
Efficient Runtime Power Modeling with On-Chip Power Meters
Invited Paper

Zhiyao Xie
Hong Kong University of Science and Technology

eezhiyao@ust.hk

ABSTRACT
Accurate and efficient power modeling techniques are crucial for
both design-time power optimization and runtime on-chip IC man-
agement. In prior research, different types of power modeling solu-
tions have been proposed, optimizing multiple objectives including
accuracy, efficiency, temporal resolution, and automation level,
targeting various power/voltage-related applications. Despite ex-
tensive prior explorations in this topic, new solutions still keep
emerging and achieve state-of-the-art performance. Considering
the increasing complexity and importance of the problem, this pa-
per aims at providing a review of the recent progress in power
modeling, with more focus on promising runtime on-chip power
meter (OPM) development techniques. It also serves as a vehicle for
discussing some general development techniques for the runtime
on-chip power modeling task.

CCS CONCEPTS
• Hardware → Power estimation and optimization; On-chip
resource management.

KEYWORDS
Power modeling and estimation, on-chip power meter, machine
learning, voltage droop

ACM Reference Format:
Zhiyao Xie. 2023. Efficient Runtime Power Modeling with On-Chip Power
Meters: Invited Paper. In Proceedings of the 2023 International Symposium
on Physical Design (ISPD ’23), March 26–29, 2023, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3569052.3578927

1 INTRODUCTION
Power efficiency has become one of the primary design objectives
for modern compute systems, ranging from low-end embedded
systems, mobile computing to high-end data centers. Accurate yet
efficient power estimation is not only essential for design-time
hardware design decisions, but also vitally important for power,
energy, and voltage management during circuit runtime.

For the design-time power modeling, it provides power evalua-
tion as feedback to designers and thus enables power optimizations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISPD ’23, March 26–29, 2023, Virtual Event, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9978-4/23/03. . . $15.00
https://doi.org/10.1145/3569052.3578927

in the integrated circuit (IC) design flow. Accurate power simu-
lations rely on industry-standard power analysis tools [45, 48] to
replay simulation vectors at the gate level with back-annotated par-
asitics. Besides standard simulations, many other works propose
earlier-stage and faster design-time power estimations at the micro-
architectural level [4, 58] or the register-transfer level (RTL) [7, 60].
Some of them [58, 60] are based on data-driven and machine learn-
ing techniques.

For the runtime circuit management, it needs to support vari-
ous runtime circuit management techniques. For instance, runtime
on-chip power meters (OPMs) can guide dynamic voltage and fre-
quency scaling (DVFS) [17, 21]. The DVFS only requires coarse-
grained temporal resolution in power tracing, where each sample
represents power for epochs that can be microseconds in duration.
Some runtime OPMs may be able to support fast power manage-
ment [14, 25] and voltage boosting [18]. These applications require
more fine-grained temporal resolution. For instance, voltage-noise
effects such as 𝐿𝑑𝑖/𝑑𝑡 noise develops in less than 10 cycles. Mitigat-
ing the impact of fast voltage noise requires fine-grained temporal
resolution for the runtime power modeling.

Different types of runtime OPMs have been proposed to address
aforementioned various requirements from different applications.
Runtime OPMs based on hardware performance counters [1, 2,
6] provide low-cost solutions for guiding DVFS, but suffer from
limited temporal resolution, rendering them unsuitable for other
applications like fast voltage management. In comparison, recent
works propose data-driven techniques [52, 53] to develop OPMs by
automatically selecting on-chip signals (i.e. proxies) in the target
design. They claim per-cycle temporal resolution as well as low
hardware overhead.

In summary, power modeling is undoubtedly an increasingly
important research topic. Despite extensive prior explorations, new
techniques still keep emerging and achieve state-of-the-art perfor-
mance. Considering the wide variety of existing solutions in terms
of application scenarios, power model objectives, and employed
methods, a review of existing power modeling technologies will
help mitigate confusion and add understanding of relevant tech-
niques to our research community. Prior power modeling survey
papers [36, 37] mostly focus on design-time methods without cov-
ering runtime power models. This work targets providing a review
of both design-time and runtime power modeling methods, with a
focus on representative proxy-based runtime OPM solutions. It will
cover a general development flow of proxy-based runtime OPM
solutions and some rules of thumb during the development.

https://doi.org/10.1145/3569052.3578927
https://doi.org/10.1145/3569052.3578927

ISPD ’23, March 26–29, 2023, Virtual Event, USA Zhiyao Xie

Power Model Types Accuracy Hardware Overhead if can be Automation Temporal Application
Level ↑ Implemented on Hardware ↓ Level ↑ Resolution ↑ Scenario

Standard power simulation High N/A High High

Design-time

[10, 45, 48] (Slow in Simulation)
Micro-architectural-level estimation

[8, 21, 30, 33, 41] Low N/A
(Fast in Simulation) Medium N/A or High

RTL power estimation Medium High High N/A or High
[7, 28, 29, 31, 44, 50, 54, 57, 59, 60]

Design-time emulation Medium Medium to High High Medium to High
[11, 26, 47, 56]

Counter-based OPMs [1, 2, 6, 13, 15,
19, 20, 22, 24, 38, 40, 42, 43, 46, 49] Medium Low Low Low

RuntimeProxy-based OPMs Medium Low to Medium High Medium to High
[12, 35, 39, 52, 53, 61, 62]

Table 1: An analysis of different types of power models. Please notice that it only represents the author’s opinion on the most
general cases and exceptions often exist. ‘N/A’ in the Hardware Overhead column means the design-time models are rarely
implemented on hardware. We mark their simulation speed in parentheses. ‘N/A’ in the Temporal Resolution column means it
only generates one averaged power for the whole testbench or vectorless power.

2 POWER MODELING OVERVIEW
2.1 Power Model Objectives
We start with analyzing the design objectives of power models.
Depending on target applications, power models involves multiple
objectives. These objectives can be summarized below.

• Accuracy: Power modeling accuracy is the most funda-
mental objective. The accuracy can be measured by the
correlation or absolute error between power estimations
and ground-truth power values from accurate simulation or
hardware measurements.

• Automation-level: In practice, many power models heavily
rely on human expertise when applied to new circuit designs,
while some others can be fully automatically applied. The
level of automation, as another important objective, can be
measured by the amount of effort and expertise required to
apply the power model to a new design.

• Temporal resolution: Temporal resolution decides suitable
applications of a power model. The measurement window
size is a hyper-parameter, which typically ranges from single-
cycle to multi-microseconds. The power model will provide
averaged power within each timing window.

The above three objectives generally apply to both design-time
and runtime power models. Next, we further summarize the differ-
ent objectives for the two types of models.

• Hardware overhead (runtime): Runtime OPMs will finally
be implemented on the hardware as part of the target circuit
design. Therefore, minimizing the hardware overhead of
the OPM implementation is a key objective. Such overhead
includes area overhead, power overhead, and impact on the
overall design performance.

• Simulation speed (design-time): For design-time power
simulation models, a short simulation time is preferable to
provide fast feedback to designers for design optimization.

Such different objectives lead to different design philosophies
between runtime and design-time power models. In order to reduce
the hardware implementation overhead, runtime power models
are generally simpler, more coarse-grained in temporal resolution,
and hardware-friendly. In comparison, design-time simulation can
be more complex, primarily targeting higher accuracy, as long as
the speed is acceptable. Also, different from the limited on-chip
resources of runtime models, design-time simulation methods can
execute on much more powerful computation platforms like high-
performance servers, GPUs, FPGAs, and emulators. This alleviates
the requirement on the speed of design-time simulation methods.

It is worth noticing that obvious trade-offs exist among the afore-
mentioned objectives. Take runtime power models as an exam-
ple, more complex power models with more inputs generally can
achieve higher accuracy, but will lead to larger hardware overhead
when implemented on-chip. Also, for coarser-grained temporal
resolution, the average power over a large power measurement
window will cancel out minor per-cycle modeling errors, leading to
higher accuracy values [52, 53]. In addition, more human engineers’
expertise can customize power models for each new design. This
may lead to better accuracy and hardware cost, but significantly
reduces the automation level. Considering all these trade-offs, good
power models should jointly optimize multiple objectives.

Next, we will briefly summarize representative and recent works
on both design-time and runtime power modeling. For design-time
power simulation, we separate models running on normal compu-
tation servers and emulators. For runtime on-chip power modeling,
besides a few analog solutions [3], popular previous methods can be
categorized into two major types, counter-based and proxy-based.
Table 1 provides a summary of representative power models and a
qualitative analysis of their strength in each objective.

2.2 Design-time Power Simulation
We start with introducing design-time power simulations.

Accurate standard power simulation. The most accurate
power simulation can be performedwith industrial-standard tools [10,

Efficient Runtime Power Modeling with On-Chip Power Meters ISPD ’23, March 26–29, 2023, Virtual Event, USA

45, 48]. These tools replay simulation vectors on the target design
with back-annotated parasitics. They support simulation at differ-
ent design stages, including register-transfer level (RTL), gate-level
netlist, and layout. The power is computed from the switching statis-
tics of individual signal nets and the capacitive load that they drive.
Such simulation at the final layout stage is accurate enough to serve
as the signoff standard, but it comes with a high computational cost
(i.e. relatively long simulation time).

Micro-architectural-level power estimation. Power simula-
tions at early-stage can provide early feedback to designers. Many
design-time approaches [8, 21, 30, 33, 41] construct analytical mod-
els for micro-architectural power estimation by collecting statis-
tics from performance simulators [4, 5]. Wattch [8] is an archi-
tectural dynamic power simulation tool using a linear model, and
McPAT [33] integrates power, area, and timing in a modeling frame-
work. Each functional unit is characterized and attributed a power
value when activated. Multiple active units are then added together
to compute the overall power [16]. These models are preferably
used as an average over thousands or millions of CPU clock cy-
cles. Additionally, inaccuracies have been observed [41, 51] for
McPAT and ML-based solutions [32, 58] are proposed to calibrate
the original McPAT for better accuracy.

Register-transfer-level power estimation. Compared with
architecture-level, power modeling is generally more accurate at
the register-transfer level (RTL), when more design details become
available. Early works [7, 50, 57] construct macro-models to ab-
stract power estimations for small circuit modules with thousands
of gates. In recent years, machine learning (ML) techniques are
exploited [28, 29, 31, 44, 54, 59, 60]. PRIMAL [60] predicts per-cycle
power by processing transitions of all registers with the convolu-
tional neural network (CNN). GRANNITE [59] makes use of graph
neural network [27] to estimate the average power of eachworkload.
Some latest works [44, 54] modeled the vectorless power number
without specific testbenches, together with timing and area at the
RTL stage. In addition, some ML-based works [28, 31] claim to be
micro-architectural-level, but given existing techniques, they still
require RTL simulation in real implementation.

2.3 Design-time Power Emulation
Emulation [11, 26, 47, 56] is a popular approach to accelerating
power simulations for large designs. The term “emulation” is used
in a broad sense to include techniques that deploy power models
on FPGA or other emulator platforms at design-time. According to
our taxonomy, they still belong to design-time power simulation
techniques.

Since these design-time power models will be implemented as
‘hardware’ on emulation platforms, they share many similarities
with proxy-based runtime power models. Therefore, some practi-
tioners often confuse them. These design-time power models for
emulation are indeed extensible to runtime power models when
implemented as part of the target design. But since they initially
target emulation at design-time, they generally tolerate higher hard-
ware overhead, as long as it does not exceed the limit of emulation
platforms.

A pioneering power emulation work [11] has 300% hardware
overhead. Anotherwork [56] employs singular value decomposition
(SVD), which can be computationally expensive. Both [11] and [56]

are demonstrated only at block-level designs. A microprocessor-
level application of FPGA emulation is Simmani [26], whose tem-
poral resolution is 128 clock cycles. PrEsto [47] achieves cycle-
accuracy, but its hardware cost is also quite significant (e.g. 50% of
LUTs).

2.4 Counter-based Runtime Power Models
Different from design-time simulation, minimizing hardware over-
head is a key objective when developing runtime power models. A
classical runtime power modeling approach is to estimate power
dissipation based on performance counters [1, 2, 6, 13, 15, 19, 20,
22, 24, 38, 40, 42, 43, 46, 49]. These counter-based runtime power
models utilize already existing performance counters in target de-
signs like microprocessors or digital signal processors (DSPs). Such
counters can be treated as free and the associated area overhead is
minimum. However, the development of such counter-based power
models typically requires extensive designer’s knowledge of the
specific design to define related hardware events. It significantly
restricts the automation level of these power modeling methods.
Moreover, these counter-monitored hardware events manifest mul-
tiple cycles after the causal trigger event. It restricts the temporal
resolution of estimations to thousands to millions of cycles.

2.5 Proxy-based Runtime Power Models
Instead of relying on existing performance counters, proxy-based
runtime power models [12, 35, 39, 52, 53, 61, 62] are free to select
the most power-correlated signals in the target design as power
model inputs (i.e. power proxies). Due to such higher flexibility,
these models have a higher potential to better optimize the multiple
objectives. On the other hand, since these methods face a larger
number of power model candidates, optimizing power models in
this huge space is more challenging.

Some earlier proxy-based models [12, 35, 39] are coarse-grained
with the temporal resolution of thousands of cycles. Their area
overhead ranges from 1.5% to 20%. Some other methods [61, 62]
improve temporal resolution to 100 cycles. They restrict proxies
mostly to primary I/O signals of design modules at the selected
hierarchy level, significantly reducing the freedom of proxy selec-
tion and the underlying power model. Their area overhead is still
> 4% [61, 62]. In [23], a manually-designed digital power meter
technique is introduced to address voltage-droop in DSP engines.
It takes advantage of predictable dataflow patterns that are not
available for general-purpose CPUs.

Recently, APOLLO [53] claims to achieve < 1% area overhead
for per-cycle on-chip power modeling. This work allows flexible
selection from all available RTL signals in the target design. It is
validated on cutting-edge commercial microprocessors. A most
recent work DEEP [52] further reduces the hardware overhead
to be 0.1% by selecting individual bits from the target design and
improving the proxy selection algorithms.

It is worth noting that some proxy-based runtime power models
can also be applied for design-time power simulation. Due to their
simplicity and hardware-friendly design, they can achieve an ex-
tremely high estimation speed on both simulation and emulation
platforms. For instance, APOLLO [53] claims unprecedented simu-
lation speed (i.e. per-cycle power estimation on millions of cycles
in minutes, including RTL simulation) on emulation platforms [9].

ISPD ’23, March 26–29, 2023, Virtual Event, USA Zhiyao Xie

RTL of Arbitrary
Circuit Design

RTL
Simulation

Design
Flow

Power
Simulation

Select
Proxies

Design Layout
with OPM

Toggling of
Signals 𝑿

Power
Labels 𝒚

OPM
RTL

Integrate with
Design RTL

Traces of
All Signals

Training
Testbench

Design
Flow

Implement
OPM

Power
Model

Proxy-based
Runtime OPM
DevelopmentNetlist or

Layout

Step 1 Step 2 Step 3

Figure 1: The general framework for proxy-based runtime
OPM development. Image adapted from [52].

3 PROXY-BASED OPM DEVELOPMENT
As summarized in the previous overview section, proxy-based run-
time OPMs demonstrate great potential in optimizing multiple
objectives including accuracy, hardware overhead, automation, and
temporal resolution. New proxy-based solutions keep emerging in
the latest works. In this section, we introduce the general develop-
ment flow or framework of proxy-based OPMs.

3.1 OPM Development Framework
We first introduce a general and widely-adopted framework or flow
in developing proxy-based runtime OPM. As shown in Figure 1, it
mainly includes three major stages.

• Step 1. Dataset Generation: Given an arbitrary design
RTL, collect corresponding testbenches, then generate signal
waveforms and ground-truth power values through simula-
tion.

• Step 2. Power Model Development: Based on the gen-
erated dataset, a power model is developed for the given
design with data-driven techniques.

• Step 3. Hardware Implementation: The power model is
implemented on hardware as the OPM and integrated as part
of the target design.

3.2 Dataset Generation as Step 1
To develop OPMs with data-driven methods, dataset generation
is the first step. It generates toggling activities 𝑋 ∈ R𝑁×𝑀 and
corresponding power values 𝑦 ∈ R𝑁 . 𝑁 is the total number of
cycles, and𝑀 is the number of power model input candidates. This
setup is illustrated in Figure 2.

Testbench generation. Power consumption is dependent on
the testbench/workload that executes on the target design. There-
fore, the flow starts with collecting sufficient testbenches of the
target design. The collection of sufficient representative testbenches
is not a simple task. Many prior works do not disclose details about
how they generate testbenches for each design. APOLLO [53] pro-
poses to automatically generate random testbenches for the training
dataset. In this process, an evolutionary algorithm is adopted to
produce high-power-consumption testbenches [53].

It is difficult to judge whether generated testbenches are suffi-
cient for accurate power model development. Ideally, generated
testbenches as training data should cover the diverse behavior re-
flected in togging activity in test scenarios (i.e. coverage in feature
space). But it is difficult to achieve such coverage due to the huge

𝑐𝑙𝑘:
Registered 𝐁: 1 1 0 0

0 1 0

A

B

C

D

cycle0 cycle1 cycle2

Waveform from sim. trace

A design in RTL level.

Per-cycle Power: y0 y1 y2

A

B

C D

y0

y1

y2…
……
…

Feature vectors Label

cycle0

cycle1

cycle2

A B C D
1 0 0 0

0 1 1 0

0 0 0 1

…
…

…

The Design RTL

FF FF

Toggle Detection in OPM
Toggle

Toggling Power

Toggling of 𝐁:

Figure 2: Toggling activities of signals as runtime OPM prox-
ies. Image adapted from [52, 53].

number of signals in target designs. The author’s rule of thumb is to
generate at least thousands of power samples from asmany different
testbenches as possible. More importantly, make sure the maximum
and minimum power values of training testbenches cover the range
of power consumption in target test scenarios (i.e. coverage in label
space). Such test scenarios include all realistic workloads that may
execute on the target design hardware in the future.

Toggling activity collection. By simulating generated test-
benches on the target design RTL, per-cycle toggling activity/waveform
can be generated and saved in .fsdb or .vcd file format. These col-
lected toggling activities cover all available RTL signals in the de-
sign. As we know, the dynamic power is linearly proportional to
the charging or discharging of gate- and wire-capacitance, which
is reflected in signal transitions/toggling. Due to signal toggling
activities’ high correlation with dynamic power consumption, they
are often used as input candidates 𝑋 to power models.

Ground-truth power generation. Ground-truth power values
𝑦 are necessary to train data-driven power models. Based on tog-
gling activities, power values can be generated by accurate power
simulation with industrial standard tools [10, 45, 48] or even hard-
ware measurement. As mentioned, such simulation at gate-level
with back-annotated parasitics produces accurate power values.

Training and testing data split. After data generation, the
dataset needs to be split into training and testing dataset. For sim-
plicity, we do not clearly distinguish validation set and testing set
here. The testing dataset is used for evaluating the power model per-
formance. Designers should make sure it reflects actual workloads
that execute on real hardware.

3.3 Power Model Development as Step 2
After data generation, the power model design is the key step
and distinguishes different prior works. As mentioned, both ac-
curacy and hardware overhead are essential objectives. To mini-
mize the hardware overhead while maximizing accuracy, the power
model development process should borrow ideas from the hardware-
software co-design.

Model selection. To reduce hardware overhead, many prior
OPM solutions [26, 52, 53, 62] are based on the linear power model
due to its simplicity. Some others [34] adopt fast non-linear models
like the decision tree, with customized hardware implementations
to reduce overhead.

Efficient Runtime Power Modeling with On-Chip Power Meters ISPD ’23, March 26–29, 2023, Virtual Event, USA

Works Proxy Candidate Temporal Claimed
Resolution Overhead

[56] 2015 Registers Per-cycle 16%
[39] 2018 Registers > 1K cycles 7%
[62] 2018 Module I/O signals 100s cycles 4 − 10%
[26] 2019 All RTL signals 100s cycles N/A
[12] 2020 Module I/O signals >1K cycles 2-20%
[53] 2021 All RTL signals Per-cycle < 1%
[52] 2022 All bits of RTL signals Per-cycle < 0.1%

Table 2: Overview of representative works for proxy-based
runtime OPMs. Some works [26, 56] are initially proposed
for design-time emulation.

Temporal resolution selection. Another key power model
configuration is its temporal resolution (i.e. size of the power-
measurement timing window). Its selection depends on the tar-
get runtime application using this power model. As mentioned,
coarse-grained estimation is sufficient for DVFS decisions, while
fast power management or voltage-droop mitigation may require
fine-grained temporal resolution.

Hardware overhead evaluation. During the OPM develop-
ment process, the model accuracy can be easily measured based on
generated datasets. In comparison, the hardware overhead evalua-
tion is not as straightforward without real hardware implementa-
tion and simulation, which can be time-consuming.

A common practice is to simply assume a linear correlation
between the number of proxies and hardware cost. Doing this sim-
plifies the hardware overhead optimization problem to minimizing
the number of model inputs. For a linear power model, it means
minimizing the number of (i.e. the 𝑙0 norm of) weights, which is an
existing optimization problem.

Despite the simplicity, the number of proxies cannot fully repre-
sent OPM hardware cost. When using signals as proxies, different
signals’ bit width leads to significantly different hardware costs [52].
More importantly, the actual overhead also depends on the specific
OPM hardware design, including the arithmetic logic design, the
number of bits in weights, and the physical locations of selected
proxies. Therefore, better hardware overhead evaluation method is
desired.

Model input selection. Selecting appropriate model inputs
(i.e. proxies) is the most important step in developing proxy-based
power models. This process involves two key decisions. First, de-
velopers should define the candidate proxies in the target design.
Second, developers should choose appropriate algorithms to select
proxies from candidates.

The proxy candidate setup decides the solution space of proxy
selection. As mentioned, more proxy candidates lead to a more
flexible OPM solution. As the summary of prior works in Table 2
shows, we can observe a trend in using an increasing number of
available signals as proxy candidates.

The proxy-selection algorithm is the key part of the OPM de-
velopment process and directly decides the ultimate OPM accu-
racy and overhead. Already explored algorithm types include but
not limited to clustering [26], heuristic-based selection [62], prun-
ing [52, 53], best subset selection [52]. Their relative advantage may

vary slightly for different target designs and workloads, thus should
be thoroughly verified with testing datasets. Here we provide some
personal experience in proxy selection methods. First, a supervised
selection of proxies is more efficient than unsupervised methods
like clustering. Second, the algorithm should reduce the collinearity
or correlation among selected proxies. In prior works [52, 53], the
feature collinearity is measured with metrics like variance inflation
factor (VIF) [55].

3.4 Hardware Implementation as Step 3
After the design and development of a power model, it needs to be
incorporated into the original design in hardware.

Reduction of hardware cost. Minimizing the hardware over-
head is the most important goal in this step. Weight quantization is
a commonly adopted technique during hardware implementation
of the OPM [52, 53, 56]. According to APOLLO [53], if using a fixed
bit number for all weights, adopting 10 bits leads to negligible accu-
racy loss. For variable bit width, DEEP [52] supports most weights
less than 7 bits and [56] supports most weights less than 9 bits.

Another popular design option is to reduce the usage of multi-
pliers and counters [39, 52, 53] in the OPM hardware. By adopting
binary values for signal toggling activities 𝑋 , multiplying weights
with binary toggling will only require AND gates, without using
multipliers and counters. This hardware implementation setup re-
quires co-design with the power model design in step 2. Please
notice such a binary proxy setup is not limited to per-cycle tem-
poral resolution. The solution for multi-cycle resolution is given
in [53].

Integration with target design. The OPM ultimately needs to
be integrated as part of the hardware design. A common practice is
to simply initiate the OPM in the top module, with selected signals
from the target design RTL (i.e. proxies) connected to the OPM RTL.
In practice, this may require some engineering efforts in revising
target design’s module interfaces to expose the selected proxies to
OPM. Then the whole design is implemented by going through the
original design flow. The OPM hardware overhead can be accurately
measured after the layout finishes.

Figure 3: Microprocessor layout with DEEP [52] OPM inte-
grated. The red region is OPM. Area overhead is 0.04%. The
MAE = 9.5%. Adapted from [52].

ISPD ’23, March 26–29, 2023, Virtual Event, USA Zhiyao Xie

Figure 4: Microprocessor layout with APOLLO [53] OPM in-
tegrated. The red region is OPM. Area overhead is 0.16%. The
MAE = 9.5%. Adapted from [52].

4 PERFORMANCE OVERVIEW
In this section, we briefly discuss the performance of recent works
for runtime OPM. Please notice that due to the significant difference
between the target design and testbench, claimed performance
numbers are not directly comparable.

Table 2 summarizes recent representative works for developing
runtime proxy-based OPMs. Some design-time emulationworks [26,
56] are included since they can be easily extended as runtime OPMs.
An obvious improvement over time can be observed. In Table 2,
the claimed overhead improves down to 0.1% and the temporal
resolution reaches per-cycle, the finest granularity in resolution.
Such improvement benefits from the increasing proxy candidates
and better proxy selection algorithm.

Finally, we present the visualized OPM solutions after integration
with the target industrial design. Here we focus on the most recent
and state-of-the-art solutions [52, 53]. The layout of the target
microprocessor with DEEP [52] OPM design is shown in Figure 3.
In this layout, all cells in the OPM are colored in red. The large
macros are L2 data RAMs and small macros are for L1 cache, TLB,
and tag RAMs. The overhead is 0.04%.

In comparison, the layout of the same microprocessor with
APOLLO [52] OPM is shown in Figure 4. Note that the macro
locations are not fixed and are automatically placed by IC Compiler
II, leading to a slightly different floorplan solution. The overhead
in Figure 4 is 0.16%.

5 CONCLUSION
In this paper, we present a review of recent power modeling tech-
niques. It covers both design-time and runtime models, with our
taxonomy and qualitative analysis of the strength of each type of
power modeling solution. In addition, we introduce the general
framework for developing runtime proxy-based OPMs, which effec-
tively co-optimizemultiple objectives, including accuracy, hardware
cost, temporal resolution, and the design automation level.

6 ACKNOWLEDGEMENT
This research was supported by ACCESS – AI Chip Center for
Emerging Smart Systems, sponsored by InnoHK funding, Hong
Kong SAR.

REFERENCES
[1] Frank Bellosa. 2000. The benefits of event: driven energy accounting in power-

sensitive systems. In ACM SIGOPS European Workshop (EW).
[2] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard

Ayguade. 2010. Decomposable and responsive power models for multicore
processors using performance counters. In ACM ICS.

[3] Srikar Bhagavatula and Byunghoo Jung. 2013. A power sensor with 80ns response
time for power management in microprocessors. In CICC.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news (2011).

[5] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G Saidi, and
Steven K Reinhardt. 2006. The M5 simulator: Modeling networked systems. IEEE
Micro (2006).

[6] W Lloyd Bircher and Lizy K John. 2007. Complete system power estimation: A
trickle-down approach based on performance events. In IEEE ISPASS.

[7] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli. 2000. Regression-
based RTL power modeling. ACM TODAES (2000).

[8] David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch: A frame-
work for architectural-level power analysis and optimizations. ACM SIGARCH
Computer Architecture News (2000).

[9] Cadence. 2021. Palladium® Z1 Enterprise Emulation Platform.
https://www.cadence.com/en_US/home/tools/system-design-and-
verification/acceleration-and-emulation/palladium-z1.html.

[10] Cadence. 2022. Joules RTL Power Solution. https://www.cadence.com/en_
US/home/tools/digital-design-and-signoff/power-analysis/joules-rtl-power-
solution.html.

[11] Joel Coburn, Srivaths Ravi, and Anand Raghunathan. 2005. Power emulation: a
new paradigm for power estimation. In DAC.

[12] Luca Cremona, William Fornaciari, and Davide Zoni. 2020. Automatic identi-
fication and hardware implementation of a resource-constrained power model
for embedded systems. Elsevier Sustainable Computing: Informatics and Systems
(2020).

[13] C Gilberto and M Margaret. 2005. Power prediction for intel xscale processors
using performance monitoring unit events. In ISLPED.

[14] Waclaw Godycki, Christopher Torng, Ivan Bukreyev, Alyssa Apsel, and Christo-
pher Batten. 2014. Enabling realistic fine-grain voltage scalingwith reconfigurable
power distribution networks. In MICRO.

[15] Bhavishya Goel, Sally A McKee, Roberto Gioiosa, Karan Singh, Major Bhadauria,
and Marco Cesati. 2010. Portable, scalable, per-core power estimation for intel-
ligent resource management. In International Conference on Green Computing
(IGCC).

[16] Ed Grochowski, David Ayers, and Vivek Tiwari. 2002. Microarchitectural simula-
tion and control of di/dt-induced power supply voltage variation. In HPCA.

[17] Jawad Haj-Yihia, Ahmad Yasin, Yosi Ben Asher, and Avi Mendelson. 2016. Fine-
grain power breakdown of modern out-of-order cores and its implications on
skylake-based systems. TACO (2016).

[18] Chang-Hong Hsu, Yunqi Zhang, Michael A Laurenzano, David Meisner, Thomas
Wenisch, Jason Mars, Lingjia Tang, and Ronald G Dreslinski. 2015. Adrenaline:
Pinpointing and reining in tail queries with quick voltage boosting. In HPCA.

[19] Wei Huang, Charles Lefurgy, William Kuk, Alper Buyuktosunoglu, Michael Floyd,
Karthick Rajamani, Malcolm Allen-Ware, and Bishop Brock. 2012. Accurate fine-
grained processor power proxies. In MICRO.

[20] Canturk Isci and Margaret Martonosi. 2003. Runtime power monitoring in
high-end processors: Methodology and empirical data. In MICRO.

[21] Hans Jacobson, Alper Buyuktosunoglu, Pradip Bose, Emrah Acar, and Richard
Eickemeyer. 2011. Abstraction andmicroarchitecture scaling in early-stage power
modeling. In HPCA.

[22] R. Joseph and M. Martonosi. 2001. Run-time power estimation in high perfor-
mance microprocessors. In ISLPED.

[23] Vijay Kiran Kalyanam, Eric Mahurin, Keith Bowman, and Jacob Abraham. 2020.
A Proactive Voltage-Droop-Mitigation System in a 7nm Hexagon™ Processor. In
VLSI.

[24] Vijay Kiran Kalyanam, Peter G Sassone, and Jacob A Abraham. 2017. Power
prediction of embedded scalar and vector processor: Challenges and solutions.
In ISQED.

[25] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez.
2015. Rubik: Fast analytical power management for latency-critical systems. In
MICRO.

[26] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanović. 2019. Sim-
mani: Runtime Power Modeling for Arbitrary RTL with Automatic Signal Selec-
tion. In MICRO.

[27] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Efficient Runtime Power Modeling with On-Chip Power Meters ISPD ’23, March 26–29, 2023, Virtual Event, USA

[28] Ajay Krishna Ananda Kumar, Sami Alsalamin, Hussam Amrouch, and Andreas
Gerstlauer. 2022. Machine learning-based microarchitecture-level power model-
ing of CPUs. IEEE Trans. Comput. (2022).

[29] Ajay Krishna Ananda Kumar and Andreas Gerstlauer. 2019. Learning-Based CPU
Power Modeling. In MLCAD.

[30] Benjamin C Lee and David M Brooks. 2006. Accurate and efficient regression
modeling for microarchitectural performance and power prediction. ACM SIGOPS
operating systems review (2006).

[31] Dongwook Lee, Lizy K John, and Andreas Gerstlauer. 2015. Dynamic power
and performance back-annotation for fast and accurate functional hardware
simulation. In DATE.

[32] Wooseok Lee, Youngchun Kim, Jee Ho Ryoo, Dam Sunwoo, Andreas Gerstlauer,
and Lizy K John. 2015. PowerTrain: A learning-based calibration of McPAT power
models. In ISLPED.

[33] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen, and
Norman P Jouppi. 2009. McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures. In MICRO.

[34] Zhe Lin, Sharad Sinha, and Wei Zhang. 2018. An ensemble learning approach
for in-situ monitoring of FPGA dynamic power. IEEE TCAD (2018).

[35] Mohamad Najem, Pascal Benoit, Mohamad El Ahmad, Gilles Sassatelli, and Lionel
Torres. 2017. A design-time method for building cost-effective run-time power
monitoring. IEEE TCAD (2017).

[36] Farid N Najm. 1994. A survey of power estimation techniques in VLSI circuits.
IEEE VLSI (1994).

[37] Yehya Nasser, Jordane Lorandel, Jean-Christophe Prévotet, and Maryline Hélard.
2020. RTL to transistor level power modeling and estimation techniques for
FPGA and ASIC: A survey. IEEE TCAD (2020).

[38] Fabian Oboril, Jos Ewert, and Mehdi B Tahoori. 2015. High-resolution online
power monitoring for modern microprocessors. In DATE.

[39] Daniele Jahier Pagliari, Valentino Peluso, Yukai Chen, Andrea Calimera, Enrico
Macii, and Massimo Poncino. 2018. All-digital embedded meters for on-line
power estimation. In DATE.

[40] Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan Venkatara-
mani, Tulika Mitra, and Sanjay Vishin. 2013. Power-performance modeling on
asymmetric multi-cores. In CASES.

[41] Santhosh Kumar Rethinagiri, Oscar Palomar, Rabie Ben Atitallah, Smail Niar,
Osman Unsal, and Adrian Cristal Kestelman. 2014. System-level power estimation
tool for embedded processor based platforms. In RAPIDO.

[42] Rance Rodrigues, Arunachalam Annamalai, Israel Koren, and Sandip Kundu. 2013.
A study on the use of performance counters to estimate power in microprocessors.
IEEE Transactions on Circuits and Systems II: Express Briefs (TCAS-II) (2013).

[43] Mark Sagi, Nguyen Anh Vu Doan, Martin Rapp, Thomas Wild, Jörg Henkel, and
Andreas Herkersdorf. 2020. A Lightweight Nonlinear Methodology to Accurately
Model Multicore Processor Power. IEEE TCAD (2020).

[44] Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu. 2022. How Good Is
Your Verilog RTL Code? A Quick Answer from Machine Learning. In ICCAD.

[45] Siemens. 2022. PowerPro® RTL Low-Power. https://www.mentor.com/hls-
lp/powerpro-rtl-low-power/.

[46] Karan Singh, Major Bhadauria, and Sally A McKee. 2009. Real time power
estimation and thread scheduling via performance counters. ACM SIGARCH
Computer Architecture News (2009).

[47] Dam Sunwoo, Gene Y Wu, Nikhil A Patil, and Derek Chiou. 2010. PrEsto: An
FPGA-accelerated power estimation methodology for complex systems. In FPL.

[48] Synopsys. 2022. PrimePower: RTL to Signoff Power Analysis. https://www.
synopsys.com/implementation-and-signoff/signoff/primepower.html.

[49] Matthew J Walker, Stephan Diestelhorst, Andreas Hansson, Anup K Das, Sheng
Yang, Bashir M Al-Hashimi, and Geoff V Merrett. 2016. Accurate and Stable
Run-Time Power Modeling for Mobile and Embedded CPUs. IEEE TCAD (2016).

[50] QingWu, QinruQiu,Massoud Pedram, and Chih-ShunDing. 1998. Cycle-accurate
macro-models for RT-level power analysis. VLSI (1998).

[51] Sam Likun Xi, Hans Jacobson, Pradip Bose, Gu-YeonWei, and David Brooks. 2015.
Quantifying sources of error in McPAT and potential impacts on architectural
studies. In HPCA.

[52] Zhiyao Xie, Shiyu Li, Mingyuan Ma, Chen-Chia Chang, Jingyu Pan, Yiran Chen,
and Jiang Hu. 2022. DEEP: Developing Extremely Efficient Runtime On-Chip
Power Meters. In ICCAD.

[53] Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, Kumaraguru Palaniswamy,
Nicolas Hebert, Jiang Hu, Huanrui Yang, Yiran Chen, and Shidhartha Das. 2021.
APOLLO: An Automated Power Modeling Framework for Runtime Power Intro-
spection in High-Volume Commercial Microprocessors. In MICRO.

[54] Ceyu Xu, Chris Kjellqvist, and Lisa Wu Wills. 2022. SNS’s not a synthesizer: a
deep-learning-based synthesis predictor. In ISCA.

[55] Zhang Xuegong. 2000. Introduction to statistical learning theory and support
vector machines. Acta Automatica Sinica (2000).

[56] Jianlei Yang, Liwei Ma, Kang Zhao, Yici Cai, and Tin-Fook Ngai. 2015. Early stage
real-time SoC power estimation using RTL instrumentation. In ASPDAC.

[57] Wu Ye, Narayanan Vijaykrishnan, Mahmut Kandemir, and Mary Jane Irwin. 2000.
The design and use of SimplePower: A cycle-accurate energy estimation tool. In
DAC.

[58] Jianwang Zhai, Chen Bai, Binwu Zhu, Yici Cai, Qiang Zhou, and Bei Yu. 2021.
McPAT-Calib: A microarchitecture power modeling framework for modern CPUs.
In ICCAD.

[59] Yanqing Zhang, Haoxing Ren, and Brucek Khailany. 2020. GRANNITE: Graph
Neural Network Inference for Transferable Power Estimation. In DAC.

[60] Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and Zhiru
Zhang. 2019. PRIMAL: Power Inference using Machine Learning. In DAC.

[61] Davide Zoni, Luca Cremona, Alessandro Cilardo, Mirko Gagliardi, and William
Fornaciari. 2018. PowerTap: All-digital power meter modeling for run-time power
monitoring. Elsevier Microprocessors and Microsystems (MICPRO) (2018).

[62] Davide Zoni, Luca Cremona, andWilliam Fornaciari. 2018. Powerprobe: Run-time
power modeling through automatic RTL instrumentation. In DATE.

	Abstract
	1 Introduction
	2 Power Modeling Overview
	2.1 Power Model Objectives
	2.2 Design-time Power Simulation
	2.3 Design-time Power Emulation
	2.4 Counter-based Runtime Power Models
	2.5 Proxy-based Runtime Power Models

	3 Proxy-based OPM Development
	3.1 OPM Development Framework
	3.2 Dataset Generation as Step 1
	3.3 Power Model Development as Step 2
	3.4 Hardware Implementation as Step 3

	4 Performance Overview
	5 Conclusion
	6 Acknowledgement
	References

