
Efficient Runtime Power Modeling with On-Chip Power Meters
Invited Paper

Zhiyao Xie
Hong Kong University of Science and Technology

eezhiyao@ust.hk

ABSTRACT
Accurate and efficient power modeling techniques are crucial for
both design-time power optimization and runtime on-chip IC man-
agement. In prior research, different types of power modeling solu-
tions have been proposed, optimizing multiple objectives including
accuracy, efficiency, temporal resolution, and automation level,
targeting various power/voltage-related applications. Despite ex-
tensive prior explorations in this topic, new solutions still keep
emerging and achieve state-of-the-art performance. Considering
the increasing complexity and importance of the problem, this pa-
per aims at providing a review of the recent progress in power
modeling, with more focus on promising runtime on-chip power
meter (OPM) development techniques. It also serves as a vehicle for
discussing some general development techniques for the runtime
on-chip power modeling task.

CCS CONCEPTS
• Hardware → Power estimation and optimization; On-chip
resource management.
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1 INTRODUCTION
Power efficiency has become one of the primary design objectives
for modern compute systems, ranging from low-end embedded
systems, mobile computing to high-end data centers. Accurate yet
efficient power estimation is not only essential for design-time
hardware design decisions, but also vitally important for power,
energy, and voltage management during circuit runtime.

For the design-time power modeling, it provides power evalua-
tion as feedback to designers and thus enables power optimizations
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in the integrated circuit (IC) design flow. Accurate power simu-
lations rely on industry-standard power analysis tools [45, 48] to
replay simulation vectors at the gate level with back-annotated par-
asitics. Besides standard simulations, many other works propose
earlier-stage and faster design-time power estimations at the micro-
architectural level [4, 58] or the register-transfer level (RTL) [7, 60].
Some of them [58, 60] are based on data-driven and machine learn-
ing techniques.

For the runtime circuit management, it needs to support vari-
ous runtime circuit management techniques. For instance, runtime
on-chip power meters (OPMs) can guide dynamic voltage and fre-
quency scaling (DVFS) [17, 21]. The DVFS only requires coarse-
grained temporal resolution in power tracing, where each sample
represents power for epochs that can be microseconds in duration.
Some runtime OPMs may be able to support fast power manage-
ment [14, 25] and voltage boosting [18]. These applications require
more fine-grained temporal resolution. For instance, voltage-noise
effects such as 𝐿𝑑𝑖/𝑑𝑡 noise develops in less than 10 cycles. Mitigat-
ing the impact of fast voltage noise requires fine-grained temporal
resolution for the runtime power modeling.

Different types of runtime OPMs have been proposed to address
aforementioned various requirements from different applications.
Runtime OPMs based on hardware performance counters [1, 2,
6] provide low-cost solutions for guiding DVFS, but suffer from
limited temporal resolution, rendering them unsuitable for other
applications like fast voltage management. In comparison, recent
works propose data-driven techniques [52, 53] to develop OPMs by
automatically selecting on-chip signals (i.e. proxies) in the target
design. They claim per-cycle temporal resolution as well as low
hardware overhead.

In summary, power modeling is undoubtedly an increasingly
important research topic. Despite extensive prior explorations, new
techniques still keep emerging and achieve state-of-the-art perfor-
mance. Considering the wide variety of existing solutions in terms
of application scenarios, power model objectives, and employed
methods, a review of existing power modeling technologies will
help mitigate confusion and add understanding of relevant tech-
niques to our research community. Prior power modeling survey
papers [36, 37] mostly focus on design-time methods without cov-
ering runtime power models. This work targets providing a review
of both design-time and runtime power modeling methods, with a
focus on representative proxy-based runtime OPM solutions. It will
cover a general development flow of proxy-based runtime OPM
solutions and some rules of thumb during the development.
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Power Model Types Accuracy Hardware Overhead if can be Automation Temporal Application
Level ↑ Implemented on Hardware ↓ Level ↑ Resolution ↑ Scenario

Standard power simulation High N/A High High

Design-time

[10, 45, 48] (Slow in Simulation)
Micro-architectural-level estimation

[8, 21, 30, 33, 41] Low N/A
(Fast in Simulation) Medium N/A or High

RTL power estimation Medium High High N/A or High
[7, 28, 29, 31, 44, 50, 54, 57, 59, 60]

Design-time emulation Medium Medium to High High Medium to High
[11, 26, 47, 56]

Counter-based OPMs [1, 2, 6, 13, 15,
19, 20, 22, 24, 38, 40, 42, 43, 46, 49] Medium Low Low Low

RuntimeProxy-based OPMs Medium Low to Medium High Medium to High
[12, 35, 39, 52, 53, 61, 62]

Table 1: An analysis of different types of power models. Please notice that it only represents the author’s opinion on the most
general cases and exceptions often exist. ‘N/A’ in the Hardware Overhead column means the design-time models are rarely
implemented on hardware. We mark their simulation speed in parentheses. ‘N/A’ in the Temporal Resolution column means it
only generates one averaged power for the whole testbench or vectorless power.

2 POWER MODELING OVERVIEW
2.1 Power Model Objectives
We start with analyzing the design objectives of power models.
Depending on target applications, power models involves multiple
objectives. These objectives can be summarized below.

• Accuracy: Power modeling accuracy is the most funda-
mental objective. The accuracy can be measured by the
correlation or absolute error between power estimations
and ground-truth power values from accurate simulation or
hardware measurements.

• Automation-level: In practice, many power models heavily
rely on human expertise when applied to new circuit designs,
while some others can be fully automatically applied. The
level of automation, as another important objective, can be
measured by the amount of effort and expertise required to
apply the power model to a new design.

• Temporal resolution: Temporal resolution decides suitable
applications of a power model. The measurement window
size is a hyper-parameter, which typically ranges from single-
cycle to multi-microseconds. The power model will provide
averaged power within each timing window.

The above three objectives generally apply to both design-time
and runtime power models. Next, we further summarize the differ-
ent objectives for the two types of models.

• Hardware overhead (runtime): Runtime OPMs will finally
be implemented on the hardware as part of the target circuit
design. Therefore, minimizing the hardware overhead of
the OPM implementation is a key objective. Such overhead
includes area overhead, power overhead, and impact on the
overall design performance.

• Simulation speed (design-time): For design-time power
simulation models, a short simulation time is preferable to
provide fast feedback to designers for design optimization.

Such different objectives lead to different design philosophies
between runtime and design-time power models. In order to reduce
the hardware implementation overhead, runtime power models
are generally simpler, more coarse-grained in temporal resolution,
and hardware-friendly. In comparison, design-time simulation can
be more complex, primarily targeting higher accuracy, as long as
the speed is acceptable. Also, different from the limited on-chip
resources of runtime models, design-time simulation methods can
execute on much more powerful computation platforms like high-
performance servers, GPUs, FPGAs, and emulators. This alleviates
the requirement on the speed of design-time simulation methods.

It is worth noticing that obvious trade-offs exist among the afore-
mentioned objectives. Take runtime power models as an exam-
ple, more complex power models with more inputs generally can
achieve higher accuracy, but will lead to larger hardware overhead
when implemented on-chip. Also, for coarser-grained temporal
resolution, the average power over a large power measurement
window will cancel out minor per-cycle modeling errors, leading to
higher accuracy values [52, 53]. In addition, more human engineers’
expertise can customize power models for each new design. This
may lead to better accuracy and hardware cost, but significantly
reduces the automation level. Considering all these trade-offs, good
power models should jointly optimize multiple objectives.

Next, we will briefly summarize representative and recent works
on both design-time and runtime power modeling. For design-time
power simulation, we separate models running on normal compu-
tation servers and emulators. For runtime on-chip power modeling,
besides a few analog solutions [3], popular previous methods can be
categorized into two major types, counter-based and proxy-based.
Table 1 provides a summary of representative power models and a
qualitative analysis of their strength in each objective.

2.2 Design-time Power Simulation
We start with introducing design-time power simulations.

Accurate standard power simulation. The most accurate
power simulation can be performedwith industrial-standard tools [10,
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45, 48]. These tools replay simulation vectors on the target design
with back-annotated parasitics. They support simulation at differ-
ent design stages, including register-transfer level (RTL), gate-level
netlist, and layout. The power is computed from the switching statis-
tics of individual signal nets and the capacitive load that they drive.
Such simulation at the final layout stage is accurate enough to serve
as the signoff standard, but it comes with a high computational cost
(i.e. relatively long simulation time).

Micro-architectural-level power estimation. Power simula-
tions at early-stage can provide early feedback to designers. Many
design-time approaches [8, 21, 30, 33, 41] construct analytical mod-
els for micro-architectural power estimation by collecting statis-
tics from performance simulators [4, 5]. Wattch [8] is an archi-
tectural dynamic power simulation tool using a linear model, and
McPAT [33] integrates power, area, and timing in a modeling frame-
work. Each functional unit is characterized and attributed a power
value when activated. Multiple active units are then added together
to compute the overall power [16]. These models are preferably
used as an average over thousands or millions of CPU clock cy-
cles. Additionally, inaccuracies have been observed [41, 51] for
McPAT and ML-based solutions [32, 58] are proposed to calibrate
the original McPAT for better accuracy.

Register-transfer-level power estimation. Compared with
architecture-level, power modeling is generally more accurate at
the register-transfer level (RTL), when more design details become
available. Early works [7, 50, 57] construct macro-models to ab-
stract power estimations for small circuit modules with thousands
of gates. In recent years, machine learning (ML) techniques are
exploited [28, 29, 31, 44, 54, 59, 60]. PRIMAL [60] predicts per-cycle
power by processing transitions of all registers with the convolu-
tional neural network (CNN). GRANNITE [59] makes use of graph
neural network [27] to estimate the average power of eachworkload.
Some latest works [44, 54] modeled the vectorless power number
without specific testbenches, together with timing and area at the
RTL stage. In addition, some ML-based works [28, 31] claim to be
micro-architectural-level, but given existing techniques, they still
require RTL simulation in real implementation.

2.3 Design-time Power Emulation
Emulation [11, 26, 47, 56] is a popular approach to accelerating
power simulations for large designs. The term “emulation” is used
in a broad sense to include techniques that deploy power models
on FPGA or other emulator platforms at design-time. According to
our taxonomy, they still belong to design-time power simulation
techniques.

Since these design-time power models will be implemented as
‘hardware’ on emulation platforms, they share many similarities
with proxy-based runtime power models. Therefore, some practi-
tioners often confuse them. These design-time power models for
emulation are indeed extensible to runtime power models when
implemented as part of the target design. But since they initially
target emulation at design-time, they generally tolerate higher hard-
ware overhead, as long as it does not exceed the limit of emulation
platforms.

A pioneering power emulation work [11] has 300% hardware
overhead. Anotherwork [56] employs singular value decomposition
(SVD), which can be computationally expensive. Both [11] and [56]

are demonstrated only at block-level designs. A microprocessor-
level application of FPGA emulation is Simmani [26], whose tem-
poral resolution is 128 clock cycles. PrEsto [47] achieves cycle-
accuracy, but its hardware cost is also quite significant (e.g. 50% of
LUTs).

2.4 Counter-based Runtime Power Models
Different from design-time simulation, minimizing hardware over-
head is a key objective when developing runtime power models. A
classical runtime power modeling approach is to estimate power
dissipation based on performance counters [1, 2, 6, 13, 15, 19, 20,
22, 24, 38, 40, 42, 43, 46, 49]. These counter-based runtime power
models utilize already existing performance counters in target de-
signs like microprocessors or digital signal processors (DSPs). Such
counters can be treated as free and the associated area overhead is
minimum. However, the development of such counter-based power
models typically requires extensive designer’s knowledge of the
specific design to define related hardware events. It significantly
restricts the automation level of these power modeling methods.
Moreover, these counter-monitored hardware events manifest mul-
tiple cycles after the causal trigger event. It restricts the temporal
resolution of estimations to thousands to millions of cycles.

2.5 Proxy-based Runtime Power Models
Instead of relying on existing performance counters, proxy-based
runtime power models [12, 35, 39, 52, 53, 61, 62] are free to select
the most power-correlated signals in the target design as power
model inputs (i.e. power proxies). Due to such higher flexibility,
these models have a higher potential to better optimize the multiple
objectives. On the other hand, since these methods face a larger
number of power model candidates, optimizing power models in
this huge space is more challenging.

Some earlier proxy-based models [12, 35, 39] are coarse-grained
with the temporal resolution of thousands of cycles. Their area
overhead ranges from 1.5% to 20%. Some other methods [61, 62]
improve temporal resolution to 100 cycles. They restrict proxies
mostly to primary I/O signals of design modules at the selected
hierarchy level, significantly reducing the freedom of proxy selec-
tion and the underlying power model. Their area overhead is still
> 4% [61, 62]. In [23], a manually-designed digital power meter
technique is introduced to address voltage-droop in DSP engines.
It takes advantage of predictable dataflow patterns that are not
available for general-purpose CPUs.

Recently, APOLLO [53] claims to achieve < 1% area overhead
for per-cycle on-chip power modeling. This work allows flexible
selection from all available RTL signals in the target design. It is
validated on cutting-edge commercial microprocessors. A most
recent work DEEP [52] further reduces the hardware overhead
to be 0.1% by selecting individual bits from the target design and
improving the proxy selection algorithms.

It is worth noting that some proxy-based runtime power models
can also be applied for design-time power simulation. Due to their
simplicity and hardware-friendly design, they can achieve an ex-
tremely high estimation speed on both simulation and emulation
platforms. For instance, APOLLO [53] claims unprecedented simu-
lation speed (i.e. per-cycle power estimation on millions of cycles
in minutes, including RTL simulation) on emulation platforms [9].
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Figure 1: The general framework for proxy-based runtime
OPM development. Image adapted from [52].

3 PROXY-BASED OPM DEVELOPMENT
As summarized in the previous overview section, proxy-based run-
time OPMs demonstrate great potential in optimizing multiple
objectives including accuracy, hardware overhead, automation, and
temporal resolution. New proxy-based solutions keep emerging in
the latest works. In this section, we introduce the general develop-
ment flow or framework of proxy-based OPMs.

3.1 OPM Development Framework
We first introduce a general and widely-adopted framework or flow
in developing proxy-based runtime OPM. As shown in Figure 1, it
mainly includes three major stages.

• Step 1. Dataset Generation: Given an arbitrary design
RTL, collect corresponding testbenches, then generate signal
waveforms and ground-truth power values through simula-
tion.

• Step 2. Power Model Development: Based on the gen-
erated dataset, a power model is developed for the given
design with data-driven techniques.

• Step 3. Hardware Implementation: The power model is
implemented on hardware as the OPM and integrated as part
of the target design.

3.2 Dataset Generation as Step 1
To develop OPMs with data-driven methods, dataset generation
is the first step. It generates toggling activities 𝑋 ∈ R𝑁×𝑀 and
corresponding power values 𝑦 ∈ R𝑁 . 𝑁 is the total number of
cycles, and𝑀 is the number of power model input candidates. This
setup is illustrated in Figure 2.

Testbench generation. Power consumption is dependent on
the testbench/workload that executes on the target design. There-
fore, the flow starts with collecting sufficient testbenches of the
target design. The collection of sufficient representative testbenches
is not a simple task. Many prior works do not disclose details about
how they generate testbenches for each design. APOLLO [53] pro-
poses to automatically generate random testbenches for the training
dataset. In this process, an evolutionary algorithm is adopted to
produce high-power-consumption testbenches [53].

It is difficult to judge whether generated testbenches are suffi-
cient for accurate power model development. Ideally, generated
testbenches as training data should cover the diverse behavior re-
flected in togging activity in test scenarios (i.e. coverage in feature
space). But it is difficult to achieve such coverage due to the huge
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Figure 2: Toggling activities of signals as runtime OPM prox-
ies. Image adapted from [52, 53].

number of signals in target designs. The author’s rule of thumb is to
generate at least thousands of power samples from asmany different
testbenches as possible. More importantly, make sure the maximum
and minimum power values of training testbenches cover the range
of power consumption in target test scenarios (i.e. coverage in label
space). Such test scenarios include all realistic workloads that may
execute on the target design hardware in the future.

Toggling activity collection. By simulating generated test-
benches on the target design RTL, per-cycle toggling activity/waveform
can be generated and saved in .fsdb or .vcd file format. These col-
lected toggling activities cover all available RTL signals in the de-
sign. As we know, the dynamic power is linearly proportional to
the charging or discharging of gate- and wire-capacitance, which
is reflected in signal transitions/toggling. Due to signal toggling
activities’ high correlation with dynamic power consumption, they
are often used as input candidates 𝑋 to power models.

Ground-truth power generation. Ground-truth power values
𝑦 are necessary to train data-driven power models. Based on tog-
gling activities, power values can be generated by accurate power
simulation with industrial standard tools [10, 45, 48] or even hard-
ware measurement. As mentioned, such simulation at gate-level
with back-annotated parasitics produces accurate power values.

Training and testing data split. After data generation, the
dataset needs to be split into training and testing dataset. For sim-
plicity, we do not clearly distinguish validation set and testing set
here. The testing dataset is used for evaluating the power model per-
formance. Designers should make sure it reflects actual workloads
that execute on real hardware.

3.3 Power Model Development as Step 2
After data generation, the power model design is the key step
and distinguishes different prior works. As mentioned, both ac-
curacy and hardware overhead are essential objectives. To mini-
mize the hardware overhead while maximizing accuracy, the power
model development process should borrow ideas from the hardware-
software co-design.

Model selection. To reduce hardware overhead, many prior
OPM solutions [26, 52, 53, 62] are based on the linear power model
due to its simplicity. Some others [34] adopt fast non-linear models
like the decision tree, with customized hardware implementations
to reduce overhead.
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Works Proxy Candidate Temporal Claimed
Resolution Overhead

[56] 2015 Registers Per-cycle 16%
[39] 2018 Registers > 1K cycles 7%
[62] 2018 Module I/O signals 100s cycles 4 − 10%
[26] 2019 All RTL signals 100s cycles N/A
[12] 2020 Module I/O signals >1K cycles 2-20%
[53] 2021 All RTL signals Per-cycle < 1%
[52] 2022 All bits of RTL signals Per-cycle < 0.1%

Table 2: Overview of representative works for proxy-based
runtime OPMs. Some works [26, 56] are initially proposed
for design-time emulation.

Temporal resolution selection. Another key power model
configuration is its temporal resolution (i.e. size of the power-
measurement timing window). Its selection depends on the tar-
get runtime application using this power model. As mentioned,
coarse-grained estimation is sufficient for DVFS decisions, while
fast power management or voltage-droop mitigation may require
fine-grained temporal resolution.

Hardware overhead evaluation. During the OPM develop-
ment process, the model accuracy can be easily measured based on
generated datasets. In comparison, the hardware overhead evalua-
tion is not as straightforward without real hardware implementa-
tion and simulation, which can be time-consuming.

A common practice is to simply assume a linear correlation
between the number of proxies and hardware cost. Doing this sim-
plifies the hardware overhead optimization problem to minimizing
the number of model inputs. For a linear power model, it means
minimizing the number of (i.e. the 𝑙0 norm of) weights, which is an
existing optimization problem.

Despite the simplicity, the number of proxies cannot fully repre-
sent OPM hardware cost. When using signals as proxies, different
signals’ bit width leads to significantly different hardware costs [52].
More importantly, the actual overhead also depends on the specific
OPM hardware design, including the arithmetic logic design, the
number of bits in weights, and the physical locations of selected
proxies. Therefore, better hardware overhead evaluation method is
desired.

Model input selection. Selecting appropriate model inputs
(i.e. proxies) is the most important step in developing proxy-based
power models. This process involves two key decisions. First, de-
velopers should define the candidate proxies in the target design.
Second, developers should choose appropriate algorithms to select
proxies from candidates.

The proxy candidate setup decides the solution space of proxy
selection. As mentioned, more proxy candidates lead to a more
flexible OPM solution. As the summary of prior works in Table 2
shows, we can observe a trend in using an increasing number of
available signals as proxy candidates.

The proxy-selection algorithm is the key part of the OPM de-
velopment process and directly decides the ultimate OPM accu-
racy and overhead. Already explored algorithm types include but
not limited to clustering [26], heuristic-based selection [62], prun-
ing [52, 53], best subset selection [52]. Their relative advantage may

vary slightly for different target designs and workloads, thus should
be thoroughly verified with testing datasets. Here we provide some
personal experience in proxy selection methods. First, a supervised
selection of proxies is more efficient than unsupervised methods
like clustering. Second, the algorithm should reduce the collinearity
or correlation among selected proxies. In prior works [52, 53], the
feature collinearity is measured with metrics like variance inflation
factor (VIF) [55].

3.4 Hardware Implementation as Step 3
After the design and development of a power model, it needs to be
incorporated into the original design in hardware.

Reduction of hardware cost. Minimizing the hardware over-
head is the most important goal in this step. Weight quantization is
a commonly adopted technique during hardware implementation
of the OPM [52, 53, 56]. According to APOLLO [53], if using a fixed
bit number for all weights, adopting 10 bits leads to negligible accu-
racy loss. For variable bit width, DEEP [52] supports most weights
less than 7 bits and [56] supports most weights less than 9 bits.

Another popular design option is to reduce the usage of multi-
pliers and counters [39, 52, 53] in the OPM hardware. By adopting
binary values for signal toggling activities 𝑋 , multiplying weights
with binary toggling will only require AND gates, without using
multipliers and counters. This hardware implementation setup re-
quires co-design with the power model design in step 2. Please
notice such a binary proxy setup is not limited to per-cycle tem-
poral resolution. The solution for multi-cycle resolution is given
in [53].

Integration with target design. The OPM ultimately needs to
be integrated as part of the hardware design. A common practice is
to simply initiate the OPM in the top module, with selected signals
from the target design RTL (i.e. proxies) connected to the OPM RTL.
In practice, this may require some engineering efforts in revising
target design’s module interfaces to expose the selected proxies to
OPM. Then the whole design is implemented by going through the
original design flow. The OPM hardware overhead can be accurately
measured after the layout finishes.

Figure 3: Microprocessor layout with DEEP [52] OPM inte-
grated. The red region is OPM. Area overhead is 0.04%. The
MAE = 9.5%. Adapted from [52].
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Figure 4: Microprocessor layout with APOLLO [53] OPM in-
tegrated. The red region is OPM. Area overhead is 0.16%. The
MAE = 9.5%. Adapted from [52].

4 PERFORMANCE OVERVIEW
In this section, we briefly discuss the performance of recent works
for runtime OPM. Please notice that due to the significant difference
between the target design and testbench, claimed performance
numbers are not directly comparable.

Table 2 summarizes recent representative works for developing
runtime proxy-based OPMs. Some design-time emulationworks [26,
56] are included since they can be easily extended as runtime OPMs.
An obvious improvement over time can be observed. In Table 2,
the claimed overhead improves down to 0.1% and the temporal
resolution reaches per-cycle, the finest granularity in resolution.
Such improvement benefits from the increasing proxy candidates
and better proxy selection algorithm.

Finally, we present the visualized OPM solutions after integration
with the target industrial design. Here we focus on the most recent
and state-of-the-art solutions [52, 53]. The layout of the target
microprocessor with DEEP [52] OPM design is shown in Figure 3.
In this layout, all cells in the OPM are colored in red. The large
macros are L2 data RAMs and small macros are for L1 cache, TLB,
and tag RAMs. The overhead is 0.04%.

In comparison, the layout of the same microprocessor with
APOLLO [52] OPM is shown in Figure 4. Note that the macro
locations are not fixed and are automatically placed by IC Compiler
II, leading to a slightly different floorplan solution. The overhead
in Figure 4 is 0.16%.

5 CONCLUSION
In this paper, we present a review of recent power modeling tech-
niques. It covers both design-time and runtime models, with our
taxonomy and qualitative analysis of the strength of each type of
power modeling solution. In addition, we introduce the general
framework for developing runtime proxy-based OPMs, which effec-
tively co-optimizemultiple objectives, including accuracy, hardware
cost, temporal resolution, and the design automation level.
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