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ABSTRACT
Power is a primary design objective in modern VLSI design. Ef-

ficient and accurate power evaluation tools are in high demand

to provide prompt power feedback for early design optimization.

However, it is time-consuming to simulate long, fine-grained (e.g.,

per-cycle) power traces in complex designs with commercial power

simulators. In recent years, machine learning (ML)-based power

models have emerged as a potential solution to make fast predic-

tions on per-cycle power based on signal toggling activities. Despite

their immense potential, these models are currently underutilized

in realistic development scenarios, largely due to the challenges

associated with their development and updates. To overcome the

barriers, this work optimizes the often-neglected power model de-

velopment process by an in-depth examination of power data’s

impact on model accuracy. We propose efficient strategies to mini-

mize the overhead involved in model development. Furthermore,

we enhance model flexibility by enabling the transfer of existing

models to updated design RTLs with negligible additional costs.

CCS CONCEPTS
• Hardware→ Power estimation and optimization.

KEYWORDS
Power modeling and estimation, machine learning

1 INTRODUCTION
In recent years, various data-driven power modeling techniques [9,

14, 15, 19, 20] have been proposed to make fast fine-grained (e.g.,

per-cycle) power predictions. They develop efficient machine learn-

ing (ML) models based on data patterns, which are extracted from

RTL signal-toggling activities in .fsdb or .vcd file formats. Many

power models [14, 19, 20] aim at efficient power simulation at

design time
1
, while some [9, 14, 15] are further implemented on-

chip for runtime power management. By adopting lightweight ML

models, these data-driven power models generally achieve orders-

of-magnitude speedup over commercial tools [3, 13]with ≤ 10%

average error. They can help estimate fine-grained power traces

for large and realistic workloads like SPEC in a very short time.

Despite obvious speed advantages demonstrated in prior works,

ML-based power models are still seldom adopted in realistic IC

development scenarios as an alternative power modeling option.

We attribute this largely to the inflexibility and unclearness in the
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Power Models
∗ Overhead for

Accuracy

Inference Per-Cycle

New Design Speed Power

Design-Specific Models

High High Fast Yes

[9, 14, 15, 20]

General Power Models

Zero Low Fast No

[8, 12, 16]

Commercial Tools:

Zero

Very

Slow Yes

PTPX [13], PowerPro[3] High

AgileDevelop Very

High Fast Yes

AgileTransfer Low

∗
Here we focus on summarizing power simulators/models at

RTL or downstream design stages. The architectural power

models [7, 10, 17, 18] are not included in the table.

Table 1: Summary of Power Estimators. AgileDevelop and
AgileTransfer achieves low development overhead, high ac-
curacy, fast inference speed, and high temporal resolution.

power model development process. To ensure high accuracy, most

ML-based power models [9, 14, 15, 20] are design-specific, which

means a unique ML model has to be trained from scratch for each

specific design. Such design-specificmodels aremuchmore accurate

than recent general ML solutions [8, 12, 16], but require developing

newmodels very frequently. In addition, existing research efforts [9,

14, 15, 19, 20] mostly only focus on designing better power models,

without inspecting the power model development process. They fail

to provide clear guidance to model developers and users. Frequently

asked questions include: “How many labeled data shall I collect?

What workload should be used to collect training data? There is an

update in the design RTL, shall I retrain the power model?”

Challenges: We have observed three unsolved challenges that

widely exist in the development process of ML-based power models:

(1) In a typical development process, designers will keep revis-

ing and optimizing their designs. Such design updates will

easily make the design-specific power model inapplicable.

(2) The development of data-driven power models requires accu-

rate fine-grained power simulation results as training labels.

The generation of detailed ground-truth power labels by

simulating complete workloads is highly time-consuming.

(3) There is no clear guidance on the data requirement during

the model development process. As a result, developers tend

to collect much more power labels than needed.

In summary, almost all existing power modeling works simply

assume a fixed design, largely neglecting the fact that circuit designs

will keep evolving during the design optimization process, requiring

more flexible power models. To make things worse, the limited

understanding of training data’s impact further makes developers

collect as many power labels as possible, and the label generation

process is time-consuming. For example, accurate per-cycle power

1
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method, instead of a power simulator itself.
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simulation [13] on a single academic RISC-V CPU core using one

testbench with around 50 thousand cycles takes much more than 24

hours. The label generation cost is expected to be higher for more

complex industrial designs.

Goal and Solution: In this work, we aim to build power models

efficiently by in-depth inspection of the seldom-explored model de-

velopment process. We propose efficient development strategies to

build flexible power models for two scenarios: 1) When developing

a new power model from scratch, we propose a general strategy

named AgileDevelop to greatly reduce the development cost. Specif-

ically, when generating per-cycle power labels as training data, we

only need less than 1% of representative labeled data instead of

simulating the whole workload. 2) Based on an existing design-

specific power model, when there is an update in design RTL, we

propose to transfer the power model to the updated new design

with negligible overhead. This method is named AgileTransfer.

Rationales: Our proposed solution is based on a key observation:

there is heavy duplication of signal toggling activities between

different clock cycles. For a given workload with 𝑁 cycles, there

exist many clock cycles where the signal toggling activities of all 𝑑

RTL signals are similar. As a result, it is not necessary to simulate

power labels for all 𝑁 cycles. In this work, we demonstrate that

a power model can be developed with negligible accuracy loss by

only using less than 1% representative labeled cycles, which means

less than 1% data generation time.

Contributions: Contributions of this work are summarized below.

• This is a pioneeringwork that investigates the seldom-explored

development process of power models and proposes efficient

power model development strategies
2
.

• For any target design, we propose a new data sampling strat-

egy AgileDevelop, which develops ML-based power models

based on a tiny amount of labeled data. We demonstrate that

the absolute error percentage < 3% based on only 50 cycles

of labeled data, less than 0.1% of the whole workload.

• Based on an existing power model, we propose a new strat-

egy AgileTransfer , which efficiently transfers it to a similar

new design. We demonstrate that the absolute error percent-

age ≈ 2% based on only 1 cycle of labeled data.

• We advance the understanding of the power data’s impact

on the power model. We investigated the effect of sample

coverage in both feature and label spaces, and also reported

the impact of available workloads on the model accuracy.

2 POWER MODEL OVERVIEW
In this section, we give an overview of the development process of

ML-based power models, as shown in Figure 1. The input of power

modelM is the toggling of all of the RTL signals, and the output is

the predicted per-cycle power. To build the model, the dataset is

𝑁 -cycle toggling activity of all RTL signals, denoted as 𝐷 = {𝑐𝑖 }𝑁𝑖=1
,

where each sample 𝑐𝑖 represents the toggling in one cycle. The

sample 𝑐𝑖 ∈ R𝑑 is a binary vector, whose length 𝑑 represents the

total number of signals in the design. Following prior work [14], we

train linear power models using minimax concave penalty (MCP).

In this paper, we target the power model applied at design time,

where a linear power model is sufficiently fast.

As Figure 1 shows, the power model features are per-cycle tog-

gling from RTL simulation, while labels are accurate per-cycle power
from power simulation. Since the RTL simulation and model train-

ing are fast, the power model development speed is dominated by

2
It is open-sourced in https://github.com/hkust-zhiyao/AgileDevelop

Figure 1: The power model development framework.
the power simulation time, which is proportional to the number of

simulated cycles (i.e. labeled data samples). Therefore, to efficiently

build the model, we propose AgileDevelop and AgileTransfer, aim-

ing at minimizing required labeled data while maximizing model

accuracy. We formulate AgileDevelop and AgileTransfer below:
AgileDevelop: Given an unlabeled dataset 𝐷 = {𝑐𝑖 }𝑁𝑖=1

, where

𝑐𝑖 ∈ R𝑑 , with 𝑁 cycles and 𝑑 RTL signals, we design a strategy

𝐴𝑔𝑖𝑙𝑒𝐷𝑒𝑣𝑒𝑙𝑜𝑝 to select some data 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 from dataset 𝐷 to be

labeled and then used for model training. Our goal is to design a

strategy 𝐴𝑔𝑖𝑙𝑒𝐷𝑒𝑣𝑒𝑙𝑜𝑝 to minimize the number of sampled data

|𝑆𝑎𝑚𝑝𝑙𝑒𝑠 | while maximizing the accuracy:
max𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦,min |𝑆𝑎𝑚𝑝𝑙𝑒𝑠 |

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 ← 𝐴𝑔𝑖𝑙𝑒𝐷𝑒𝑣𝑒𝑙𝑜𝑝 (𝐷)

𝐷 = {𝑐𝑖 }𝑁𝑖=1
, 𝑐𝑖 ∈ R𝑑

(1)

AgileTransfer : Given a source design 𝑠 with labeled dataset 𝐷𝑠 =

{𝑐𝑠
𝑖
}𝑁𝑠
𝑖=1

, where 𝑐𝑠
𝑖
∈ R𝑑𝑠 , with 𝑁𝑠 cycles and 𝑑𝑠 RTL signals, and

target design 𝑡 with unlabeled dataset𝐷𝑡 = {𝑐𝑡𝑖 }
𝑁𝑡
𝑖=1

, where 𝑐𝑡
𝑖
∈ R𝑑𝑡 ,

with𝑁𝑡 cycles and𝑑𝑡 RTL signals, we design a strategy𝐴𝑔𝑖𝑙𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

to transfer the model built on labeled source design dataset 𝐷𝑠 to

target design, and then build a model for target design with some

data 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 selected from dataset 𝐷𝑡 to be labeled. Our goal is

to design a strategy 𝐴𝑔𝑖𝑙𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 to minimize the number of

sampled data |𝑆𝑎𝑚𝑝𝑙𝑒𝑠 | while maximizing the accuracy:
max𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦,min |𝑆𝑎𝑚𝑝𝑙𝑒𝑠 |

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 ← 𝐴𝑔𝑖𝑙𝑒𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟 (𝐷𝑠 , 𝐷𝑡 )

𝐷𝑠 = {𝑐𝑠𝑖 }
𝑁𝑠
𝑖=1
, 𝑐𝑠𝑖 ∈ R

𝑑𝑠 , 𝐷𝑡 = {𝑐𝑡𝑖 }
𝑁𝑡
𝑖=1
, 𝑐𝑡𝑖 ∈ R

𝑑𝑡

(2)

3 MODEL DEVELOPMENT FROM SCRATCH
In this section, we introduce the AgileDevelop method, which out-

lines how to select cycles within a single design, as shown in the

green part in Figure 1. Our approach is primarily based on the

analysis of signals and cycles, and it employs selection strategies to

reduce labeling overhead. Each cycle is viewed as an independent

sample in the dataset. The AgileDevelop is included in two parts, Ba-

sic Sampling Method in Session 3.1 and Coverage-based Sampling

in Session 3.2.

3.1 Basic Sampling Method
Given that samples within the training dataset exhibit significant

similarities, without labels, we employ unsupervised techniques to

identify the most representative samples. The basic method first

performs dimension reduction for 𝑑 RTL signals as model features,

followed by clustering-based sampling among all 𝑁 -cycle samples.

Due to the large number of RTL signals 𝑑 , the resulting fea-

ture space becomes highly dimensional. The curse of dimension

poses challenges for evaluating distance or similarity between data

samples. Therefore, unsupervised dimension reduction becomes es-

sential, as shown in the line 5 in the Algorithm 1. This unsupervised
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Algorithm 1 AgileDevelop: Develop Power Model from Scratch

Input: The unlabeled dataset 𝐷 = {𝑐𝑖 }𝑁𝑖=1
, where 𝑐𝑖 ∈ R𝑑 , with 𝑁 cycles

and 𝑑 RTL signals. The target number of cycles to be sampled 𝐾 .

Hyperparameters: the dimension after reduction 𝑑 ′ , the number of initial

samples 𝑁𝐼 .

Output: The power modelM.

/* Line 1-4 are algorithms of using clustering for selection*/
1: function InitSelect(𝐷 ′, 𝑁𝐼 )
2: Clustering 𝐷 ′ into 𝑁𝐼 clusters
3: Select the sample closest to the center of each cluster as 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

4: return 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
/* Line 5 performs dimension reduction */

5: Reduce dimension of 𝐷 to 𝐷 ′ = {𝑐′
𝑖
}𝑁
𝑖=1

, where 𝑐′
𝑖
∈ R𝑑 ′

/* Line 6 generates the initial selection, and selected samples will be labeled,
denoting the label of 𝑖 as 𝑙𝑖 ∈ R */

6: 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 𝐼𝑛𝑖𝑡𝑆𝑒𝑙𝑒𝑐𝑡 (𝐷 ′, 𝑁𝐼 )
/* Line 7-11 are algorithm of coverage-based active learning */

7: for 𝑖𝑡𝑒𝑟 = 𝑁𝐼 to 𝐾 do
8: Build modelM using 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

9: Make Prediction {𝑝𝑖 }, where 𝑖 ∈ 𝐷 ′ − 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 usingM
/* (1) Line 10 calculates the distance between each unlabeled data and
each labeled data, and then selects the unlabeled data with maximum
distance to its closest labeled data.
(2) We define the distance between any two samples using the
multiplication of their features distance and label distance. */

10: 𝑖𝑏𝑒𝑠𝑡 = arg max

𝑖∈𝐷′−𝑆𝑎𝑚𝑝𝑙𝑒𝑠
min

𝑘∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝐷𝑖𝑠𝑡 (𝑐′

𝑖
, 𝑐′
𝑘
) ∗ |𝑝𝑖 − 𝑙𝑘 |

11: Add 𝑖𝑏𝑒𝑠𝑡 into 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

/* line 12 trains the model using selected samples */
12: Build modelM using 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

method utilizes the entire training set 𝐷 for efficient dimension

reduction, in the absence of labeled data.

Then we propose a clustering-based sample selection, shown

as the 𝐼𝑛𝑖𝑡𝑆𝑒𝑙𝑒𝑐𝑡 function in the line 6 in Algorithm 1. We cluster

the training dataset into 𝑁𝐼 clusters and choose the sample closest

to the cluster center as the representative sample for each cluster.

This method ensures that we obtain a diverse and representative

subset of samples while minimizing redundancy.

3.2 Coverage-based Sampling
To further improve the effect of AgileDevelop, we propose an inno-

vative coverage-based sampling method, considering both feature

and label spaces. The underlying idea is to sample a labeled dataset

that achieves comprehensive coverage of both signal feature space

and the power label space. With good coverage of the two spaces,

our sampled data can better represent the full dataset and yield

similar model accuracy after training.

We formulate this sampling process as aK-Center problem in both

feature and label space, similar to the set cover problem [11]. Here

we give a general formulation. Given 𝑁 points 𝑋 = {𝑥𝑖 }𝑁𝑖=1
in a

space and a positive integer 𝐾 , we aim to select 𝐾 points 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 =

{𝑥𝑘 }𝐾𝑘=1
as centers. The objective is to minimize 𝑅, the maximum

distance from each remaining point 𝑥𝑖 to its nearest center 𝑥𝑘
(𝑘 ∈ 𝑆𝑎𝑚𝑝𝑙𝑒𝑠). The objective can be formulated as min

𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑅,

where 𝑅 = max

𝑖∈𝑋−𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝑟𝑖 , 𝑟𝑖 = min

𝑘∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝐷𝑖𝑠𝑡 (𝑥𝑖 , 𝑥𝑘 ) (3)

𝐷𝑖𝑠𝑡 (𝑥𝑖 , 𝑥𝑘 ) is distance between two points 𝑥𝑖 and 𝑥𝑘 .

In our problem, to address both feature space and label space

simultaneously, we define the distance between two data samples

as the product of the distance in feature and label space:

𝐷𝑖𝑠𝑡 (𝑥𝑖 , 𝑥𝑘 ) = 𝐷𝑖𝑠𝑡 (𝑐𝑖 , 𝑐𝑘 ) ∗ |𝑙𝑖 − 𝑙𝑘 | (4)

Figure 2: The greedy solution to solve the K-Center problem.
For each iteration, the point that “stuck” the largest circle is
selected. The ultimate distance is the product of distances in
both feature and label spaces.

The K-Center problem can be solved using various methods, and

we propose to adopt an efficient greedy algorithm, as illustrated

in Figure 2. The detail is shown as line 7-11 in Algorithm 1. Each

iteration selects one sample. First, we calculate the distance between

each unlabeled data 𝑖 ∈ 𝐷′−𝑆𝑎𝑚𝑝𝑙𝑒𝑠 and labeled data 𝑘 ∈ 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 .
Then we select the unlabeled data 𝑖𝑏𝑒𝑠𝑡 with maximum distance to

its closest labeled data:

𝑖𝑏𝑒𝑠𝑡 = arg max

𝑖∈𝐷 ′−𝑆𝑎𝑚𝑝𝑙𝑒𝑠
min

𝑘∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝐷𝑖𝑠𝑡 (𝑐′𝑖 , 𝑐

′
𝑘
) ∗ |𝑙𝑖 − 𝑙𝑘 | (5)

As illustrated in Figure 2, the point that “stuck” the largest circle

will be selected in each iteration.

However, it should be noted that for the unlabeled data, labels

are not available. In such cases, we substitute their labels with

predictions {𝑝𝑖 } generated by a temporary modelM trained with

the currently selected samples, as illustrated in line 8-9, thus the

Equation 5 should be transformed into:

𝑖𝑏𝑒𝑠𝑡 = arg max

𝑖∈𝐷 ′−𝑆𝑎𝑚𝑝𝑙𝑒𝑠
min

𝑘∈𝑆𝑎𝑚𝑝𝑙𝑒𝑠
𝐷𝑖𝑠𝑡 (𝑐′𝑖 , 𝑐

′
𝑘
) ∗ |𝑝𝑖 − 𝑙𝑘 | (6)

Because we use the prediction 𝑝𝑖 to ensure the effectiveness of the

algorithm, a set of initial warm-up samples is selected before the it-

eration process. This initial selection is carried out using themethod

described in Section 3.1, as indicated in line 6 of Algorithm 1.

In addition, due to the large number of initial samples 𝑁 , directly

applying coverage-based sampling can be time-consuming. In prac-

tice, we employ a preliminary clustering step to select an initial

diverse pool of samples, named candidate pool. The coverage-based

selection is performed on the candidate pool instead of all 𝑁 cycles.

This approximation greatly enhances the efficiency.

4 TRANSFERRING MODEL TO NEW DESIGNS
Most accurate ML-based power models are design-specific, which

means each power model is tailored to a specific design. In each

design iteration, when there is an update in the target design RTL,

there arises a recurrent need to reconstruct the power model, lead-

ing to significant model development overhead. However, when

updating a design, most design components usually remain un-

changed, and only a small part is updated. Based on this key obser-

vation, this section aims to reduce the model updating overhead.

To reduce the cost of model updating, we propose a novel model

transfer methodology. It leverages the inherent similarities among

different versions of the design. After gathering sufficient data from

a known design, we construct a power model on this design named

source model. Remarkably, for a target design, only a minimal

amount of labeled data is needed to train the target model, based

on the knowledge transferred from the source model.

To capture the similarity between the source design and the

target design, we utilize common signals between these two designs.

The specific algorithm is shown in the Algorithm 2. The unlabeled

3



Algorithm 2 AgileTransfer : Transferring Model to New Designs

Input: The unlabeled target design dataset 𝐷𝑡 = {𝑐𝑡𝑖 }
𝑁𝑡
𝑖=1

, where 𝑐𝑡
𝑖
∈ R𝑑𝑡 ,

with 𝑁𝑡 cycles and 𝑑𝑡 RTL signals. The labeled source design dataset

𝐷𝑠 = {𝑐𝑠𝑖 }
𝑁𝑠
𝑖=1

, where 𝑐𝑠
𝑖
∈ R𝑑𝑠 , with 𝑁𝑠 cycles and 𝑑𝑠 RTL signals, the

target number of cycles to be sampled 𝐾

Output: The power modelM of target design.

/* 1 line 1-3 build a transferable model for source design */
1: Get the C common signals of target and source design

2: Select the common signals from 𝐷𝑡 and 𝐷𝑠 , denoted as 𝐷𝑐𝑡 = {𝑐𝑡C
𝑖
}𝑁𝑡
𝑖=1

and 𝐷𝑐𝑠 = {𝑐𝑠C
𝑖
}𝑁𝑠
𝑖=1

, where 𝑐𝑡C
𝑖
, 𝑐𝑠C
𝑖
∈ RC

3: Build modelM𝑠𝑟𝑐 using 𝐷
𝑐
𝑠

/* 2 line 4 generates pseudo label for target design */
4: Generate initial pseudo label 𝐿𝐼 = {𝑙 𝐼𝑖 }

𝑁𝑡
𝑖=1

by applyingM𝑠𝑟𝑐 on 𝐷
𝑐
𝑡

/* 3 line 5-11 calibrate pseudo label for target design */
5: Get 𝑆𝑎𝑚𝑝𝑙𝑒𝑠 by AgileDevelop, with label denoted as 𝐿𝑔 = {𝑙𝑔

𝑖
}𝐾
𝑖=1

6: Group 𝐷𝑡 to the nearest sample in the 𝐾 labeled data, as {𝐺𝑖 }𝐾𝑖=1

7: for Each group𝐺𝑖 do
8: Compute the discrepancy 𝑘𝑖 = 𝑙

𝑔

𝑖
/𝑙 𝐼
𝑖

9: for Each sample 𝑗 in𝐺𝑖 do
10: Calibrate the pseudo label 𝑙𝑃

𝑗
= 𝑘𝑖 ∗ 𝑙 𝐼𝑗

/* line 12 trains the model using calibrated pseudo label */
11: Build modelM using 𝐷𝑡 and 𝐿𝑃 = {𝑙𝑃

𝑖
}𝑁𝑡
𝑖=1

target design dataset is 𝐷𝑡 = {𝑐𝑡
𝑖
}𝑁𝑡
𝑖=1

, where 𝑐𝑡
𝑖
∈ R𝑑𝑡 , with 𝑁𝑡

cycles and 𝑑𝑡 RTL signals. The labeled known source design dataset

is 𝐷𝑠 = {𝑐𝑠𝑖 }
𝑁𝑠
𝑖=1

, where 𝑐𝑠
𝑖
∈ R𝑑𝑠 , with 𝑁𝑠 cycles and 𝑑𝑠 RTL signals.

There are three steps in AgileTransfer :
In step 1 , C common signals are identified based on their sig-

nal name and hierarchical location, and two datasets with only C
common signals are generated: 𝐷𝑐𝑡 = {𝑐𝑡C

𝑖
}𝑁𝑡
𝑖=1

and 𝐷𝑐𝑠 = {𝑐𝑠C
𝑖
}𝑁𝑠
𝑖=1

,

where both 𝑐𝑡C
𝑖
, 𝑐𝑠C
𝑖
∈ RC , as shown in line 2. Utilizing labeled

dataset 𝐷𝑐𝑠 from the source design, we construct a high-quality

model, labeled asM𝑠𝑟𝑐 , as shown in line 3. The idea is, considering

the substantial correlation among signals in a design, as studied in

pruning-based power models [14], even a subset of signals can be

sufficient for accurate power model construction.

In step 2 , the source modelM𝑠𝑟𝑐 is directly applied to predict

target design 𝐷𝑐𝑡 , generating power predictions for each cycle, used

as initial pseudo labels 𝐿𝐼 = {𝑙 𝐼𝑖 }
𝑁𝑡
𝑖=1

, as shown in line 4.

In step 3 , we propose to utilize the aforementioned AgileDevelop
method to select specific samples for the target design. Power labels

of selected samples are obtained from accurate simulations, denoted

as 𝐿𝑔 = {𝑙𝑔𝑖 }
𝐾
𝑖=1

, as shown in line 5. Based on these sampled labels,

we adjust all pseudo labels 𝐿𝐼 through calibration. Specifically, for

each unlabeled data in 𝐷𝑡 , we search for the nearest labeled data 𝑖 .

All of the data in 𝐷𝑡 whose nearest labeled data is 𝑖 are grouped as

𝐺𝑖 , so grouping is denoted as {𝐺𝑖 }𝐾𝑖=1
, as shown in line 6. For each

𝐺𝑖 , we query for the pseudo label 𝑙 𝐼
𝑖
and ground truth power 𝑙

𝑔

𝑖
for

the only labeled data 𝑖 , then the discrepancy can be computed as

𝑘𝑖 = 𝑙
𝑔

𝑖
/𝑙 𝐼
𝑖
, as shown in line 8. Then for each data 𝑗 in this group

{𝐺𝑖 }, the pseudo label is calibrated by multiplying it by discrepancy

𝑘𝑖 , as shown in line 10, the calibrated pseudo label is denoted as 𝑙𝑃
𝑗
.

Finally, all samples with calibrated pseudo labels 𝐿𝑃 = {𝑙𝑃
𝑖
}𝑁𝑡
𝑖=1

are

used to train the power model for target design.

5 EXPERIMENTAL RESULTS
5.1 Experiment Setup
We generated a dataset by collecting RTL code and conducting RTL

simulations using Chipyard v1.8.1 [6]. We implement three differ-

ent RISC-V BOOM CPU configurations, namely 𝐶𝐴 , 𝐶𝐵 , and 𝐶𝐶 , as

Figure 3: Per-cycle power accuracy𝑀𝐴𝑃𝐸 and 𝑅 vs. number
of sampled cycles. Applying the methods Random, K-Means,
and AgileDevelop to 𝐶𝐴 and 𝐶𝐵 with training data sizes of
50-800, respectively. Add an additional training data size of 1
to AgileTransfer(𝐶𝐵 → 𝐶𝐴 in (a)(b) and 𝐶𝐴 → 𝐶𝐵 in (c)(d)).
shown in Table 2. Several common parameters are FetchWidth=4,

DTLBEntry=8, DCacheMSHR=2, and ICacheFetchBytes=2. We se-

lected eight different workloads from the RISCV-tests suite [5] to

enhance the diversity of the data. These workloads cover a variety

of computing tasks, including dhrystone, median, multiply, qsort,

rsort, towers, spmv, and vvadd. All evaluation results are obtained

by using a four-fold cross-validation method. For each fold, we use

six workloads for training and the other two workloads for testing.

The total number of cycles for these workloads is approximately

130k, and the baseline model uses all of the cycles.

RTL simulation onworkloads is based on Synopsys VCS
®
[4]. The

logic synthesis and ground-truth power simulation were executed

at a clock frequency of 1GHz using Synopsys Design Compiler
®
[2]

and PrimePower [13], respectively. In our experiments, we utilized

the TSMC 40nm standard cell library [1], along with the correspond-

ing Memory Compiler. By leveraging these industry-standard tools,

we ensured accurate and reliable simulations, enabling us to evalu-

ate the power characteristics of the designs.

In Section 3.1, we discuss the dimensionality reduction technique

to address the curse of high dimensionality in the dataset. In our

experiments, we employ principal component analysis (PCA) for

dimensionality reduction. The clustering is performed using the

K-means algorithm.

To comprehensively evaluate our methods, we conduct experi-

ments on different configurations and different numbers of samples

to demonstrate the advantage of our method. For the AgileDevelop,
we conduct our experiment on configuration 𝐶𝐴 and 𝐶𝐵 respec-

tively, under 50, 100, 200, 400, and 800 samples. For the AgileTrans-
fer , we utilize three designs 𝐶𝐴 , 𝐶𝐵 , and 𝐶𝐶 , constructing three

pairs of transferring scenarios, i.e. 𝐶𝐴 ⇆ 𝐶𝐵 , 𝐶𝐵 ⇆ 𝐶𝐶 , 𝐶𝐴 ⇆ 𝐶𝐶 ,

and conduct them under 1, 50, 100, 200, 400, 800 samples.

We evaluate the accuracy with mean absolute percentage er-

ror (𝑀𝐴𝑃𝐸) and correlation coefficient (𝑅) between label 𝑌𝑖 and

prediction 𝑌𝑖 .

𝑀𝐴𝑃𝐸 = 1

𝑛

∑𝑛
𝑖=1

���𝑌𝑖−𝑌𝑖𝑌𝑖

��� × 100% , 𝑅 =

∑𝑛
𝑖=1
(𝑌𝑖− ¯

𝑌 ) (𝑌𝑖−𝑌 )√︃∑𝑛
𝑖=1
(𝑌𝑖− ¯

𝑌 )2 ∑𝑛𝑖=1
(𝑌𝑖−𝑌 )2

For strategies involving randomness, such as random sampling,

we performed multiple tests and calculated the average results to

mitigate the impact of randomness. Employing this cross-validation
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Configuration

DecodeWidth FetchBufferEntry RobEntry IntPhyRegister FpPhyRegister

LDQ/

BranchCount IntIssueWidth

DCache/

Parameter STQEntry ICacheWay

𝐶𝐴 1 5 16 36 36 4 6 1 2

𝐶𝐵 2 16 64 80 64 16 12 2 4

𝐶𝐶 1 8 32 53 48 8 8 1 4

Table 2: The configurations we used in the experiment.

Figure 4: Comparing method AgileDevelop and AgileTransfer to Label (exact power value) and Baseline on all workloads of 𝐶𝐴 .
Baseline utilizes a training dataset of 103.3k cycles, while AgileDevelop and AgileTransfer only sampled 50 cycles as training
dataset (0.048% of the size used by Baseline)

technique and averaging the results over multiple samples, which

provides a robust and reliable measure of its accuracy ensures a

fair evaluation of the performance of our power model.

5.2 Power Prediction Result
For 𝐶𝐴 and 𝐶𝐵 , the accuracy of baseline models is 𝑅 = 0.97,𝑀𝐴𝑃𝐸

= 0.59% and 𝑅 = 0.97, 𝑀𝐴𝑃𝐸 = 0.98%, respectively. These models

trained with complete datasets serve as our baseline for comparison

in subsequent analysis.

We start by comparing our methods, AgileDevelop and Agile-
Transfer, along with K-means and Random selections. On 𝐶𝐴 , as

depicted in Figure 3(a)(b), that the AgileDevelop achieves R = 0.8

and MAPE = 2.26% with 50 sampled cycles, while K-means and

Random sampling do not work at all with the same condition. As

the number of samples increases to 400, R of AgileDevelop is only

0.01 lower than the Baseline, andMAPE is 1.97%, while at this point,

R of K-means and Random are 0.85 and 0.89, respectively. What’s

more, AgileTransfer achieves amazing results. It reaches R = 0.9

and MAPE = 1.87% with only one sampled cycle, and when sam-

pling 50 cycles, R rises to 0.95 andMAPE drops to 1.12%. It suggests

that in comparison to the Baseline, we require only 0.048% of the

training data to achieve nearly equivalent results. In Figure 3(c)(d),

the experiment performed on 𝐶𝐵 maintains the same trend as 𝐶𝐴 .

Particularly noteworthy is the performance of our AgileDevelop
and AgileTransfer methods, which achieve comparable results to

the Random and K-means methods with just 1-50 cycles of training

data. This performance level is equivalent to what the other meth-

ods achieve with 400-800 cycles of training data. Both our methods

achieve equally impressive results on 𝐶𝐴 and 𝐶𝐵 , demonstrating

its universality and potential for extension to other designs.

AgileDevelop and AgileTransfer reduce the model development

overhead significantly. Specifically, for the baseline, the power sim-

ulation to get labels for all workloads with about 100k cycles takes

about 3 days. Compared to the power simulation time, the time

consumption of RTL simulation and model building is negligible.

With AgileDevelop, to build an effective power model, we just

need to conduct power simulation for 100 cycles, so we can reduce

Figure 5: A more obvious comparison of per-cycle power
among methods AgileDevelop, AgileTransfer and Label. Zoom
in the timing window of 𝐶𝐴 with index = [70000:70050].

Figure 6: A comparison of the average power over a time
window with 8 cycles among methods AgileDevelop, Agile-
Transfer, and Label. Zoom in the timing window of 𝐶𝐴 with
index = [70000:70050].
the power simulation time to roughly only 10 minutes. Please notice

that this measurement is performed on a single-core academic CPU

design. In more complex industrial designs with larger and more

diverse workloads, the unprecedented efficiency contributed by

AgileDevelop and AgileTransfer will be more obvious and necessary.

For example, prior works [14] reported a much slower power label

generation speed for industrial designs.

Figure 4 visualizes predicted results (Baseline, AgileDevelop, and
AgileTransfer) and actual power values (Label). Compared with

Baseline, the overall power trace shape of AgileDevelop and Agile-
Transfer are very similar, with a reduction in 𝑅 of only 0.17 and
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Metrics R ↑ MAPE(%) ↓

Scenario

Num

1 50 100 400 800 1 50 100 400 800

𝐶𝐴 → 𝐶𝐵 0.83 0.91 0.91 0.94 0.95 2.53 2.07 2.00 1.61 1.43

𝐶𝐵 → 𝐶𝐴 0.90 0.95 0.95 0.96 0.96 1.87 1.12 1.10 0.98 0.90

𝐶𝐴 → 𝐶𝐶 0.85 0.91 0.91 0.94 0.96 2.01 1.69 1.65 1.41 1.17

𝐶𝐶 → 𝐶𝐴 0.86 0.93 0.94 0.96 0.96 1.79 1.28 1.18 1.00 0.92

𝐶𝐵 → 𝐶𝐶 0.93 0.93 0.94 0.95 0.96 1.70 1.54 1.50 1.30 1.14

𝐶𝐶 → 𝐶𝐵 0.87 0.94 0.94 0.94 0.95 2.18 1.58 1.54 1.50 1.36

Average 0.87 0.93 0.93 0.95 0.95 2.01 1.55 1.50 1.30 1.15

Table 3: Metrics for AgileTransfer. We construct six trans-
ferring scenarios, i.e. 𝐶𝐴 ⇆ 𝐶𝐵 , 𝐶𝐴 ⇆ 𝐶𝐶 , and 𝐶𝐵 ⇆ 𝐶𝐶 , and
conduct them under 1, 50, 100, 200, 400, 800 samples.

0.02, and a decrease in𝑀𝐴𝑃𝐸 of 1.67% and 0.53%, respectively. Base-
line utilizes a training dataset of 103.3k cycles, while AgileDevelop
and AgileTransfer only sampled 50 cycles (0.048% of 103.3k), which

demonstrates the effectiveness of our methods.

For better visibility, we present a rigorous comparison by zoom-

ing in per-cycle waveforms in Figure 5. In this experiment, each cy-

cle is only 1 ns, and the waveform of AgileDevelop roughly matches

the Label, while AgileTransfer exhibits an even better alignment.

In Figure 6, we slightly relax the experimental conditions and es-

timate the average power over a time window with 8 cycles. It

can be observed that both our methods exhibit a more pronounced

consistency with the waveform of the Label.
Table 3 lists all six transfer scenarios, including 𝐶𝐴 → 𝐶𝐵 and

𝐶𝐵 → 𝐶𝐴 , which are represented by green lines in Figure 3. The

other four scenarios also conform to the same trend. When only

utilizing one sample, 𝑅 and 𝑀𝐴𝑃𝐸 can reach 0.87 and 2.01% on

average. And as the number of samples gradually increases, the

accuracy quickly approaches the baseline.

6 DISCUSSION
6.1 Coverage in Both Spaces Matters
To fully evaluate the advantage of AgileDevelop, we compare it with

two variants when just sampling 50 data on configuration 𝐶𝐴 and

𝐶𝐵 for ablation study: (1) BasicSampling: the basic sampling method

described in Session 3.1. This comparison evaluates the advantage of

coverage-based sampling over basic clustering-based sampling. (2)

Coverage−−: weak version of Coverage-based sampling, only using

the feature coverage 𝐷𝑖𝑠𝑡 (𝑐′
𝑖
, 𝑐′
𝑘
), without label coverage |𝑝𝑖 − 𝑙𝑘 |.

Table 4 clearly shows that AgileDevelop outperforms BasicSam-

pling in terms of both 𝑅 and𝑀𝐴𝑃𝐸 for 𝐶𝐴 and 𝐶𝐵 . This result pro-

vides strong support for the effectiveness of optimizing coverage

rather than relying solely on clustering. Additionally, AgileDevelop
performs better than Coverage−−, indicating that considering only
feature coverage is inadequate and the significance of label coverage

should not be ignored.

6.2 Dataset Size and Diversity Matter
We also evaluate how the amount and diversity of initial unlabeled

samples (i.e., size of sampling space 𝑁 ) affect the model accuracy.

We try to only use one workload to generate the initial dataset 𝐷 .

Results are shown in Table 5. When using one workload as the

Metrics R ↑ MAPE(%) ↓
Configuration 𝐶𝐴 𝐶𝐵 𝐶𝐴 𝐶𝐵

BasicSampling 0.27 0.67 5.77 3.54

Coverage−− 0.72 0.72 2.60 3.29

AgileDevelop 0.80 0.80 2.26 2.75

Table 4: An ablation study comparing AgileDevelop with two
extra variants (BasicSampling and Coverage−−) when sam-
pling 50 data on configuration 𝐶𝐴 and 𝐶𝐵 .

Metrics R ↑ MAPE(%) ↓
Num of sampled cycles 50 100 800 All 50 100 800 All

Average of each workload 0.58 0.73 0.90 0.92 3.43 2.43 1.34 0.91

All workloads 0.80 0.84 0.96 0.97 2.26 1.97 0.92 0.59

Table 5: Sampling from one workload vs. from all workloads.
dataset, the accuracy is lower compared to using the full dataset,

regardless of whether sampling is performed or not. It indicates that

besides the number of sampled labels, the search space size and di-

versity also affect model accuracy. Therefore, we suggest preparing

sufficient workloads before starting the sampling methods.

7 CONCLUSION
In this work, we propose AgileDevelop and AgileTransfer, efficient

ML-based power model development strategies. AgileDevelop mini-

mizes the overhead involved in model development from scratch

by coverage-based sampling, encompassing both signal space and

power space.AgileTransfer enables the transfer of existingmodels to

updated design RTLs with negligible additional costs by generating

pseudo labels through source design datasets and calibrating them

with sampled ground truth power. The strategies significantly re-

duce the label generation bottleneck from 3 days to 10minuteswhile

maintaining a high accuracy. Such lightweight development and

transfer strategies greatly lower the barrier to adopting ML-based

power models by design teams in realistic application scenarios.
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