syntax correctness
of new code, respectively. However, no data generation method can
automatically check whether the code has the correct functionality
(i.e., same functionality as described in the instruction). In this
paper, we explore an innovative method to verify training data
correctness by generating assertions for each sample. In this way,
we further generate and release a verified 7K-sample dataset for
training LLM for RTL generation, which is also introduced in
Section 4. Finally, we trained and compared various LLM solutions
to study the factors that affect LLM performance in RTL generation.

2 RTLLM 2.0: OPEN BENCHMARK FOR RTL
GENERATION

2.1 Overview of RTLLM 2.0
Our previously proposed RTLLM [29] is a comprehensive open-
source benchmark for design RTL generation with natural language.
It supports the evaluation of any generated HDL format, including
Verilog, VHDL, and Chisel, as long as it supports logic synthesis
and RTL simulation.

RTLLM [29] consists of 30 designs with a wide coverage of design
complexities and scales. In RTLLM-2.0, we have expanded this
collection to include 50 designs, of which the ones highlighted in
bold in Table 2 are newly added. This enlargement allows for amore
thorough evaluation of different design types and sizes, offering a
more comprehensive understanding of how RTL code generation
performs across a wider variety of benchmarks. By increasing the
number of designs, we can now explore a broader range of scenarios,

1RTLLM 2.0 is in https://github.com/hkust-zhiyao/RTLLM.
2AssertEval is in https://github.com/hkust-zhiyao/AssertLLM.
3RTLCoder-Data (both 80K and 7K) is in https://github.com/hkust-zhiyao/RTL-Coder.
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Arithmetic Modules Memory Modules

Design Description Design Description

adder_8bit An 8-bit adder asyn_fifo An asynchronous FIFO 16×8 bits
adder_16bit A 16-bit adder implemented with full adders LIFObuffer A Last-In-First-Out buffer for temporary data storage
adder_32bit A 32-bit carry-lookahead adder right_shifter Right shifter with 8-bit delay

adder_pipe_64bit A 64-bit ripple carry adder based on 4-stage
pipeline LFSR A Linear Feedback Shift Register for generating

pseudo-random sequences
adder_bcd A BCD adder for decimal arithmetic operations barrel_shifter A barrel shifter for rotating bits efficiently
sub_64bit A 64-bit subtractor for high-precision arithmetic RAM 8x4 bits true dual-port RAM

multi_8bit An 8-bit multiplier based on shifting and adding
operation ROM A Read-Only Memory module for storing fixed data

multi_16bit A 16-bit multiplier based on shifting and adding
operation Miscellaneous Modules

multi_booth_8bit An 8-bit booth-4 multiplier Design Description

multi_pipie_4bit A 4-bit unsigned number pipeline multiplier clkgenerator A clock generator for providing timing signals

multi_pipie_8bit An 8-bit unsigned number pipeline multiplier instr_reg An instruction register module for holding and
processing CPU instructions

div_16bit A 16-bit divider based on subtraction operation signal_generator Generate various signal patterns
radix2_div An 8-bit radix-2 divider square_wave A generator for producing square wave signals
comparator_3bit A 3-bit comparator for comparing binary numbers alu An ALU for 32bit MIPS-ISA CPU
comparator_4bit A 4-bit comparator for comparing binary numbers pe A Multiplying Accumulator for 32bit integer

accu Accumulates 8-bit data and output after 4 inputs freq_div Frequency divider for 100M input clock, outputs
50MHz, 10MHz, 1MHz

fixed_point_adder A fixed-point adder for arithmetic operations
with fixed precision freq_divbyeven Frequency divider that divides input frequency by

even numbers

fixed_point_substractorA fixed-point subtractor for precise fixed-point
arithmetic freq_divbyodd Frequency divider that divides input frequency by odd

numbers

float_multi A floating-point multiplier for high-precision
calculations freq_divbyfrac Frequency divider that divides input frequency by

fractional values

Control Modules calendar Perpetual calendar with seconds, minutes, and hours

Design Description traffic_light Traffic light system with three colors and pedestrian
button

fsm FSM detection circuit for specific input width_8to16 First 8-bit data placed in higher 8-bits of the 16-bit
output

sequence_detector Detect specific sequences in binary input synchronizer Multi-bit mux synchronizer
counter_12 Counter module counts from 0 to 12 edge_detect Detect rising and falling edges of changing 1-bit signal

JC_counter A 4-bit Johnson counter with specific cyclic
state sequence pulse_detect Extract pulse signal from the fast clock and create a

new one in the slow clock
ring_counter An 8-bit ring counter for cyclic state sequences parallel2serial Convert 4 input bits to 1 output bit

up_down_counter A 16-bit counter that can increment or
decrement based on control signals serial2parallel 1-bit serial input and output data after receiving 6 inputs

Table 2: RTLLM-2.0 benchmark description. The benchmark includes 50 designs across various applications, with bold designs
representing newly added designs relative to RTLLM.

better understand design intricacies, and assess performance more
effectively in the context of RTL code generation.

Unlike RTLLM, which broadly classifies designs into Arithmetic
and Logic types, RTLLM-2.0 takes a closer look by categorizing de-
signs based on their specific functions and applications. By breaking
down designs in RTLLM-2.0 according to their unique purposes,
these detailed categories allow for better comparisons of how dif-
ferent models perform across various design types.

2.2 Detailed Inspection of the Benchmark
The benchmark RTLLM-2.0 dataset is meticulously categorized into
four primary module classes: Arithmetic Modules, Memory Mod-
ules, Control Modules, and Miscellaneous Modules. Each class en-
compasses a variety of functional units pertinent to diverse compu-
tational and control tasks, as delineated in Table 2. This structured
classification facilitates a comprehensive analysis and application
of the dataset across multiple domains in digital system design.

ArithmeticModules comprise various adders, subtractors, mul-
tipliers, dividers, comparators, accumulators, and other specialized
units like fixed-point arithmetic components. For instance, the
adder subcategory includes 8-bit, 16-bit, 32-bit, and 64-bit pipelined
adders, along with a BCD adder, addressing both general and spe-
cific arithmetic operations. Similarly, subtractors, multipliers, and
comparators are available in different bit widths and configurations,
such as a 64-bit subtractor, an 8-bit multiplier, and both 3-bit and
4-bit comparators, respectively.

Memory Modules are designed to handle data storage and
retrieval with FIFO (First-In, First-Out) and LIFO (Last-In, First-
Out) buffers, alongside various shifters including right shifters,
LFSRs (Linear Feedback Shift Registers), barrel shifters, as well as
RAM and ROM. The inclusion of asynchronous FIFO and LIFO
buffers highlights the benchmark’s capability to manage different
memory access patterns efficiently.
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Design Type Cryptographic Unit Processor Core Arithmetic Unit Communication Protocol Memory Controller

Design Name/
# Page/
# Signal

AES 15 11 amber 26 14 ecg 9 12 ethernet 42 54 hpdmc 8 4
sha3 17 9 lxp32 59 22 mac 24 34 i2c 15 24 sdc 26 53

tiny_aes 17 4 minsoc 22 14 pairing 13 8 sockit 29 15 sdr_ctrl 28 46
tiny_pairing 17 10 uart 10 11

Table 3: AssertEval benchmark description. The benchmark includes 18 open-source designs across various applications. For
each design’s specification document, we list the number of file pages and the number of architectural signals under verification.

Control Modules focus on state management and counting
mechanisms, featuring finite state machines (FSMs), sequence de-
tectors, and various counters such as a 12-bit counter, Johnson
counter (JC_counter), ring counter, and an up/down counter. These
modules are crucial for controlling the flow of operations and en-
suring sequential logic execution within digital systems.

Miscellaneous Modules cover a broad spectrum of functional-
ities including signal generation, RISC-V components, frequency
dividers, and other essential units. Signal generation features mod-
ules like a signal generator and a square wave generator. The RISC-V
category includes clock generators, instruction registers, ALU, and
processing elements, essential for constructing RISC-V-based archi-
tectures. Frequency dividers are detailed with modules that divide
by even, odd, and fractional values. Additionally, there are mod-
ules for specific applications such as calendars, traffic lights, data
width converters, synchronizers, and various signal detection and
conversion units.

This classification framework facilitates a nuanced understand-
ing of the benchmark, highlighting its versatility and applicability
across different domains of digital system design and analysis.

2.3 Benchmark Evaluation
2.3.1 Overview of Test Files. For each design, RTLLM-2.0 provides
the following information in three separate files.

Description (design_description.txt): A natural language descrip-
tion of the target design’s functionality, serving as a prompt for
LLMs to generate RTL code. It includes the module name and all in-
put/output (I/O) signals with names and widths, enabling automatic
functionality verification with the provided testbench.

Testbench (testbench.v): A testbench containing multiple test
cases with input and expected output values. It corresponds to the
module name and I/O signals in design_description.txt and is used
to verify design functionality.

Correct Design (designer_RTL.v): A reference design Verilog
hand-crafted by human designers. By comparing with this reference
design, we can quantitatively evaluate the design qualities of the
automatically generated design.

2.3.2 Evaluation Metrics. To systematically evaluate the generated
design RTL, we summarize three progressive goals, which can all be
evaluatedwith our benchmark. The first and basic goal is the syntax
goal. It means the syntax of the generated RTL design should at
least be correct. It can be verified by checking whether the design
can be correctly synthesized into netlist by synthesis tools [43].
The second is functionality goal. It requires the generated RTL
design to function as expected, verified by passing all test cases
provided in testbench.v. While the testbench samples a reasonable
number of cases, passing them doesn’t guarantee 100% functionality
correctness. If the design is correct in both syntax and functionality,
it is considered successful. However, for practical use, its design
qualities, including performance, power, and area (PPA), should

also be desirable. This is the quality goal, verified by measuring
PPA values after synthesis and layout.

3 ASSEREVAL: OPEN FRAMEWORK AND
BENCHMARK FOR RTL VERIFICATION

3.1 Assertions Generation and Evaluation
Framework

Inspired by the potential of LLMs, translating natural language
specifications into assertions has gained significant attention. Some
works[20, 30] leverage LLMs to convert human-extracted or human-
written specification sentences into corresponding assertions. Other
approaches, like AssertLLM [12], process entire specification doc-
uments directly, using LLMs to automatically extract assertion-
related information from highly unstructured, multi-modal data,
including descriptive text and waveform diagrams.

Despite the growing interest in LLM-based assertion generation,
a universal evaluation method and benchmark are still unavailable.
To address this challenge, we propose AssertEval, a benchmark and
framework designed to evaluate the quality of LLM-based assertion
generation across various VLSI designs.

The generation and evaluation flow is demonstrated in Figure 2.
For the generation process, we provide entire specification docu-
ments as input, users then generate assertions for each architec-
tural signal with their own assertion generation methods. These
assertions are then evaluated against our provided golden RTL
implementations using formal property verification techniques.

After the assertion generation process, the framework automat-
ically evaluates the quality of the generated assertions. Bug-free
golden RTL implementations are provided for this evaluation. Based
on these golden RTL designs, the generated assertions are verified
through formal property verification (FPV) techniques. After per-
forming FPV, the following metrics are computed to evaluate the
quality of generated assertions:

• Syntax: checks if generated assertions have syntax errors.
• FPV pass/fail: when RTL designs are bug-free, an assertion
that passes the FPV check is considered semantically correct,
and conversely, a failure indicates an incorrect assertion.

• COI coverage: cone of influence (COI) coverage measures
the percentage of design logic that is structurally connected
to the properties. It is a common metric to evaluate the
quality and usefulness of the generated properties.

3.2 AssertEval Benchmark Description
The benchmark AssertEval consists of 18 open-source designs that
cover a diverse array of applications, including cryptographic units,
processor cores, arithmetic units, communication protocols, and
memory controllers. Considering the capability of existing LLM-
based generation methods, we have collected specification doc-
uments that are fewer than 60 pages and contain fewer than 60
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Figure 2: Evaluation of generated assertions using our bench-
mark. We provide natural language specification documents
as input for the assertion generation process. The generated
assertions are then evaluated against the provided golden
RTL designs using the FPV technique. Three key metrics are
employed to assess the quality of the generated assertions.

architecture-level signals. We list the detailed statistics for each de-
sign in Table 3. Additionally, we provide an FPV script for Cadence
JasperGold [5], which can be executed with a single button click for
ease of use. For each design within the benchmark, our benchmark
provides the following three files:

• Specification document: This file contains the natural lan-
guage specification for the design, providing a detailed de-
scription of the design architecture and functionality.

• Golden RTL implementation: This file comprises the RTL
design implementations that are strictly implemented accord-
ing to the specification. The designs are verified to ensure it
is free from bugs, serving as a reliable standard for evaluating
the correctness of generated assertions.

• FPV script: This script automatically executes FPV, allowing
users to execute the verification with a single click.

The specification document is highly unstructured, with assertion-
related information dispersed across various sections. Additionally,
it includes multi-modal data (e.g., descriptive text and waveform
diagrams), making the extraction of relevant details challenging.

Our provided specification typically includes seven key sections:
1) Summary: outlines the design’s concepts and features; 2) IO
ports: provides detailed information for the interface; 3) Registers:
describes all the architecture-level registers in the design; 4) Opera-
tion: explains the operational procedures for dataflow and control;
5) Architecture: the high-level workflow and dataflow of the design;
and 6) Usage examples: offers basic usage scenarios for the design.
For signals, the specification may only define critical architecture-
level IO ports and registers, leaving the designers to detail internal
signals for RTL implementations. 7) Waveform diagram: describe
behaviors for different signals.

4 OPEN DATASET FOR RTL GENERATION
In this Section, we present an open-source dataset named RTLCoder-
Data for training the LLM for RTL generation. It provides a large
‘raw dataset’ with 80K samples, tripling the one previously re-
leased in RTLCoder [28]. Moreover, we propose an innovative
verification-based method to check the functionality correctness of

each instruction-code data sample. Applying both the functional-
ity checker and syntax checker, we further generate and release a
high-quality verified dataset with 7K ‘mostly-correct’ samples.

4.1 Basic Dataset Generation Flow
Our prior work RTLCoder [28] has proposed an automated training
dataset generation flow and generated 27K training samples, with
each sample being a pair of design instruction (i.e., model input) and
the reference RTL code (i.e., expectedmodel output). The instruction
can be viewed as the input question for LLMs, describing the desired
circuit functionality in natural language. The reference code is the
expected Verilog code that implements the functionality. This flow
takes advantage of the powerful general text generation ability of
the commercial tool GPTwith several prompt templates. As Figure 3
shows, the flow includes three stages, which are summarized below.

Stage 1: Keywords Preparation. The first stage of the data
generation flow targets preparing RTL domain keywords for subse-
quent stages. At process 1 in Figure 3 shows, GPT is requested to
generate keywords related to digital IC design (i.e., commonly used
logic components) based on a set of prompts. We obtain a keyword
pool L𝑘𝑒𝑦 with hundreds of digital design keywords.

Stage 2: Instruction Generation. The second stage targets
generating sufficient instructions based on the initial keywords and
Verilog source code. At process 2 , existing keywords are extended
from L𝑘𝑒𝑦 to complete instructions. In addition to keyword-based
instruction generation, we also generate instructions based on exist-
ing source code collected by us, as shown in process 3 . By providing
GPT with either part or a complete Verilog code L𝑐𝑜𝑑𝑒 collected
by [45], we inspire it to create a related Verilog design problem.

Process 2 and 3 help generate the initial design instruction pool
L𝑖𝑛𝑠 . After that, we iteratively augment this pool with mutation.
Process 4 applies two types of mutation operations on instructions
sampled from the design instruction library L𝑖𝑛𝑠 . The process 5
would check every new design instruction using a set of rules and
only passed valid instructions are added to L𝑖𝑛𝑠 .

Stage 3: Reference Code Generation. The third stage targets
generating the reference code corresponding to each instruction.
As shown in 6 , we feed each instruction from L𝑖𝑛𝑠 into GPT,
generating corresponding reference design code. Then depending
on whether process 7 is applied, we generate two types of datasets
in this flow, as we will introduce in Section 4.2 and 4.3, separately.

4.2 80K Raw Dataset in RTLCoder-Data
To collect a large dataset, we continued to execute the basic data
generation flow. Compared with the previous dataset from [28],
we further enlarge the source code pool in L𝑐𝑜𝑑𝑒 in process 3
and continue the mutation in process 4 during the generation
process. In addition, we slightly relaxed the instruction checking
conditions in process 5 . Previously in [28], each new instruction is
compared with all existing instructions in L𝑖𝑛𝑠 to check whether it
introduces diversity. However, it takes a long time to compare each
new instructionwith all existing instructions.We removed this time-
consuming diversity checking process, and only checked the basic
instruction content in process 5 . As wewill introduce in Section 5.2,
results demonstrate that removing such diversity checking does
not impair the overall diversity in the ultimate dataset. Finally,
we accumulate and release a dataset of 80K samples, tripling the
previous dataset in RTLCoder [28].
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Figure 3: The automated training dataset generation flow to generate RTLCoder-Data. The framework is based on prior
RTLCoder [28], but we proposed an innovative automated functionality checking method in Stage 3.

However, since the overall generation process of this 80K dataset
relies on prompting commercial LLMs, we cannot guarantee the
correctness of all samples. Therefore, we also refer it as a ‘raw’ 80K
dataset in RTLCoder-Data. To evaluate the effectiveness this ‘raw’
dataset, we have trained LLMs with different numbers of data sam-
ples and evaluated results will be introduced in Section 5.3. Results
indicate that a larger dataset leads to better model performance,
and the performance is not saturated when 80K samples are used
for training. Despite possible incorrectness in data samples, a larger
dataset still clearly boosts model performance and proves useful.

4.3 7K Verified Dataset in RTLCoder-Data
As introduced in Section 4.2, we have accumulated a raw dataset
with 80K samples, but it is difficult to verify the correctness of
each data sample. Specifically, it is feasible to automatically check
the syntax correctness of the code in each sample with tools like
VCS [44] or iVerilog, but it is very challenging to check whether the
code has the correct functionality (i.e., code functionality matches
the description in instruction). This functionality checking task is
exactly hardware verification, which has been studied for decades,
relies on human engineers, and is difficult to get guaranteed results.
To the best of our knowledge, there is no prior work on automatic
examination of code functionality correctness in dataset generation.

In this work, we made an innovative exploration to enable the
automatic functionality checking of each instruction-code data
sample. It is shown as the functionality checker in process 7 of
Figure 3. The solution is based on the LLM-assisted verification
method introduced in Section 3. First, based on the functionality
description from instruction, we prompt commercial LLMs to gen-
erate corresponding assertions. The prompt techniques are from
LLM-assisted verification works such as AssertLLM [12]. Second,
we combine the code and generated assertions, and feed them to
verification platforms (e.g., JasperGold [5]) to check whether the
code violates any assertions. If all assertions are passed, it is likely
that the code correctly implements the functionality described in
the instruction. Still, this is not 100% guarantee of sample correct-
ness, but this process is fully automated and it leads to sufficiently
high-quality samples for model training.

A problem in this verification-based functionality checking is,
the assertions for verification are also generated by LLMs [12], thus
the correctness of assertions is not guaranteed either. As a result,
incorrect assertions may be generated for actually correct samples,
making the correct samples fail the verification process. Therefore,
this functionality checkingmethod is conservative: Samples passing
all assertions are likely to be correct, but correct data samples
may fail the checking due to wrong assertions. Applying both

functionality checking and syntax checking, as indicated by 7 , we
collected 7K high-quality verified samples. As we will introduce in
Section 5.3, the 7K verified dataset leads to better LLM performance
compared with models trained with even 50K raw data.

5 RTL GENERATION EXPERIMENT RESULTS
In this Section, we train and evaluate various LLM solutions with
our 80K raw dataset and 7K verified datasets from RTLCoder-Data.
In addition to extensive comparisons with various other LLM so-
lutions, we studied the impact of training data amount, training
scheme, and training data quality on LLM performance.

5.1 LLM Training and Evaluation Setup
To evaluate the performance of LLM-assisted RTL generation, we
adopt two representative benchmarks named VerilogEval [27] and
RTLLM [29]. For RTLLM, following the original benchmark [29],
each task is counted as success as long as any of 5 trials passes the
test. This can be interpreted as pass@5 metric. For all tested models,
we evaluate all 3 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 conditions {0.2, 0.5, 0.8} and report
the best performance for each model.

We choose the Mistral-7B-v0.1 [19] and DeepSeek-Coder-6.7b-
Instruct [16] as the basic pre-trained model for finetuning. In all
experiments, we opted for the Adam optimizer with 𝛽1 = 0.9, 𝛽2
= 0.999, and learning rate 𝛾 = 1e-5, while abstaining from the use
of weight decay. Concurrently, we established a context length of
2048 and a global batch size of 256. We trained the model on only 4
consumer-level RTX 4090 GPUs (24GB each), each of which could
afford 2 × 2048 context length using DeepSpeed stage-2 [40].

5.2 Evaluation of Dataset
To prevent information leakage, for each instruction-code concate-
nated sample in the training dataset, we computed its maximum
similarity with all test cases in the benchmarks. We employed the

Figure 4: Training dataset analysis for the obtained 80K
dataset. (a) Similarity measurement between training dataset
and two benchmarks based on Rouge-L metric. (b) Tokens
number distribution of instruction and code part.
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RTLCoder-Data
Raw (80K)

RTLCoder-Data
Verified (7K)

MG-Verilog
[55]

Goh et al.
[15]

CR 4.21 4.32 5.80 5.27
CR: POS 7.33 7.45 9.16 10.1

Table 4: Diversity scores (CR, CR:POS) of RTLCoder-Data
Raw (80K), RTLCoder-Data Verified (7K), and other RTL
datasets [15, 55]. Lower CR and CR:POS mean higher dataset
diversity. Both datasets from RTLCoder-Data exhibit satis-
factory diversity compared with others.

Rouge-L4, a widely used similarity calculation metric in the LLM
domain. As Figure 4 (a) shows, most training samples have a low
Rouge-L Value of around 0.25 and this indicates a low semantic
overlap with the benchmarks. There are a small number of sam-
ples with higher similarity, and we get rid of these samples with
Rouge-L > 0.5 during training. In addition, Figure 4 (b) shows that
an instruction-code sample is generally within 2048 token length.
So we can set 2048 as the max length in our finetuning.

To check the diversity of our proposed training dataset RTLCoder-
Data-Raw (80K) and RTLCoder-Data-Verified (7K), we utilized two
diversity measures: Compression Ratios (CR) and Part-of-Speech
Compression Ratio (CR: POS) which are suggested best lexical di-
versity metrics by [41]. CR is calculated utilizing text compression
algorithms which can identify redundancy in the whole contents.
The CR-POS can capture the repeated syntactic redundancy by
compressing the part-of-speech (POS) tag sequences of the original
text. We also followed the method utilized in [41] to extract the tag
sequences of the dataset. The results are illustrated in Table 4. Our
proposed two datasets have lower CR and CR:POS than other exist-
ing open-source Verilog instruction-code datasets. This indicates
that RTLCoder-Data-Raw (80K) and RTLCoder-Data-Verified (7K)
have a satisfactory diversity.

5.3 Result of Trained LLM in RTL Generation
Table 5 summarizes the comparison of various LLM-assisted RTL
generation solutions, including commercial models GPT3.5/GPT4,
both closed- and open-source LLMs customized for Verilog genera-
tion [27, 38, 45], general software code generators [19, 24, 33], and
our fine-tuned models based on DeepSeek-Coder-6.7b-Instruct [16]
and Mistral-7B-v0.1 [19] with different amount of training data and
training schemes. Relevant results are also presented in Figure 5,
which shows LLM performance versus the amount of training data.

Overall performance based on RTLCoder-Data. We train
the base model directly on the RTLCoder-Data Raw (80K) through
instruction-supervised fine-tuning which is referred to as “basic
direct training" in Table 5. We can observe that DeepSeek-Direct
(80K data samples) outperforms all other baseline models in Eval-
Machine and is only inferior to GPT-4 in Eval-Human and RTLLM
V1.1. Specifically, in the Eval-Machine part, it even outperforms
GPT4 by an absolute value of 4.7% in the pass@1 metric. In sum-
mary, DeepSeek-Direct (80K data samples) outperforms GPT-3.5
and all non-commercial baselines in all metrics. It is surprising that
the lightweight model with only 7 billion parameters could achieve
such impressive accuracy despite its smaller size.

Impact of training data amount. To further investigate the
impact of dataset size on model performance, we sampled subsets
of 5K, 27K, and 50K samples from the RTLCoder-Data Raw (80K)

4The Rouge-L score ∈ [0, 1], with values closer to 1 indicating higher similarity
between the two sequences.

Figure 5: The pass@k performance on VerilogEval bench-
marks versus the amount of training data from RTLCoder-
Data. The performance improves as the data size increases.

and then conducted direct finetuning on these subsets. The results
are shown in Table 5 and also plotted in Figure 5. We can observe
that as the training data volume increases, the overall performance
of the model on the benchmarks also improves. For instance, as
the training data size increases from 5K to 80K, the model’s per-
formance on the Eval-Machine pass@1 metric rises from 53.7%
to 64.7%. Additionally, as illustrated in Figure 5, even with 80K
data samples, there are still no signs of model performance satu-
ration. This indicates that enlarging the training dataset size can
significantly boost the model’s code generation capabilities.

Impact of training scheme.We extracted a 27K subset from the
RTLCoder-Data Raw (80K) and employed the code quality feedback-
based training scheme proposed in RTLCoder [28] to obtain models
named Mistral-Scoring and DeepSeek-Scoring. Their performance
is presented in Table 5 and Figure 5 titled ‘Scoring-based Training’.
Compared with DeepSeek-Direct (27K data samples) and Mistral-
Direct (27K data samples), models trained with the scoring-based
scheme are better on all benchmarks, indicating that this better
scoring-based training method [28] improves model performance.

Impact of training data quality. In the ‘Verified Dataset’
part of Table 5, we directly trained the DeepSeek-Coder using the
dataset RTLCoder-Data Verified (7K). DeepSeek-Direct (7K veri-
fied) outperforms DeepSeek-Direct (27K) across all benchmarks and
even surpasses DeepSeek-Direct (50K) on 6/8 metrics. Moreover,
DeepSeek-Direct (7K verified) only uses < 20% of the training time
of DeepSeek-Direct (50K). This demonstrates that enhancing the
quality of the training dataset can improve the model performance
and reduce the LLM training cost. It indicates the great potential of
our proposed assertion-based functionality checking technique.
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Model Type Evaluated Model
Num of

VerilogEval Benchmark [27] RTLLM V1.1 [29]

Params
(using pass@k metric) (using pass@5 metric)

Eval-Machine (%) Eval-Human (%) Syntax-VCS(%) Func (%)
k=1 k=5 k=10 k=1 k=5 k=10

Closed-Source

GPT-3.5 N/A 46.7 69.1 74.1 26.7 45.8 51.7 89.7 37.9

Baseline

GPT4 N/A 60.0 70.6 73.5 43.5 55.8 58.9 100 65.5
ChipNeMo [25] 13B 43.4 N/A N/A 22.4 N/A N/A N/A N/A
VerilogEval [27] 16B 46.2 67.3 73.7 28.8 45.9 52.3 N/A N/A
BetterV [38] 7B 64.2 75.4 79.1 40.9 50.0 53.3 N/A N/A

Open-Source

Codegen2 [33] 16B 5.00 9.00 13.9 0.90 4.10 7.25 72.4 6.90

Baseline

Starcoder [24] 15B 46.8 54.5 59.6 18.1 26.1 30.4 93.1 27.6
Thakur et al. [45] 16B 44.0 52.6 59.2 30.3 43.9 49.6 86.2 24.1
Mistral-7B [19] 7B 36.9 48.8 57.4 4.49 12.6 18.6 72.4 20.7

DeepSeek-Coder [16] 6.7B 54.1 63.8 67.5 30.2 42.2 46.2 89.6 34.5

Scoring-based Mistral-Scoring (27K data samples) 7B 62.5 72.2 76.6 36.7 45.5 49.2 96.6 48.3
Training [28] DeepSeek-Scoring (27K data samples) 6.7B 61.2 76.5 81.8 41.6 50.1 53.4 93.1 48.3

Basic Direct

Mistral-Direct (27K data samples) 7B 58.9 70.0 74.1 34.4 42.3 45.1 89.7 41.4
DeepSeek-Direct (5K data samples) 6.7B 53.7 71.7 77.1 32.9 45.8 52.4 93.1 41.4

Training
DeepSeek-Direct (27K data samples) 6.7B 59.8 73.6 77.2 39.1 48.3 51.3 86.2 44.8
DeepSeek-Direct (50K data samples) 6.7B 62.6 75.6 80.5 38.9 48.7 51.8 89.7 55.2
DeepSeek-Direct (80K data samples) 6.7B 64.7 76.6 80.8 42.8 51.6 55.0 93.1 48.3

Verified Dataset DeepSeek-Direct (7K verified data samples) 7B 61.3 76.3 80.8 38.9 50.1 55.3 100 48.3

Table 5: Performance comparison of RTL code generators on VerilogEval Benchmark [27] and RTLLM Benchmark [29]. The
top scores ranked 1st, 2nd, and 3rd in each column are marked in Green , Blue , and Red , respectively.

6 LIMITATION AND CHALLENGES
Finally, we would like to discuss some challenges and questions
we encountered during the development of the dataset or bench-
mark for LLM-assisted design automation solutions, and share our
thoughts about these questions.

When building the open-source benchmark for RTL generation,
we encountered several challenges:

(1) Shall we include more complex designs in the benchmark? Due
to the limited abilities of existing LLMs, almost all LLMs
encounter difficulty in generating ‘correct’ RTL design code
for very complex designs. As a result, overly complex designs
often fail to differentiate the capabilities of the models. In
addition, it is difficult to precisely describe complex designs
with natural languages.

(2) How detailed should the description be? When descriptions
are overly vague or general, LLMs struggle to produce de-
signs that meet expected functionality, making it difficult to
assess model capabilities. Conversely, if descriptions are too
detailed, focusing on intricate RTL circuit specifics, the RTL
generation effectively becomes a form of ‘code translation’,
which also fails to demonstrate the general generative abili-
ties of LLMs. Therefore, the level of detail in the description
for benchmarking requires careful consideration.

(3) How to alleviate the influence of training data leakage on the
benchmark scores? The overlap between the training dataset
and benchmarks should always be carefully examined be-
cause an overfitted LLM cannot generalize well in practice.
Overfitted LLM can easily lead to unfair comparisons and
misleading conclusions. However, the text similarity approx-
imation we used based on Rouge-L metric may not be perfect.
In addition, leakage during the LLM pre-training process is
difficult to control. How to define and evaluate the data leak-
age in RTL generation is still a challenging open problem.

The main challenge in LLM-based assertion generation centers
around improving the quality of the generated assertions. We break
down this challenge into two key questions:

(1) How to better quantify the assertion quality? Existing metrics
like syntax/semantics correctness and COI coverage are use-
ful but inadequate for complex verification scenarios, such
as capturing state transitions or ensuring different assertions
cover distinct properties. More precise evaluation techniques
are worth exploring in future works.

(2) What limits the generation of high-quality assertions? High-
quality assertions depend not only on LLM capabilities but
also on the richness of the specification documents. Speci-
fications that lack detailed functionalities or connectivities
will limit the effectiveness of assertion generation, regardless
of the capability of LLM.

7 CONCLUSION
In this work, we present our latest advances in open-source bench-
marks and datasets for developing LLMs to assist in design RTL
generation and verification.We fully open-sourced 1) RTLLM 2.0, an
updated benchmark for the evaluation of LLM-assisted RTL genera-
tion; 2) AssertEval, a benchmark or the evaluation of LLM-assisted
assertion generation for verification; and 3) RTLCoder-Data, an
extended open-source dataset for training LLMs for RTL genera-
tion. It provides 80K instruction-code data samples, as well as a 7K
verified high-quality dataset. These open-source circuit data are
provided as off-the-shelf resources, targeting more democratized
and reproducible AI for EDA research.
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