
Profile-Guided Temporal Prefetching
Mengming Li

HKUST
mengming.li@connect.ust.hk

Qijun Zhang
HKUST

qzhangcs@connect.ust.hk

Yichuan Gao
Intel

yichuan.gao@intel.com

Wenji Fang
HKUST

wfang838@connect.ust.hk

Yao Lu
HKUST

yludf@connect.ust.hk

Yongqing Ren
Intel

yongqing.ren@intel.com

Zhiyao Xie∗
HKUST

eezhiyao@ust.hk

Abstract
Temporal prefetching shows promise for handling irregular mem-
ory access patterns, which are common in data-dependent and
pointer-based data structures. Recent studies introduced on-chip
metadata storage to reduce the memory traffic caused by access-
ing metadata from off-chip DRAM. However, existing prefetching
schemes struggle to efficiently utilize the limited on-chip storage.
An alternative solution, software indirect access prefetching, re-
mains ineffective for optimizing temporal prefetching.

In this work, we propose Prophet—a hardware-software co-
designed framework that leverages profile-guided methods to op-
timize metadata storage management. Prophet profiles programs
using counters instead of traces, injects hints into programs to
guide metadata storage management, and dynamically tunes these
hints to enable the optimized binary to adapt to different program
inputs. Prophet is designed to coexist with existing hardware tem-
poral prefetchers, delivering efficient, high-performance solutions
for frequently executed workloads while preserving the original
runtime scheme for less frequently executed workloads. Prophet
outperforms the state-of-the-art temporal prefetcher, Triangel, by
14.23%, effectively addressing complex temporal patterns where
prior profile-guided solutions fall short (only achieving 0.1% per-
formance gain). Prophet delivers superior performance across all
evaluated workload inputs, introducing negligible profiling, analy-
sis, and instruction overhead.

CCS Concepts
• Computer systems organization→ Architectures.

Keywords
Temporal Prefetching, Profile-Guided Optimization
∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’25, June 21–25, 2025, Tokyo, Japan
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1261-6/2025/06
https://doi.org/10.1145/3695053.3731070

ACM Reference Format:
Mengming Li, Qijun Zhang, Yichuan Gao,Wenji Fang, Yao Lu, Yongqing Ren,
and Zhiyao Xie. 2025. Profile-Guided Temporal Prefetching. In Proceedings
of the 52nd Annual International Symposium on Computer Architecture (ISCA
’25), June 21–25, 2025, Tokyo, Japan. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3695053.3731070

1 Introduction
Data prefetching, a widely studied technique for addressing the
“memory wall” [59], has been extensively researched to enhance
processor performance. Among various data prefetching techniques
[7, 9–13, 20, 23–26, 30, 31, 37–39, 41, 42, 45, 46, 49, 50, 52, 53, 55–
58], temporal prefetching [7, 10, 26, 46, 55, 57, 58] shows particular
promise for addressing irregular memory access patterns, which
often arise from indirect/data-dependent memory accesses and
pointer-based data structures. Temporal prefetchers typically re-
quire significant metadata storage to record correlations between
memory addresses, making efficient metadata storage design vitally
important. Recent studies [7, 56, 57] propose relocating metadata
storage from off-chip DRAM [10, 26, 46, 55, 58] to the on-chip
metadata table within LLC to reduce memory traffic. Since on-chip
storage is a limited resource, efficient management of the metadata
table becomes even more critical.

Hardware temporal prefetcher. Existing hardware temporal
prefetchers [7, 56, 57] employ various techniques for metadata table
management, such as training data filtering, replacement policies,
and resizing. However, they fail to balance performance gains with
storage overhead. For example, Triage [57] adopts an advanced
replacement policy (e.g., Hawkeye [27]) that incurs a 13 KB storage
overhead but results in only a 0.25% performance gain. The state-
of-the-art temporal prefetcher, Triangel [7], introduces additional
techniques like training data filtering to improve metadata table
management. However, according to its own ablation study [7], Tri-
angel’s performance gainmostly comes from aggressive prefetching
instead of its metadata table management, which actually incurs
90% of the storage overhead.

Ideal metadata table management involves two key requirements:
(1) storing all metadata that contributes to useful prefetches in the
metadata table; and (2) filtering out metadata that does not con-
tribute to useful prefetches. However, existing temporal prefetchers
[7, 56, 57] fail to balance these two requirements. They either store
many invalid metadata entries (e.g., no insertion policy for Triage

https://doi.org/10.1145/3695053.3731070
https://doi.org/10.1145/3695053.3731070


short-term

threshold
not insert metadata + not prefetch

Figure 1: The bottom figure shows a metadata access pat-
tern: 1) Blue/Red dots are metadata accesses that result in
useful/useless prefetches; 2) Blue/Red stars represent first
metadata access with/without temporal patterns. Their cor-
responding metadata should/should not be inserted in the
metadata table. The top figure shows howTriangel [7] applies
its PatternConf to the highlighted metadata access pattern.

[57]) or incorrectly filter out metadata entries that could result
in useful prefetches (e.g., overly conservative insertion policy for
Triangel [7]).

To investigate why Triangel’s metadata management is ineffi-
cient, Figure 1 shows a metadata access pattern1,2 and analyzes
how Triangel applies its PatterConf to the pattern. The 4-bit Pattern-
Conf evaluates whether future memory accesses exhibit temporal
patterns. Triangel utilizes past short-term data to update the Pat-
ternConf. Specifically, useful metadata accesses (blue dots) increase
the PatternConf, while useless metadata accesses (red dots) decrease
it. When PatternConf falls below a threshold, indicating the absence
of temporal patterns in the future, Triangel will completely disable
metadata insertion (no insertion for stars in Figure 1).

We have two observations for Figure 1: (1) The metadata access
patterns of temporal prefetching are highly variable, characterized
by interleaved useful (blue) and useless (red) metadata accesses
and large metadata reuse distance variance. (2) Triangel does not
adapt to such dynamic variance of temporal patterns. As shown
in Figure 1, PatterConf drops to 0 due to the occurrence of many
red dots in a short term. As a result, Triangel incorrectly rejects
the insertion of subsequent interleaved blue stars (first metadata
access with temporal pattern). Similar challenges also affect other
metadata management strategies, as we will cover in Section 2.1.

Purely hardware-based temporal prefetching fails to handle the
dynamic variance of metadata accesses due to two main reasons:
(1) they lack visibility into future program behavior, and (2) while
long-term execution data could help mitigate this problem, storing
and analyzing such data would introduce significant performance
and storage overhead.

Profile-guided temporal prefetcher. To address the above
challenges, profile-guided techniques are promising by leveraging
comprehensive program execution data to guide metadata table
management strategies. However, existing profile-guided solutions
1This pattern is derived from a hardware temporal prefetcher with an unlimited
metadata table size and no insertion policy.
2This pattern is extracted from a frequently accessed instruction in omnetpp, a work-
load where Triangel shows limited effectiveness.

Analyze & Inject hint

Binary

Input x

New Binary (x)

Input y

Learn
(Counter x+y)

Analyze & Inject hint

New Binary (x+y)

Re-Profile

(Trace y)

New Binary (y)

Invalid
New profiling

T1, PC1, …
T2, PC2, …

Trace
~ GB

Counter
~ B

Counter1,
Counter2…

Test

Profile

Sub-optimal

Performance
Optimal

Performance

Prior works Prophet

Figure 2: Comparison between Prophet and prior profile-
guided solutions. Prophet is lightweight as it only uses coun-
ters for profiling. Prophet can integrate counters from mul-
tiple inputs, enabling it to adapt to varying program inputs.

[6, 29, 33, 60] for prefetching are ineffective for most temporal pat-
terns. These solutions primarily focus on inserting software prefetch
instructions for indirect memory accesses where the prefetch ker-
nel follows a regular stride pattern. They struggle to handle more
complex irregular patterns, such as pointer-chasing accesses and
indirect memory accesses with complicated prefetch kernels. This
limitation arises primarily because many irregular patterns involve
long-chain dependencies [8], and computing dependent addresses
along the chain significantly impacts prefetching timeliness.

Our solution named Prophet. Driven by our analysis, we
propose Prophet3—a hardware-software co-designed framework,
which maintains the metadata table within hardware temporal
prefetchers while leveraging profile-guided methods to improve
metadata table management. Prophet addresses aforementioned
challenges without requiring significant hardware overheads: it
offloads hardware-intensive tasks (e.g., data analysis) to software
and injects hints into programs to guide the metadata table insertion
policy, replacement policy, and resizing operations.

Beyond the scope of temporal prefetching, Prophet introduces
an innovative, efficient profile-guided solution that overcomes key
challenges in traditional profile-guided methods, as outlined below.

• Adaptable.We investigate why profile-guided optimizations
often struggle with varying program inputs and why hints
derived from one input may not apply to others. Based on
these insights, we enable Prophet to integrate profiling data
from multiple program inputs. Leveraging the aggregated
data, Prophet can generate a single optimized binary that
adapts effectively across these inputs, as shown in Figure 2.

• Lightweight. Prophet leverages Performance Monitoring
Unit (PMU) counters instead of traces to profile programs, of-
fering two major benefits: (1) it avoids the significant perfor-
mance and storage overhead linked to trace-based profiling;

3Prophet is open-sourced at: https://github.com/hkust-zhiyao/Prophet.

2

https://github.com/hkust-zhiyao/Prophet


 

L2 cache (Temporal Prefetcher)

Training Phase

L3 cache (Metadata Table)

Store

Prediction Phase

Predict

Addr1

……

Addr2 Addr3

Addr2

Addr1

Addr2

Addr3

Addr2

T
im

e

……

PC1, Addr3

PC1, Addr2

PC1, Addr1

T
im

e

Figure 3: A general framework of temporal prefetching.

(2) it is readily applicable to current architectures without
requiring additional memory trace systems.

• Compatible. Prophet can co-exist with existing hardware
temporal prefetchers. Prophet offers high-performance yet
efficient solutions for frequently executed workloads while
maintaining the original runtime solution (e.g., Triangel [7])
for rarely executed workloads.

We evaluate Prophet on applications representative of tempo-
ral patterns, which are commonly used in prior studies [7, 56–58].
Across all applications, Prophet outperforms the state-of-the-art
software indirect memory access prefetching schemes, RPG2 [60]
by 34.48% and hardware temporal prefetcher, Triangel [7] by 14.23%.
This performance gain is driven by Prophet’s efficient metadata ta-
ble management, which not only significantly enhances prefetching
coverage but also maintains high prefetching accuracy. Extensive
evaluations demonstrate that Prophet can adapt to varying pro-
gram inputs while introducing negligible profiling, analysis, and
instruction overheads.

2 Background
2.1 Hardware Temporal Prefetching
As shown in Figure 3, the core idea of hardware temporal prefetch-
ing [7, 10, 26, 46, 55–58] is to record previously accessed memory
addresses and their correlations, referred to as metadata. When
recorded addresses are re-accessed, the prefetcher can use the cor-
relation information to predict future memory accesses. To record
metadata of various temporal patterns, hardware temporal prefetch-
ing algorithms require significant data storage. Early temporal
prefetchers [10, 26, 46, 55, 58] utilized DRAM to store the metadata.
However, fetching metadata from DRAM consumes a substantial
amount of memory bandwidth that could otherwise be used for
demand memory accesses. To address this issue, Triage [56, 57]
recently proposed storing metadata in a Markov table that shares
space with LLC, eliminating the need to load metadata from off-
chip memory. However, on-chip storage is precious, so temporal
prefetchers must operate with a limited metadata table size.

To efficiently utilize on-chip memory, Triage [56, 57] and the
state-of-the-art temporal prefetcher, Triangel [7], introduce several
techniques for managing the metadata table:

2.1.1 Insertion policy (training data filtering). Not every demand
request should be used to train the temporal prefetcher and trigger
metadata insertion. To improve the utilization of the metadata table,
temporal prefetchers should focus on handling demand requests
that exhibit solvable temporal patterns. The “solvable” indicates
these patterns repeat in a short enough sequence to fit in the meta-
data table. Ideally, the temporal prefetcher should reject metadata
insertion for demand requests that do not meet this criterion.

The first on-chip temporal prefetching scheme, Triage, does not
implement any insertion (i.e. filtering) policy. The state-of-the-art
temporal prefetcher, Triangel, leverages PatternConf and ReuseConf
to identify and filter out demand requests that do not fall within
the capabilities of temporal prefetchers. The PatternConf checks
whether demand requests from a memory instruction exhibit a
temporal pattern. The ReuseConf further evaluates whether the
temporal pattern can fit the metadata table.

Inefficiency of insertion policy. According to Triangel’s abla-
tion study [7], filtering out demand requests with PatternConf and
ReuseConf only yields marginal overall performance improvements
and even degrades the performance for many applications. This lim-
itation stems from the inaccuracy of these metrics (i.e., PatternConf
and ReuseConf ), as illustrated in Figure 1. As a result, inaccurate
filtering discards metadata that could lead to useful prefetches.

Insertion policy in Prophet. Prophet implements a more ac-
curate insertion policy, filtering out only metadata that is highly
unlikely to originate from temporal patterns. This is accomplished
by identifying PCs whose overall prefetching accuracy falls below
an extremely low threshold, a metric easily obtained during the
profiling stage. Unlike hardware temporal prefetchers, which rely
on short-term data to guide future program execution, the metrics
gathered during profiling (e.g., prefetching accuracy) reflect the
actual behavior of programs, resulting in more precise decisions.

2.1.2 Replacement Policy. When the metadata table capacity is
insufficient to accommodate a new entry, the temporal prefetcher
must decide which existing metadata entry to evict. Triage [57]
observed that only a small fraction of metadata is frequently reused.
As a result, it employs an advanced replacement policy (e.g., Hawk-
eye [27]) to evict metadata entries that are less likely to be accessed
in the future, thereby enhancing the utilization of metadata tables.
However, according to Triangel [7], this replacement policy pro-
vides only marginal performance gains, achieving a speedup of
less than 0.25%. As a result, Triangel replaces Hawkeye in Triage
with a simpler replacement policy—SRRIP [28]—to balance storage
overhead with performance gains.

Inefficiency of replacement policy. (1) The reuse distance of
metadata entries varies significantly, as shown in Figure 1. These
replacement policies solely focus on predicting reuse distances,
making them inefficient for handling such high variance [54]. (2)
They focus solely on increasing hits in metadata table without
considering if metadata hits further result in useful prefetches.

Replacement policy in Prophet. Prophet enhances the re-
placement policy by incorporating prefetching accuracy as an ad-
ditional metric for selecting victim entries in the metadata table.
After filtering out metadata through the insertion policy, Prophet
assigns different priority levels to the remaining metadata based
on the prefetching accuracy. Metadata entries that are less likely

3



to generate useful prefetch requests are assigned lower priority
levels, making them prioritized candidates for replacement. Like
the insertion policy, Prophet obtains prefetching accuracy during
the profiling stage, ensuring precise and effective management.

2.1.3 Resizing. The metadata table shares space with the LLC,
requiring a careful balance in space allocation to avoid compromis-
ing the LLC’s ability to serve regular demand requests. Previous
schemes address this trade-off using methods like Bloom Filters [16]
or Set Dueller [7]. Triage employs a Bloom Filter to calculate the
effective entries in the metadata table, but tracking approximately
200,000 entries incurs a storage overhead exceeding 200 KB. To mit-
igate this, Triangel introduces the Set Dueller, which uses a small
subset of cache sets to model the full-size regular LLC and Markov
table. The Set Dueller works by simulating various partitioning
configurations for the cache and the Markov table, evaluating their
respective hit rates. After a defined window, the Set Dueller selects
the configuration that maximizes the hit rate. This approach re-
duces resizing overhead to approximately 2 KB by tracking only
selected cache sets instead of the entire metadata table.

Inefficiency of resizing. Similar to insertion and replacement
policies, the hit rate between LLC and metadata table sampled by
Triangel’s resizing sometimes fails to accurately predict future meta-
data table requirements. For example, in workloads like omnetpp
and mcf, we observe that Triangel’s resizing often chooses overly
conservative metadata table sizes. Although this improves prefetch-
ing accuracy, it reduces prefetching coverage, ultimately damaging
overall system performance. As a result, Set Dueller provides only
limited performance benefits for Triangel.

Resizing in Prophet. Prophet leverages profile-guided tech-
niques to implement a Bloom-Filters-like method, which helps
maintain precision while avoiding significant storage overhead
introduced by runtime approaches. Specifically, Prophet allocates
storage to the metadata table based on the peak metadata usage ob-
served during the profiling stage. This approach is adopted because
resizing provides only marginal performance gains (Section 5.9),
while incorrect resizing can significantly degrade performance.

2.2 Software Indirect Access Prefetching
Software indirect access prefetching [6, 17, 19, 22, 29, 33, 60] pre-
dicts indirect memory accesses by inserting prefetch instructions
into programs. Indirect memory accesses include prefetch kernel
accesses (e.g., b[i]) and data-dependent memory accesses linked to
that prefetch kernel (e.g., a[b[i]]).

Software indirect access prefetching primarily targets situations
where the prefetch kernel follows a stride pattern, such as when
the accesses for a[b[i]] occur in loops with indices i, i + d, i + 2d,
and so on. These schemes generally follow a three-step process: (1)
identifying the prefetch kernel; (2) calculating the prefetch distance
between the insertion position of software prefetch instructions
and the prefetch kernel; and (3) inserting the software prefetch
instructions into original programs. The most critical aspect is
calculating the prefetching distance, as the position of prefetch
instructions determines the prefetching timeliness.

Based on the methods used to calculate the prefetching distance,
previous works can be categorized into static solutions [17, 19, 22]
and profile-guided optimization (PGO) solutions [6, 29, 33, 60]. In

static solutions, programmers manually determine where to insert
software prefetch instructions. However, due to the complexity
of indirect memory accesses, manual insertion is prone to errors
and may cause performance slowdowns. Profile-guided solutions
overcome the limitations of static approaches. They profile running
programs to automatically identify optimal positions for inserting
prefetch instructions. Experimental results [29, 60] indicate that
these approaches can significantly improve system performance
on certain graph benchmarks, such as CRONO [5].

Inefficiency of software indirect access prefetching. Ex-
isting software indirect access prefetching schemes are effective
only for a narrow subset of indirect memory accesses where the
prefetch kernel follows a regular stride pattern. They fail to address
most irregular patterns effectively, including complex indirect ac-
cesses (e.g., prefetch kernel without stride patterns) and pointer-
chasing accesses. This limitation arises primarily because many
irregular patterns involve long-chain dependencies [8], and com-
puting dependent addresses along the chain significantly affects
the prefetching timeliness.

To validate their limitations, in Section 5.2, we evaluate the state-
of-the-art PGO-based scheme, RPG2 [60], on representative SPEC
CPU workloads commonly used in temporal prefetching studies
[7, 56, 57]. Normalized to a baseline without a temporal prefetcher,
RPG2 achieves only a 0.1% performance improvement, significantly
lower than its gains on graph benchmarks. We observe that this
underperformance is due to the complexity of indirect memory
accesses in the evaluated workloads. For instance, in mcf, the index
of a prefetch kernel is derived through a series of logical operations
and multi-step arithmetic computations.

Solution in Prophet. Prophet is applicable to all types of tem-
poral patterns because it gets rid of software prefetch instruction.
Prophet only guides the execution of hardware structures with hints.
By preserving the core functions of the metadata table, Prophet
maintains the ability to handle all temporal patterns like hardware
temporal prefetchers.

3 Overview
3.1 Architecture Overview
This section provides an overview of Prophet architecture, which
is compatible with existing hardware temporal prefetchers. For
the metadata format, Prophet packs 12 compressed metadata en-
tries inside each 64-byte cache line, with each metadata entry con-
taining a 10-bit tag and a 31-bit target address. For the metadata
table management, Prophet offers efficient, high-performance so-
lutions for frequently executed workloads while maintaining the
original runtime solution (e.g., Triangel) for rarely executed work-
loads. As shown in Figure 4, Prophet consists of three components:
profile-guided insertion policy, profile-guided replacement policy
(along with its associated replacement states), and profile-guided
resizing operations. These profile-guided components rely on two
types of information granularity: application-level and PC-level.
The application-level information is embedded in the Control and
Status Register (CSR). The PC-level information is accompanied
by demand requests, referred to as Hint in Figure 4. Next, we will
overview these components:

4



 

Metadata Table

Runtime

Replacement State

Prophet

Replacement State

Runtime

Insertion Policy

Prophet

Insertion Policy

Insert

Runtime

Resizing

Prophet

Resizing

Demand Request

Update

Update

Victim

Candidates

Replace

CSR

Resize

Hint

Prophet > RuntimeProphet > Runtime

Figure 4: Prophet architecture overview. Prophet coexists with hardware temporal prefetchers by sharing the same metadata
table but leveraging more accurate profile-guided methods for metadata table management.

Prophet Insertion Policy: This policy determines whether to
train the temporal prefetcher with demand requests and insert their
associated metadata into the table by checking the hint information
carried by the demand requests. We disable the Runtime Insertion
Policy when the Prophet Insertion Policy is enabled. Prophet’s
building blocks are activated through CSR manipulation. Specifi-
cally, after profiling the program, a CSR manipulation instruction
is inserted at the beginning of the binary to enable Prophet.

Prophet Replacement Policy: This policy assigns replacement
priorities to demand requests, with the priority information carried
by hints within demand requests. Upon inserting new metadata,
we record the priority information from hints into the Prophet
Replacement State. During the replacement process, the Prophet
Replacement Policy first generates candidate victims for the Run-
time Replacement Policy, which then chooses the final victim.

Prophet Resizing: This policy retrieves the target metadata
table size from the CSR and allocates LLC space to the metadata
table at the beginning of program execution. Similar to the Prophet
Insertion Policy, we disable the Runtime Resizing when Prophet
Resizing is enabled.

Compatibility. In our framework, Prophet coexists with hard-
ware temporal prefetchers by sharing the same metadata table but
leveraging more accurate profile-guided methods for metadata table
management. Additionally, Prophet reuses the runtime solution’s
replacement states, integrating both reuse distance and prefetching
accuracy into its replacement policy for enhanced effectiveness.
Programmers can switch between Prophet and the hardware tem-
poral prefetcher based on application execution frequency and the
trade-off between Prophet’s performance gains and its impact on
DRAM traffic (Section 5.9).

3.2 Process Overview
Figure 5 outlines the process flow of Prophet, comprising three
steps: Profiling, Analysis, and Learning. Next, we overview the
operations involved in each step of Prophet’s process:

Step1: Profiling (Section 4.1). Prophet executes target binaries
with the simplified temporal prefetcher to collect counters through
the user-space PMU interfaces, such as Linux’s perf tools [21]. These
collected counters are then analyzed in the subsequent Analysis
step to derive optimized metadata table management strategies.
The simplified temporal prefetcher operates with a configuration
of Prophet with insertion policy disabled, a fixed metadata table

Binary

Step1: Profiling

Simplified TP

Counter

Test

Collect

Analyze Run

Step2: Analysis Step3: Learning

PC Hint

CSR Hint

New Binary

Merge

Collect

Simplified TP

New Counter

Merged

Counter

Analyze

Inject

Figure 5: Prophet process overview. Step1: Prophet lever-
ages the PMU to gather counters related to the temporal
prefetcher’s performance. Step2: Prophet analyzes the col-
lected counters to generate hints and then injects hints into
the original binaries. Step 3: Prophet samples and learns
counters across different program inputs.

of 1 MB, and a prefetching degree of 1. This configuration ensures
an unbiased evaluation of memory instructions under temporal
prefetching, without incorporating any additional optimizations.
Compared to other profile-guided solutions [29, 32, 35, 36, 54] that
uses trace for profiling, Prophet is more lightweight, introducing
negligible profiling overhead in the Profiling step, as well as analysis
and instruction overhead in the Analysis step (Section 5.4).

Step2: Analysis (Section 4.2). Prophet processes the counters
collected in Step 1 through offline scripts, generating two types
of hints for efficient metadata table management: PC-level and
application-level. PC-level hints are specific to individual memory
instructions and are utilized in Prophet’s insertion policy and re-
placement policy. On the other hand, application-level hints are
applied globally through a CSR manipulation instruction at the pro-
gram’s start and are used in Prophet’s resizing operations. These
hints are injected into the original binary, resulting in an optimized
binary that can execute with Prophet.

Step3: Learning (Section 4.3). At regular intervals, Prophet
samples new counters from varying inputs with the simplified
Prophet and integrates them with previously collected counters.
Then, the subsequent Analysis step will generate new hints based
on the merged counters, making Prophet’s insertion policy, replace-
ment policy, and resizing operations adaptable to all encountered

5



High

Level

Medium

Level

Low

Level

Figure 6: The prefetching accuracy of temporal prefetching
across different memory instructions in omnetpp.

program inputs. Through repeated learning, Prophet innovatively
enables a single optimized binary to achieve optimal performance
across a wide range of program inputs.

4 Design
4.1 Step 1: Profiling
Two key questions arise in this step: What information is necessary
to efficiently guide the management of the metadata table? How can
we acquire this information with current architectures? To answer
the first question, we identify two primary objectives for managing
the metadata table: (1) enhancing its utilization, and (2) reducing
its impact on the LLC. The insertion and replacement policies are
well-suited for achieving the first goal, while resizing operations
are suitable for the second. For enhancing utilization, prefetching
accuracy per memory instruction serves as a critical metric.
As shown in Figure 6, although individual metadata accesses (Fig-
ure 1) exhibit high variability, the temporal prefetching accuracy
of every instruction can be broadly classified into distinct levels.
Since the prefetching accuracy reflects the adaptability of mem-
ory instructions to the temporal prefetcher, lower-level memory
instructions generate fewer memory accesses exhibiting temporal
patterns compared to higher-level memory instructions. Thus, the
insertion policy can filter out metadata entries from lowest-level
memory instructions, while the replacement policy can assign fine-
grained replacement priorities to unfiltered metadata entries based
on their levels. For reducing the metadata table’s impact on the
LLC, the number of allocated entries in the metadata table is a
useful metric. Sampling this metric at the program execution’s end
allows us to determine the maximum metadata table size.

We employ Intel’s Processor Event-Based Sampling (PEBS) [3]
utility to collect PC-level prefetching accuracy. PEBS records the
program context (e.g., PC) when specific events occur. Prior to data
collection, we configure the temporal prefetcher in its simplified
mode (Section 3.2) and disable all other L2 prefetchers. We then
enable PEBS to sample following events:

• MEM_LOAD_RETIRED.L2_Prefetch_Issue counts the num-
ber of issued prefetch requests.

• MEM_LOAD_RETIRED.L2_Prefetch_Useful tracks the num-
ber of prefetches hit by demand requests.

The above two events can be implemented with minor modi-
fications to existing MEM_LOAD_RETIRED.L2_MISS (L2 cache miss)
event, which is already supported on Intel’s Xeon Processor [1].
Each PC’s prefetching accuracy can be computed as:

𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐿2_𝑈𝑠𝑒 𝑓 𝑢𝑙_𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑠
𝐿2_𝐼𝑠𝑠𝑢𝑒𝑑_𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑠

The number of allocated entries in themetadata table, an application-
level metric, can be measured using standard PMU counters. For
instance, we can define two counters: one for the number of meta-
data table insertions and another for replacements. The number of
allocated entries in the metadata table can be calculated as:

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝐸𝑛𝑡𝑟𝑖𝑒𝑠 = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝑠 − 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑠

4.2 Step 2: Analysis
This step analyzes the counters collected in Step 1 to generate
PC-level and application-level hints for the insertion policy, re-
placement policy, and resizing operations. Although both the inser-
tion and replacement policies are guided by prefetching accuracy,
Prophet adopts different strategies. The insertion policy filters out
memory instructions that clearly lack temporal patterns (those
with extremely low prefetching accuracy), while the replacement
policy applies more refined management to the remaining memory
instructions. Our observations indicate that as long as a memory
instruction’s prefetching accuracy is not particularly low, at least
some of its memory accesses exhibit a temporal pattern.

Prophet Insertion Policy uses Equation 1 to decide whether
to use demand requests from PCs to train the temporal prefetcher
and insert the corresponding metadata. We define 𝐸𝐿_𝐴𝐶𝐶 as an
extremely low threshold for the prefetching accuracy, showing that
memory instructions almost exhibit no temporal pattern.

𝐼 (𝑎𝑐𝑐) =
{

1, 𝑎𝑐𝑐 ≥ 𝐸𝐿_𝐴𝐶𝐶
0, 𝑎𝑐𝑐 < 𝐸𝐿_𝐴𝐶𝐶 (1)

The above equation indicates that if a PC’s accuracy under tempo-
ral prefetching falls below 𝐸𝐿_𝐴𝐶𝐶 , Prophet instructs the temporal
prefetcher to discard all demand requests associated with that PC.
This decision is encoded as a one-bit hint injected into the corre-
sponding memory instructions. All demand requests generated by
these instructions will carry the embedded hint. Upon reaching
the prefetcher, a simple logic checks the hint to decide whether to
discard the corresponding requests.

Prophet Replacement Policy assigns a priority level to each
stored metadata entry, with lower levels prioritized for replacement.
Like the Prophet insertion policy, these priority levels are initially
embedded in memory access instructions. When inserting new
metadata entries, Prophet records their associated priority levels
into the Prophet Replacement State.

We apply Equation 2 to determine each memory instruction’s
priority level. The 𝑛 is a parameter controlled by the designer.

𝑅(𝑎𝑐𝑐) =



0, 𝐸𝐿_𝐴𝐶𝐶 ≤ 𝑎𝑐𝑐 < 1
2𝑛

1, 1
2𝑛 ≤ 𝑎𝑐𝑐 < 2

2𝑛
2, 2

2𝑛 ≤ 𝑎𝑐𝑐 < 3
2𝑛

.

.

.
.
.
.

2𝑛 − 1, 2𝑛−1
2𝑛 ≤ 𝑎𝑐𝑐 < 1

(2)

When choosing victim entries in the metadata table, Prophet first
identifies victim candidates with the lowest priority level. Then,

6



 
Input XExecution Flow

Input Y
Binary

Load A

(hint1)

Load A

(hint1)

Load B

(hint2)

Load E

(hint4)

Load C

(hint3)

Load E

(hint5)

Figure 7: Challenges of traditional profile-guided optimiza-
tions across different program inputs.

Prophet applies LRU among these victim candidates to determine
the final replaced entry.

Prophet Resizing estimates the metadata table size based on
the number of allocated metadata entries at the end of program
execution. Assuming the counter value is 𝑆 , we first round it4 to
the nearest power of 2, and then use the Equation 3 to determine
the number of ways allocated for the metadata table in the LLC:

𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑊𝑎𝑦𝑠 = 𝑐𝑒𝑖𝑙

(
𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑖𝑧𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑠𝑒𝑡𝑠 𝑖𝑛 𝐿𝐿𝐶

)
(3)

We completely disable temporal prefetching when the outcome
of the above equation is less than 0.5. Based on the result of Equa-
tion 3, Prophet inserts a CSR manipulation instruction at the pro-
gram’s start to configure the metadata table size.

4.3 Step 3: Learning
In this step, Prophet collects counters from varying program inputs
and integrates them, allowing the optimized binary to deliver opti-
mal performance across diverse program inputs. Figure 7 illustrates
why profile-guided methods are sensitive to different program inputs
and why the hints derived from one input may not be applicable to
other inputs. A single binary may follow different execution paths
depending on the input. For example, with input X, the binarymight
execute memory access instructions A, B, E, while input Y causes
it to execute instructions A, C, E. When applying profile-guided
optimizations to this binary under inputs X and Y respectively,
there are three different scenarios:

• LoadA: Under both inputs X and Y, the binary executes Load
A. Profile-guided optimizations generate identical hints for
both inputs, possibly because they execute the same code
and produce similar profiling metrics. In this case, the hints
generated for Load A under input X remain effective for
Load A under input Y.

• Loads B and C: execute completely different instructions,
resulting in distinct hint information. In this case, any hint
derived from Load B under input X is ineffective for Load C
under input Y.

• Load E: Although both inputs X and Y execute Load E, the
global execution context impacts Load E differently under
each input. Consequently, profile-guided methods may gen-
erate distinct hints. In this case, the hints generated for Load
E under input X are ineffective for Load E under input Y.

Building on the three cases above, we develop a process that
enables our counter-based profile-guided optimizations to adapt
to different program inputs. Prophet maintains the counters from
4we ensure the rounded value does not exceed the maximum number of entries that a
1MB metadata table can accommodate.

step 2 when it progresses to step 3 (e.g., input X). In step 3, we
assume Prophet acquires new counters under previously unseen
inputs (e.g., input Y). Prophet merges them with the previously
maintained counters. For prefetching accuracy per PC, we use the
Equation 4 for merging. The variable 𝑜 indicates old counter value
under input X, while 𝑛 represents new counter value under input
Y. The variable 𝑙 indicates the number of Prophet loops, where
each execution of step 2 counts as one loop, and 𝐿 is a parameter
predefined by the designer.

𝑀𝑒𝑟𝑔𝑒𝑑 =

{
𝑜 + 1

min(𝑙+1,𝐿) × (𝑛 − 𝑜), ∃𝑜 ∈ 𝑋

𝑛, �𝑜 ∈ 𝑋
(4)

For the number of allocated metadata entries at the end of pro-
gram execution, we apply the Equation 5 for merging:

𝑀𝑒𝑟𝑔𝑒𝑑 = max(𝑜, 𝑛) (5)

We assume a binary first encounters input X (steps 1 and 2),
followed by input Y (steps 3 and 2). Next, we will prove that the
optimized binary can ultimately adapt to both the previous and the
newly observed inputs.

• Merged prefetching accuracy for Load A: Since Load A
could receive the same hints under input X and Y, both 𝑜

and 𝑛 fall within the same range as defined by Equation 1
and Equation 2. After applying Equation 4 with 𝑙 = 1, the
merged accuracy remains within the same range, resulting
in the same hint being generated in the next step 2.

• Merged prefetching accuracy for Loads B and C: Prior
to input Y, Prophet lacks counters for Load C (i.e., �𝑜 ∈ 𝑋 ).
Therefore, the merged prefetching accuracy for Load C is set
to 𝑛. In the subsequent Step 2, Prophet injects new hints for
Load C based on 𝑛. As a result, Prophet successfully learns
hints for Load C, which was previously unrecorded.

• Merged prefetching accuracy for Load E: Load E could
receive different hints under input X and Y, causing 𝑜 and 𝑛
to fall into different ranges in Equation 1 or Equation 2. In
this case, Equation 4 adjusts 𝑜 through the offset between 𝑛
and 𝑜 . If Prophet observes higher prefetching accuracy for
Load E under input Y (𝑛 − 𝑜 > 0), it increases the estimated
accuracy, refining its hints accordingly. Conversely, if 𝑛 −
𝑜 < 0, Prophet decreases the estimated accuracy. Over time,
frequently observed counter values dominate merged results.

• Merged allocated entries for the entire program: Prophet
adopts a conservative strategy to accommodate the metadata
table size requirements for all program inputs.

4.4 Hint Information Injection
According to Equation 1 and Equation 2, each memory instruction
requires at most 3-bit hint information. We design two methods for
injecting this 3-bit information into memory access instructions.

Hint buffer. Reference to the approach in Whisper [35], we can
leverage specialized hint instructions to carry hints. When these
hint instructions are executed, Prophet stores the hint informa-
tion and PC tag in a hint buffer near the temporal prefetcher. Hint
instructions are only required to execute once. Tominimize their im-
pact on total dynamic instructions, they can be inserted at the entry

7



astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean
0.0

0.2

0.4

0.6

0.8

1.0

M
ar

ko
v 

Ta
rg

et
s P

er
ce

nt
ag

e T=1 T=2 T=3 T=4 T=5

Figure 8: The percentage of Markov target number (T) in
temporal prefetching.

point of programs using BOLT [48]. Prophet applies its optimiza-
tions to memory instructions whose PC matches an entry in the
hint buffer. To efficiently utilize the hint buffer, Prophet focuses on
memory instructions that contribute the most to cache misses. We
pinpoint these instructions by using MEM_LOAD_RETIRED.L2_MISS
event at step 1. Empirical findings show that a 128-entry hint buffer
(0.19 KB) is sufficient for achieving high performance. Although this
approach introduces additional storage overhead, it is compatible
with all instruction set architectures.

Reserved bits or instruction prefix. We can embed hints into
reserved bits within instructions, allowing hints to be decoded and
combined with memory access instructions. This approach saves ad-
ditional space for storing hints but is constrained by the requirement
that commonly used memory access instructions include reserved
bits, limiting its applicability. For CISC architectures like x86, we
can also add prefixes for memory instructions to carry hints. While
this method does not require reserved bits, it increases the code
footprint and may impact I-cache performance. However, Prophet
focuses on at most 128 memory instructions and introduces only a
3-bit prefix for these instructions. Therefore, Prophet maximally
introduces 3×128

64 = 6 Byte storage overhead to I-cache (usually
with 64 KB). Consequently, the x86 instruction prefix scheme has
an almost negligible impact on I-cache performance.

4.5 Multi-path Victim Buffer
We observe that the same memory address can appear in multiple
distinct temporal patterns. For example, if memory access sequences
(A, B, C) and (A, B, D) exhibit temporal patterns, B has two potential
Markov targets: C and D. As shown in Figure 8, 54.85%, and 20.88%,
9.71% of memory addresses in the SPEC CPU benchmark have 1, 2,
and 3 Markov targets, respectively. However, previous on-chip tem-
poral prefetchers [7, 56, 57] store only one target per Markov entry,
often resulting in inaccurate prefetches and unsolvable demand
accesses. To address this issue, simply storing multiple prefetching
candidates in the metadata table is impractical, as it significantly
increases storage overhead.

In order to efficiently handle the above scenario, Prophet in-
troduces a Multi-path Victim Buffer, allowing it to store Markov
targets that have been evicted from the metadata table. Prophet
manages Multi-path Victim Buffer based on the following rules:

• Insertion. To efficiently utilize the space of Multi-path Vic-
tim Buffer, we store only Markov targets whose priority
levels (Equation 2) are greater than 0 (𝑎𝑐𝑐 > 𝐸𝐿_𝐴𝐶𝐶).

 

LastAddr: B

CurAddr: D

CounterTargetLookup Tag

2C
Tag (B)

NULL 1NULL D

Figure 9: The Multi-path Victim Buffer.
• Replacement. We reuse Prophet Replacement Policy to
maintain frequently used Markov targets. As shown in Fig-
ure 9, we add a counter for eachMarkov target, incrementing
the counter value each time the target is accessed. We set
the priority levels as the maximal5 counter value of Markov
targets (which differs from Equation 2).

• Prefetch. Prefetching with the Reuse Buffer or metadata ta-
ble will also trigger a lookup in the Multi-path Victim Buffer.
Prophet uses the same lookup addresses to search for entries
in the Multi-path Victim Buffer. If Prophet detects different
Markov targets, it prefetches these targets accordingly.

5 Evaluation
5.1 Experimental Setup

Table 1: System Configuration.

Module Configuration
Core 5-wide fetch, 5-wide decode

10-wide issue, 10-wide commit
120-entry IQ, 85/90-entry LQ/SQ
288-entry ROB

Private L1 I/D cache 64 KB each, 4-way, 64B line, 16 MSHRs
PLRU, 2 cycles hit latency
degree-8 stride prefetcher for L1D cache

Private L2 cache 512 KB, 8-way, 64B line, 32 MSHRs
PLRU, mostly_inclusive
9 cycles hit latency

Shared L3 cache 2 MB/core, 16-way, 64B line, 36 MSHRs
CHAR [18], mostly_exclusive
20 cycles hit latency

Memory LPDDR5_5500_1x16_BG_BL32
Single channel, 1 rank per channel

System Configuration.We evaluate Prophet using gem5’s FS
mode [14]. We utilize facilities within gem5 to collect counters
required by Prophet (Section 4.1). Following the rules defined in
Section 4.2, we use an offline script to analyze these counters and
generate hints, which are then injected into binaries via the hint
buffer (Section 4.4). Our simulation environment adopts parame-
ters almost consistent with those utilized in the Triangel [7]. The
primary system configurations are outlined in Table 1. Prophet
and Triangel are trained on the L2 cache access stream, including
prefetch requests generated by L1 stride prefetchers.

Workloads. Following previous temporal prefetchers [7, 56–58]
and software indirect prefetching schemes [6, 29, 33, 60], we evalu-
ate Prophet with irregular SPEC CPU workloads and graphic work-
loads (i.e., CRONO [5]). These workloads exhibit diverse memory
access patterns that are representative of a wide range of bench-
marks. We apply the SimPoint technique [51] to generate check-
points across all workloads. Each SimPoint-sampled checkpoint is
5If we buffer two or more Markov targets per metadata entries

8



astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean

1.0

1.2

1.4

1.6

Pe
rf

or
m

an
ce

 S
pe

ed
up

RPG2 Triangel Prophet

Figure 10: IPC speedup compared to RPG2 and Triangel.

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean

1.0

1.1

1.2

1.3

N
or

m
al

iz
ed

 D
R

A
M

 T
ra

ff
ic

RPG2 Triangel Prophet

Figure 11: DRAM traffic compared to RPG2 and Triangel.

warmed up with 250M instructions, followed by a simulation of the
next 50M instructions. The reported performance metrics for each
benchmark are calculated by aggregating the results from all its
checkpoints with weighted averages.

Baseline.We compare Prophet against the state-of-the-art hard-
ware temporal prefetcher, Triangel [7], and software indirect in-
direct prefetching scheme, RPG2 [60]. For Triangel, we utilize the
open-source implementation provided by its original paper [4], pre-
serving its complete functionality. For RPG2, we follow its original
methodology, first identifying memory instructions that result in
at least 10% cache misses and have prefetch kernels supported by
RPG2. Then, we utilize the hint buffer mechanism (Section 4.4) to
simulate prefetch instruction insertion. Specifically, we record the
PC of identified memory instructions along with an initial prefetch
distance in the hint buffer. Upon encountering recorded PCs, we is-
sue a prefetch request where the target address equals the accessed
memory address + distance. Finally, we tune the distance using
RPG2’s binary search method and record the performance with the
optimal distance as the final report.

5.2 Performance
Figure 10 compares the performance of Prophet with RPG2 and Tri-
angel. The results show that Prophet achieves a 34.58% speedup over
the baseline without temporal prefetchers, compared to 0.1% for
RPG2 and 20.35% for Triangel, outperforming RPG2 by 34.48% and
Triangel by 14.23%. Figure 11 shows that Prophet induces 18.67%
memory traffic (cumulative DRAM reads + DRAM writes), com-
pared to 0.07% for RPG2 and 10.33% for Triangel, indicating that
Prophet’s performance gain over Triangel results in only 5.35%

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

et
ch

in
g 

C
ov

er
ag

e

(a) Coverage

RPG2 Triangel Prophet

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ef

et
ch

in
g 

A
cc

ur
ac

y
(b) Accuracy

RPG2 Triangel Prophet

Figure 12: Prefetching coverage and accuracy6.
additional memory traffic. The workload-specific performance im-
provements are comparable to those reported in the original Tri-
angel paper [7]. However, the overall speedup for Triangel in our
experiments is not identical because we use SimPoint to generate
checkpoints instead of the original method described in [4], which
evenly samples checkpoints throughout the program’s lifecycle,
potentially misrepresenting actual program execution.

Analysis: Prophet versus RPG2. Our experimental results
demonstrate that prior profile-guided indirect prefetching schemes
are ineffective for most temporal patterns. We observe that most
active memory access instructions (i.e., those causing >90% cache
misses) in the evaluated workloads exhibit pointer-chasing patterns
or indirect access patterns where the prefetch kernel does not follow
stride patterns. As described in Section 2.2, prior solutions cannot
handle these cases, leading to limited performance improvements.

Analysis: Prophet versus Triangel. Prophet consistently out-
performs Triangel across most workloads. To validate this, we ana-
lyze the temporal prefetcher’s prefetching coverage and accuracy,
as shown in Figure 12(a) and Figure 12(b). Prophet reduces demand
misses by 42.75%, compared to 28.08% for Triangel. For prefetching
accuracy, Prophet performs comparably to Triangel, indicating that
Prophet’s performance gain comes from more efficient metadata
storage management rather than aggressive prefetching. For exam-
ple, Prophet can simultaneously enhance both prefetching coverage
and accuracy in workloads such as mcf and omnetpp. In the case
of gcc, which is particularly sensitive to cache pollution, Prophet’s
performance gain is slightly lower than Triangel.

5.3 Adaptable: Different Program Inputs
Figure 13 evaluates Prophet’s adaptability by making it iteratively
learn counters from different program inputs within a single ap-
plication. The leftmost bar shows the performance of Triage4 +
6RPG2 does not identify qualified prefetch kernels for mcf, omnetpp, and soplex, so
we set their prefetching accuracy to 0.

9



gcc_166
gcc_200

gcc_cpdecl

gcc_expr

gcc_expr2
gcc_g23

gcc_s04

gcc_scilab

gcc_typeck

Geomean

1.0

1.2

1.4

1.6

Pe
rf

or
m

an
ce

 S
pe

ed
up

Disable +166 +expr +typeck +expr2 Direct

Figure 13: Prophet learns counters from gcc’s inputs.

astar_biglakes
astar_rivers

Geomean
0.95

1.00

1.05

1.10

1.15

Pe
rf

or
m

an
ce

 S
pe

ed
up

Disable +lake +river Direct

soplex_pds
soplex_ref

Geomean

1.0

1.2

1.4
Disable +pds +ref Direct

Figure 14: Prophet’s learning feature can be generalized to
other workloads, such as astar and soplex.

Triangel metadata (Section 5.9), indicating the status where no in-
put is fed to Prophet (shown as “Disable”). Then, we provide the
inputs in the following order: gcc_166, gcc_expr, gcc_typeck, and
gcc_expr2. The first input, gcc_166, is processed in Step 1, while
the subsequent inputs are integrated in Step 3, as shown in Figure 5.
To evaluate Prophet’s “ideal” performance for each input, we di-
rectly profile these inputs and make Prophet learn their respective
counters (learning goal, shown in the rightmost bar as “Direct”).

Figure 13 demonstrates that, through repeated learning, Prophet
enables a single optimized binary to achieve optimal performance
across various program inputs. Initially, when learning only from
gcc_166, Prophet delivers sub-optimal performance on gcc_expr,
gcc_typeck, and gcc_expr2. However, as Prophet incorporates addi-
tional inputs, it progressively achieves optimal performance across
all of them. Notably, even without directly learning from inputs like
gcc_200, Prophet improves its performance due to counters learned
from other inputs, such as gcc_expr, which share similar memory
access patterns. These results indicate that Prophet can achieve
optimal performance across all program inputs with fewer training
iterations than the total number of inputs. Consequently, with only
4 rounds of learning, Prophet achieves near-optimal performance
across all 9 gcc inputs. Furthermore, Figure 14 demonstrates the
learning features in Prophet can be generalized to other workloads.

Prophet versus Other profile-guided solutions. To the best
of our knowledge, existing profile-guided solutions lack an adaptive
mechanism for learning counters or traces from different inputs.
These solutions either deliver sub-optimal performance when en-
countering new inputs or require fresh profiling (e.g., RPG2) but
cannot leverage prior profiling data, making them unable to adapt to
previously encountered inputs. In contrast, Prophet’s adaptability
makes it more practical for deployment in commercial processors.

bc_
40

00
0_

10

bc_
56

38
4_

8

bfs_
10

00
00

_1
6

bfs_
80

00
0_

8

bfs_
90

00
0_

10

dfs_
80

00
00

_8
00

dfs_
90

00
00

_4
00

pag
era

nk_1
00

00
0_

10
0

sss
p_1

00
00

0_
5

Geo
mea

n

1.0

1.2

1.4

1.6

Pe
rf

or
m

an
ce

 S
pe

ed
up

RPG2 Triangel Prophet

Figure 15: IPC speedup on graph workloads.

5.4 Lightweight: Profiling, Analysis, Instruction
Overhead

5.4.1 Profiling Overhead. Prophet’s profiling overhead arises from
collecting counters during Step 1 and Step 3 in Figure 5. Prophet
utilizes the PEBS and standard PMU to gather these counters (Sec-
tion 4.1), so the profiling overhead depends on the implementation
of PEBS and PMU. According to [15], sampling 4 PEBS events in-
curs less than 2% performance overhead, while sampling a single
standard PMU event incurs negligible overhead. Given Prophet
only requires sampling two or three PEBS events (depending on
the ways to inject hints) and one standard PMU event, it incurs less
than 2% profiling overhead. Importantly, not every program execu-
tion requires profiling. Prophet only sample counters at intervals
(Section 3.2), determined by the complexity of programs and input
variety. Empirically, profiling once every 10–100 executions suffices.
Most program executions incur no profiling overhead. Moreover,
we can stop profiling when further performance gains are minimal.

5.4.2 Analysis Overhead. Prophet’s analysis overhead comes from
analyzing the collected counters to generate hints during Step 2 in
Figure 5. Across all evaluated workloads, Prophet’s analysis over-
head is negligible, less than one second. Furthermore, as with pro-
filing, not every program execution incurs analysis overhead; only
those executions in which Prophet is enabled to collect counters
will require analysis, further reducing the overall analysis overhead.

5.4.3 Instruction Overhead. Prophet’s instruction overhead de-
pends on the hint injection methods described in Section 4.4. If
reserved bits within instructions are used to carry hints, Prophet
incurs no additional instruction overhead. In contrast, if specialized
hint instructions are employed, the instruction overhead corre-
sponds to the number of inserted hint instructions. In our setup, we
insert a maximum of 128 hint instructions at the entry point of pro-
grams (Section 4.4). Compared to evaluated SPEC CPU workloads
containing billions of instructions [44], Prophet introduces almost
negligible overhead for overall static and dynamic instructions.

5.5 Generalization: Graphic Workloads
Figure 15 evaluates Prophet’s performance using CRONO [5], a
benchmark suite widely employed in indirect access prefetching
schemes [6, 29, 33, 60]. Experimental results demonstrate that
Prophet provides a performance speedup of 14.85% over the baseline
with a hardware stride prefetcher alone, compared to 9.11% for RPG2

10



astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean
1.0

1.2

1.4

1.6

Pe
rf

or
m

an
ce

 S
pe

ed
up

(a) Sensitivity Study for EL_ACC in Prophet Insertion Policy

EL_ACC=0.05 EL_ACC=0.15 EL_ACC=0.25

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean
1.0

1.2

1.4

1.6

Pe
rf

or
m

an
ce

 S
pe

ed
up

(b) Sensitivity Study for n in Prophet Replacement Policy

n=1 n=2 n=3

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean
1.0

1.2

1.4

1.6

Pe
rf

or
m

an
ce

 S
pe

ed
up

(c) Sensitivity Study for Candidates in Multi-path Victim Buffer

Candidate=1 Candidate=2 Candidate=4

Figure 16: Sensitivity study.
and 8.41% for Triangel. Unlike SPEC CPU benchmarks, CRONO
features more prefetch kernels with stride patterns, aligning with
RPG2’s strengths. As a result, RPG2 delivers greater performance
gains on CRONO. Prophet outperforms RPG2 by handling more
complex temporal patterns beyond RPG2’s scope.

5.6 Sensitivity: Parameters in Prophet
Figure 16 evaluates primary parameters7 in Prophet, such as𝐸𝐿_𝐴𝐶𝐶
for the Prophet Insertion Policy, 𝑛 for the Prophet Replacement
Policy, and the candidates per metadata entry for the Multi-path
Victim Buffer.

For 𝐸𝐿_𝐴𝐶𝐶 , we observe that both too high and too low param-
eter values can negatively impact performance. A low 𝐸𝐿_𝐴𝐶𝐶
causes the metadata table to buffer too many metadata entries that
do not exhibit temporal patterns, while a high 𝐸𝐿_𝐴𝐶𝐶 has the
opposite effect, potentially filtering out valuable entries.

For 𝑛, we observe that introducing additional bits to enable
fine-grained classification of temporal patterns results in improved
performance. However, the performance improvement is limited,
and this modification introduces additional storage overhead for
the Prophet Replacement State. To balance the performance gain
with the storage overhead, we adopt a moderate configuration (n =
2, 2-bit Prophet Replacement State).

For the number of Markov candidates in the Multi-path Victim
Buffer, we observe that having one candidate per metadata entry
7The green bar represents the parameters used in other experiments.

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean

1.0

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

 S
pe

ed
up

RPG2 Triangel Prophet

Figure 17: IPC speedup with varying L1 prefetcher.
achieves the best trade-off between performance gain and storage
overhead. While prefetching more candidates improves prefetch-
ing coverage, it can negatively impact performance. For example,
prefetching additional Markov targets causes performance slow-
down in astar, which is sensitive to cache pollution and memory
bandwidth wastage. Furthermore, as shown in Figure 8, a large pro-
portion of memory addresses tend to have fewer than two Markov
targets, resulting in unnecessary storage overhead when excessive
Markov candidates are reserved in the buffer.

5.7 Sensitivity: Impact of L1 Prefetcher
Figure 17 evaluates Prophet’s performancewith varying L1 prefetch-
ers. As outlined in Table 1, our system configuration aligns with
Triangel’s setup for consistent comparison. However, commercial
processors typically include additional L1 prefetchers since they
can leverage more information (e.g., virtual addresses) and prefetch
across page boundaries. For example, Arm’s Neoverse V2 [2] in-
tegrates stream, stride, and spatial prefetchers in the L1 cache. To
assess Prophet’s performance with a more realistic L1 prefetcher
configuration, we replace the L1 stride prefetcher with IPCP [47],
simulating the setup in Arm’s Neoverse V2.

Figure 17 demonstrates that Prophet outperforms both RPG2

and Triangel, achieving a performance speedup of 29.95% over the
baseline without a temporal prefetcher. In comparison, RPG2 shows
a modest speedup of 0.36%, while Triangel achieves a speedup of
17.51%. Prophet consistently outperforms other schemes across
all evaluated workloads. These results demonstrate that Prophet’s
performance improvement can also be applied to more complex L1
prefetcher configurations.

5.8 Sensitivity: Memory Bandwidth

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean

1.0

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

 S
pe

ed
up

RPG2 Triangel Prophet

Figure 18: IPC speedup with varying DRAM channels.

11



astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean

1.0

1.2

1.4

1.6

1.8

Pe
rf

or
m

an
ce

 S
pe

ed
up

(a) Performance Speedup

Triage4 + Triangel Meta +Repla +Insert +MVB +Resize

astar_biglakes
gcc_166 mcf

omnetpp

soplex_pds-50
sphinx3

xalancbmk

Geomean
1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 D
R

A
M

 T
ra

ff
ic

(b) Normalized DRAM Traffic

Triage4 + Triangel Meta +Repla +Insert +MVB +Resize

Figure 19: Prophet Features Breakdown.

Figure 18 evaluates Prophet, RPG2, and Triangel with an in-
creased number of DRAM channels. Prophet provides a perfor-
mance speedup of 32.27% over the baselinewithout temporal prefetch-
ers, compared to 0.1% for RPG2 and 18.17% for Triangel. The exper-
imental results show that Prophet remains effective across varying
memory bandwidth environments.

5.9 Prophet Features Breakdown
Figure 19 illustrates the contribution of each feature provided by
Prophet. Our ablation study begins with Triage at a prefetch de-
gree of 4 [57], combined with Triangel’s metadata format. Overall,
Prophet’s replacement policy, insertion policy, and Multi-path Vic-
tim Buffer contribute the most to performance speedup. Meanwhile,
Prophet resizing proves most effective for workloads with relatively
small metadata table requirements, such as sphinx3.

Prophet replacement policy is effective across most workloads
by providing fine-grained management: it prioritizes the retention
of metadata entries that achieve higher prefetching accuracy. Work-
loads with large working sets that are sensitive to cache pollution,
such as mcf and omnetpp, particularly benefit from this feature,
achieving performance gains of 14.53% and 9.89%, respectively. Ad-
ditionally, the Prophet replacement policy also proves beneficial in
reducing memory traffic for workloads like astar and omnetpp.

Prophet insertion policy is conservatively designed to avoid
filtering out useful metadata (Section 4.2). Unlike the PatternConf
mechanism in Triangel, Prophet insertion policy avoids significant
performance drops for omnetpp, soplex, and sphinx3. Meanwhile,
it yields a significant performance speedup for mcf (16.72%) and
effectively reduces memory traffic across various workloads.

Multi-path Victim Buffer is developed to predict complex
temporal patterns where a single memory address has multiple
potential Markov targets, providing an opportunity to reduce more

demand misses compared to the original metadata format design.
This feature contributes to performance improvements across mul-
tiple workloads, with soplex showing a notable 13.46% performance
speedup. The Multi-path Victim Buffer only slightly increases mem-
ory bandwidth by 1.95% due to our fine-grained management. Con-
sequently, the Multi-path Victim Buffer enhances the performance
of astar (which is sensitive to constrained memory bandwidth)
rather than negatively impacting it.

Prophet Resizing allocates metadata table space based on ap-
plication requirements, allowing more space for the LLC without
compromising metadata table capabilities. This approach yields
performance benefits, especially for applications with smaller meta-
data needs. For example, sphinx3, which requires less than 1 MB of
metadata table, achieves a 1.5% performance gain.

The flexibility of Prophet. Prophet’s features are designed to
be modular, allowing programmers to selectively enable or disable
specific features based on evaluated performance and memory traf-
fic. This adaptability means that if Prophet’s impact on performance
is unfavorable for certain workloads, programmers can selectively
roll back to a subset of Prophet’s features or revert to the runtime
temporal prefetcher, such as gcc_166.

5.10 Storage Overhead
The storage overhead of Prophet stems from its replacement state,
the hint buffer, and the Multi-path Victim Buffer.

• Prophet replacement stats. Prophet supports a maximum
metadata table of 1 MB, or 196,608 entries, with each entry
requiring a 2-bit replacement state. Consequently, the total
storage overhead for Prophet’s replacement states is 48 KB.

• Hint buffer. If a hint buffer is used for processing hint
information (Section 4.4), Prophet requires extra storage for
this buffer. Our experiments indicate that a 128-entry hint
buffer is sufficient for high performance, adding 0.19 KB.

• Multi-path Victim Buffer requires an additional 43 bits of
storage per metadata entry: 31 bits for the memory address,
10 bits for the tag, and 2 bits for Prophet’s replacement policy
counter. For a buffer with 65,536 entries, this results in a stor-
age overhead of 344 KB. We compare the performance gain
of allocating this additional storage to the LLC, observing
that the Multi-path Victim Buffer achieves an extra 2.21%
performance improvement (4.95% vs. 2.74%).

5.11 Energy Overhead
We evaluate the energy overhead of Prophet with a focus on the
memory hierarchy. We utilize CACTI [43] to model the energy
consumption of the on-chip memory hierarchy under a 22 nm tech-
nology node, and estimate the DRAM access energy overhead to
be 25× that of the LLC access overhead, similar to Triangel [7].
Our experiments show that Prophet only introduces 1.6% energy
overhead for the memory hierarchy compared to Triangel. Given
that Prophet’s performance improvement over Triangel is 14.23%,
the 1.6% energy overhead is relatively negligible.

6 Related Works
In this section, we discuss the most relevant work in hardware
temporal prefetching and profile-guided prefetching.

12



Hardware temporal prefetchers. The most related work to
Prophet is hardware temporal prefetchers [7, 10, 26, 46, 55–58]. Like
these prefetchers, Prophet requires metadata storage to maintain
correlations between memory addresses. However, to the best of
our knowledge, Prophet is the only approach that integrates profile-
guided techniques into metadata storage management. By lever-
aging future knowledge, Prophet significantly optimizes metadata
management while avoiding expensive hardware modifications.
Furthermore, Prophet is fully compatible with existing hardware
temporal prefetchers, allowing chip designers to flexibly choose
between Prophet and hardware prefetchers (Section 5.9).

Profile-guided prefetching. Profile-guided techniques have
been applied to various aspects of prefetching, such as software
prefetching [8, 29, 33, 60], criticality-aware prefetching [40], and
instruction prefetching [34]. Profile-guided software prefetching
schemes identify prefetch kernels and utilize software prefetch in-
structions to predict them. Profile-guided criticality-aware prefetch-
ing focuses on identifying demandmisses that lead to ROB stalls and
extends the instruction scheduler to prioritize critical instructions.
Profile-guided instruction prefetching schemes precisely identify
I-cache misses and combine multiple non-contiguous prefetches
into a single prefetch instruction.

Prophet sets it apart from these existing profile-guided prefetch-
ing schemes by focusing on a distinct aspect of prefetching: tempo-
ral prefetching, an area where prior techniques fall short. Addition-
ally, Prophet introduces innovative methodologies for adaptable,
lightweight, and compatible profile-guided optimizations, making it
more seamless and practical to implement in industrial applications.

7 Conclusion
In this paper, we propose Prophet, an adaptable, lightweight, and
compatible profile-guided solution for temporal prefetching. Prophet
injects hints into programs to guide the temporal prefetcher’s re-
placement policy, insertion policy, and resizing operations, while
dynamically tuning these hints to allow a single optimized binary
to adapt to various program inputs. Our evaluations demonstrate
that Prophet outperforms the state-of-the-art hardware tempo-
ral prefetcher and software indirect memory access prefetching
scheme, with negligible profiling, analysis, and instruction over-
heads. Prophet demonstrates superior performance across a wide
range of benchmarks and configurations.

Acknowledgments
We sincerely thank the anonymous reviewers for their insightful
comments and suggestions. This research was supported by Na-
tional Natural Science Foundation of China (NSFC) 62304192, Hong
Kong Research Grants Council (RGC) YCRG Grant C6003-24Y, and
ACCESS – AI Chip Center for Emerging Smart Systems, sponsored
by the InnoHK initiative of the Innovation and Technology Commis-
sion of the Hong Kong Special Administrative Region Government.
We thank HKUST Fok Ying Tung Research Institute and National
Supercomputing Center in Guangzhou Nansha Sub-center for com-
putational resources.

References
[1] [n. d.]. Intel’s PerfMon Events. https://perfmon-events.intel.com.
[2] 2023. Hot Chips 2023: arm’s neoverse v2. https://hc2023.hotchips.org/assets/

program/conference/day1/CPU1/HC2023.Arm.MagnusBruce.v04.FINAL.pdf.
[3] 2023. Intel® 64 and IA-32 Architectures Software Developer’s Man-

ual. https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-sdm.html.

[4] 2024. Github: gem5-triangel. https://github.com/SamAinsworth/gem5-triangel.
[5] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015. Crono:

A benchmark suite for multithreaded graph algorithms executing on futuristic
multicores. In 2015 IEEE International Symposium on Workload Characterization.
44–55.

[6] Sam Ainsworth and Timothy M Jones. 2017. Software prefetching for indirect
memory accesses. In CGO. 305–317.

[7] Sam Ainsworth and Lev Mukhanov. 2024. Triangel: A High-Performance, Accu-
rate, Timely On-Chip Temporal Prefetcher. In ISCA.

[8] Grant Ayers, Heiner Litz, Christos Kozyrakis, and Parthasarathy Ranganathan.
2020. Classifying memory access patterns for prefetching. In ASPLOS. 513–526.

[9] Jean-Loup Baer and Tien-Fu Chen. 1991. An effective on-chip preloading scheme
to reduce data access penalty. In Proceedings of the 1991 ACM/IEEE conference on
Supercomputing. 176–186.

[10] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2018.
Domino temporal data prefetcher. In HPCA. 131–142.

[11] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Bingo spatial data prefetcher. In HPCA. 399–411.

[12] Mohammad Bakhshalipour, Seyedali Tabaeiaghdaei, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Evaluation of hardware data prefetchers on server
processors. CSUR (2019), 1–29.

[13] Rahul Bera, Anant VNori, OnurMutlu, and Sreenivas Subramoney. 2019. Dspatch:
Dual spatial pattern prefetcher. In MICRO. 531–544.

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news (2011).

[15] Georgios Bitzes and Andrzej Nowak. 2014. The overhead of profiling using PMU
hardware counters. CERN openlab report (2014), 1–16.

[16] Burton H Bloom. 1970. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM (1970), 422–426.

[17] David Callahan, Ken Kennedy, and Allan Porterfield. 1991. Software prefetching.
ACM SIGARCH Computer Architecture News 19, 2 (1991), 40–52.

[18] Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan Bashyam, Sreenivas Subra-
money, and Joseph Nuzman. 2012. Introducing hierarchy-awareness in replace-
ment and bypass algorithms for last-level caches. In PACT. 293–304.

[19] William Y Chen, Scott A Mahlke, Pohua P Chang, and Wen-mei W Hwu. 1991.
Data access microarchitectures for superscalar processors with compiler-assisted
data prefetching. In MICRO. 69–73.

[20] Fredrik Dahlgren and Per Stenstrom. 1995. Effectiveness of hardware-based
stride and sequential prefetching in shared-memory multiprocessors. In HPCA.
68–77.

[21] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress. 1–42.

[22] Edward H Gornish, Elana D Granston, and Alexander V Veidenbaum. 1990.
Compiler-directed data prefetching in multiprocessors with memory hierarchies.
In ICS. 128–142.

[23] Mingjian He, Hua Wang, Ke Zhou, Kaichao Cui, Huabing Yan, Chang Guo, and
Rongfeng He. 2022. DSDP: Dual Stream Data Prefetcher. In PACT. 372–383.

[24] Ibrahim Hur and Calvin Lin. 2006. Memory prefetching using adaptive stream
detection. In MICRO. 397–408.

[25] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access map pattern matching for
data cache prefetch. In ICS. 499–500.

[26] Akanksha Jain and Calvin Lin. 2013. Linearizing irregular memory accesses for
improved correlated prefetching. In MICRO. 247–259.

[27] Akanksha Jain and Calvin Lin. 2016. Back to the future: Leveraging Belady’s
algorithm for improved cache replacement. ACM SIGARCHComputer Architecture
News (2016), 78–89.

[28] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. 2010. High
performance cache replacement using re-reference interval prediction (RRIP).
ACM SIGARCH computer architecture news 38, 3 (2010), 60–71.

[29] Saba Jamilan, Tanvir Ahmed Khan, Grant Ayers, Baris Kasikci, and Heiner Litz.
2022. Apt-get: Profile-guided timely software prefetching. In Eurosys. 747–764.

[30] Shizhi Jiang, Qiusong Yang, and Yiwei Ci. 2022. Merging similar patterns for
hardware prefetching. In MICRO. 1012–1026.

[31] Norman P Jouppi. 1990. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. ACM SIGARCH
Computer Architecture News 18, 2SI (1990), 364–373.

[32] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K Soundarara-
jan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney, Gilles A Pokam,

13



Heiner Litz, and Baris Kasikci. 2021. Twig: Profile-guided btb prefetching for
data center applications. In MICRO. 816–829.

[33] Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and Baris Kasikci.
2021. Dmon: Efficient detection and correction of data locality problems using
selective profiling. In OSDI. 163–181.

[34] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam, Heiner
Litz, and Baris Kasikci. 2020. I-spy: Context-driven conditional instruction
prefetching with coalescing. In MICRO. IEEE, 146–159.

[35] Tanvir Ahmed Khan, Muhammed Ugur, Krishnendra Nathella, Dam Sunwoo,
Heiner Litz, Daniel A Jiménez, and Baris Kasikci. 2022. Whisper: Profile-guided
branch misprediction elimination for data center applications. In MCIRO. 19–34.

[36] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devietti, Gilles
Pokam, Heiner Litz, and Baris Kasikci. 2021. Ripple: Profile-guided instruction
cache replacement for data center applications. In ISCA. 734–747.

[37] JinchunKim, SethH Pugsley, Paul VGratz, ALNarasimha Reddy, ChrisWilkerson,
and Zeshan Chishti. 2016. Path confidence based lookahead prefetching. In
MICRO. 1–12.

[38] Sunil Kim and Alexander V Veidenbaum. 1997. Stride-directed prefetching for
secondary caches. In ICPP. 314–321.

[39] Mengming Li, Qijun Zhang, Yongqing Ren, and Zhiyao Xie. 2025. Integrating
Prefetcher Selection with Dynamic Request Allocation Improves Prefetching
Efficiency. In HPCA.

[40] Heiner Litz, Grant Ayers, and Parthasarathy Ranganathan. 2022. CRISP: critical
slice prefetching. In ASPLOS. 300–313.

[41] Pierre Michaud. 2016. Best-offset hardware prefetching. In HPCA. 469–480.
[42] Sparsh Mittal. 2016. A survey of recent prefetching techniques for processor

caches. CSUR (2016), 1–35.
[43] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.

CACTI 6.0: A tool to model large caches. HP laboratories 27 (2009), 28.
[44] Arun A Nair and Lizy K John. 2008. Simulation points for SPEC CPU 2006. In

ICCD. 397–403.
[45] Agustín Navarro-Torres, Biswabandan Panda, Jesús Alastruey-Benedé, Pablo

Ibáñez, Víctor Viñals-Yúfera, and Alberto Ros. 2022. Berti: an accurate local-delta
data prefetcher. In MICRO. 975–991.

[46] Kyle J Nesbit and James E Smith. 2004. Data cache prefetching using a global
history buffer. In HPCA. 96–96.

[47] Samuel Pakalapati and Biswabandan Panda. 2020. Bouquet of instruction pointers:
Instruction pointer classifier-based spatial hardware prefetching. In ISCA.

[48] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni. 2019. Bolt: a
practical binary optimizer for data centers and beyond. In CGO. 2–14.

[49] Biswabandan Panda. 2023. CLIP: Load Criticality based Data Prefetching for
Bandwidth-constrained Many-core Systems. In MICRO. 714–727.

[50] Seth H Pugsley, Zeshan Chishti, Chris Wilkerson, Peng-fei Chuang, Robert L
Scott, Aamer Jaleel, Shih-Lien Lu, Kingsum Chow, and Rajeev Balasubramonian.
2014. Sandbox prefetching: Safe run-time evaluation of aggressive prefetchers.
In HPCA. 626–637.

[51] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-
matically characterizing large scale program behavior. ACM SIGPLAN Notices
(2002), 45–57.

[52] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,
Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently prefetching complex address
patterns. In MICRO. 141–152.

[53] Stephen Somogyi, Thomas F Wenisch, Anastassia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2006. Spatial memory streaming. ACM SIGARCH Computer
Architecture News (2006), 252–263.

[54] Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri, Akshitha Sriraman,
Niranjan K Soundararajan, Sreenivas Subramoney, Daniel A Jiménez, Heiner
Litz, and Baris Kasikci. 2022. Thermometer: profile-guided btb replacement for
data center applications. In ISCA. 742–756.

[55] Thomas F Wenisch, Michael Ferdman, Anastasia Ailamaki, Babak Falsafi, and
Andreas Moshovos. 2009. Practical off-chip meta-data for temporal memory
streaming. In HPCA. 79–90.

[56] Hao Wu, Krishnendra Nathella, Matthew Pabst, Dam Sunwoo, Akanksha Jain,
and Calvin Lin. 2021. Practical temporal prefetching with compressed on-chip
metadata. IEEE Trans. Comput. (2021), 2858–2871.

[57] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo, Akanksha Jain,
and Calvin Lin. 2019. Temporal prefetching without the off-chip metadata. In
MICRO. 996–1008.

[58] Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin.
2019. Efficient metadata management for irregular data prefetching. In ISCA.
449–461.

[59] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: Implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[60] Yuxuan Zhang, Nathan Sobotka, Soyoon Park, Saba Jamilan, Tanvir Ahmed Khan,
Baris Kasikci, Gilles A Pokam, Heiner Litz, and Joseph Devietti. 2024. RPG2:
Robust Profile-Guided Runtime Prefetch Generation. In ASPLOS. 999–1013.

14


	Abstract
	1 Introduction
	2 Background
	2.1 Hardware Temporal Prefetching
	2.2 Software Indirect Access Prefetching

	3 Overview
	3.1 Architecture Overview
	3.2 Process Overview

	4 Design
	4.1 Step 1: Profiling
	4.2 Step 2: Analysis
	4.3 Step 3: Learning
	4.4 Hint Information Injection
	4.5 Multi-path Victim Buffer

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance
	5.3 Adaptable: Different Program Inputs
	5.4 Lightweight: Profiling, Analysis, Instruction Overhead
	5.5 Generalization: Graphic Workloads
	5.6 Sensitivity: Parameters in Prophet
	5.7 Sensitivity: Impact of L1 Prefetcher
	5.8 Sensitivity: Memory Bandwidth
	5.9 Prophet Features Breakdown
	5.10 Storage Overhead
	5.11 Energy Overhead

	6 Related Works
	7 Conclusion
	Acknowledgments
	References

