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Works
New Training New LLM Outperform

Dataset Model GPT-3.5

Prompt Engineering
N/A N/A N/A

[9]–[11], [14], [15]
Thakur et al. [13] Open-Source Open-Source No
VerilogEval [12]

Closed-Source Closed-Source
ComparableChipNeMo [3]

ChipGPT-FT [17]
BetterV [18] Yes

RTLCoder Open-Source Open-Source Yes

TABLE I: LLM-based works on automatic design RTL (e.g.,
Verilog) generation based on natural language instructions.

engineering methods based on commercial LLMs like GPT,
without proposing new datasets or models for RTL code genera-
tion. As we will discuss later, reliance on commercial LLM tools
limits in-depth research exploration and incurs serious privacy
concerns in industrial IC design scenarios. Thakur et al. [13]
generate a large unsupervised training2 dataset by collecting
Verilog-based projects from online resources like GitHub, then
fine-tuning its own model. However, this unsupervised dataset is
quite unorganized with a mixture of code and text. Evaluations
on a third-party benchmark [11] show that the performance
of its fine-tuned model is still inferior to commercial tools
like GPT-3.5. The VerilogEval [12] from the NVIDIA research
team proposes its own labeled training dataset and benchmark,
then fine-tunes its own new model. This may be the first non-
commercial model that claims comparable performance with
GPT-3.5, but according to their authors, neither the training
dataset nor fine-tuned LLM model will be released to the
public in the near future [12]. Besides these customized RTL-
generation solutions, according to our study, all other software
code (e.g., Python) generation models like CodeGen2 [19],
StarCoder [20], and Mistral [21] are significantly inferior to
GPT-3.5 in this RTL generation task.

Compared with solutions based on closed-source commercial
LLM tools like GPT, the open-source LLM solution is vitally
important from both research and application perspectives: 1)
For research purposes, obviously, closed-source commercial
tools prevent most in-depth studies and customizations of this
emerging technique. 2) For realistic applications, users of com-
mercial LLM tools unavoidably have data privacy concerns,

2Most customized LLM solutions (including RTLCoder) are developed by
fine-tuning pre-trained LLMs based on a training dataset about the specific
task. In this paper, we use the terms training and fine-tuning interchangeably.

Abstract—The automatic generation of RTL code (e.g., Verilog) 
using natural language instructions and large language models 
(LLMs) has attracted significant r esearch i nterest r ecently. How-
ever, most existing approaches heavily rely on commercial LLMs 
such as ChatGPT, while open-source LLMs tailored for this specific 
design generation task exhibit notably inferior performance. The 
absence of high-quality open-source solutions restricts the flexibil-
ity and data privacy of this emerging technique. In this study, we 
present a new customized LLM solution with a modest parameter 
count of only 7B, achieving better performance than GPT-3.5 on 
all representative benchmarks for RTL code generation. Especially, 
it outperforms GPT-4 in VerilogEval Machine benchmark. This 
remarkable balance between accuracy and efficiency i s made 
possible by leveraging our new RTL code dataset and a customized 
LLM algorithm, both of which have been made fully open-source1.

I. INTRODUCTION

In recent years, large language models (LLMs) such as
GPT [1] have demonstrated remarkable performance in nat-
ural language processing (NLP). Inspired by this progress, 
researchers have also started exploring the adoption of LLMs 
in agile hardware design. Many new LLM-based techniques 
emerge and attract wide attention in 2023. For example, LLM-
based solutions are proposed to generate design flow scripts 
to control EDA tools [2], [3], design AI accelerator archi-
tectures [4], [5], design quantum architectures [6], hardware 
security assertion generation [7], fix security bugs [8], and even 
directly generate the target design RTL [3], [9]–[15].

Among the above explorations, a promising direction that 
perhaps attracts the most attention is automatically generating 
design RTL based on natural language instructions [3], [9]–[15]. 
Specifically, g iven d esign f unctionality d escriptions i n natural 
language, LLM can directly generate corresponding hardware
description language (HDL) code such as Verilog, VHDL, and
Chisel from scratch. Compared with well-explored predictive 
machine learning (ML)-based solutions in EDA [16], such
generative methods benefit t he h ardware d esign a nd optimiza-
tion process more directly. This LLM-based design generation
technique can potentially revolutionize the existing HDL-based
VLSI design process, relieving designers from the tedious HDL 
coding tasks.

Table I summarizes existing work on LLM-based design RTL
generation. Some works [9]–[11], [14], [15] focus on prompt

∗Corresponding Author
1RTLCoder has been open-source in https://github.com/hkust-zhiyao/RTL-

Coder. It includes the data generation flow, t he c omplete g enerated training 
data set, the model training flow, a nd t he fi nal fin e-tuned mod els (ba sed on 
both Mistral and DeepSeek).
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since all instructions have to be uploaded to LLM providers like
OpenAI. In comparison, each user’s own local LLM developed
based on an open-source solution can eliminate all privacy
concerns and also ensure a reliable service.

However, as mentioned, high-performance open-source RTL
generation models are currently unavailable. According to our
study, a major challenge is the unavailability of high-quality
circuit design data for training: 1) Organized design data is
mostly owned by semiconductor companies, who are almost
always unwilling to share design data. 2) Design data directly
collected online is messy and unorganized, either leading to
inferior model performance or requiring prohibitive human
efforts to clean the dataset.

In this work, we finally fill this gap with our new open-source
LLM solution named RTLCoder. To the best of our knowledge,
it is the first open-source LLM that outperforms GPT-3.5 in all
representative RTL code generation benchmarks [11], [12]. Our
contributions are summarized below.

• Targeting Verilog code generation, we propose an auto-
mated flow to generate a large labeled dataset with over
27 thousand diverse Verilog design problems and answers.
It addresses the serious data availability challenge in IC
design-related tasks, and its potential applications are not
limited to LLMs. LLM directly trained on it can already
achieve comparable accuracy to GPT-3.5.

• We introduce a new memory-efficient LLM training
scheme based on code quality feedback. It further boosts
the ultimate model performance to outperform GPT-3.5,
being comparable to GPT-4. Our 7B model can be trained
with only four commercial GPU cards.

• RTLCoder has been fully open-sourced, including our
data generation flow, complete generated dataset, LLM
training algorithm, and the fine-tuned model. Considering
RTLCoder’s lightweight property and low hardware barrier,
it allows anyone to easily replicate and further improve
based on our existing solution.

II. AUTOMATIC DATESET GENERATION

In this work, we first propose a new automated training
dataset generation flow. Based on this flow, we have generated
over 27 thousand training samples, with each sample being a
pair of design instruction (i.e., model input) and the reference
RTL code (i.e., expected model output). The instruction can be
viewed as the input question for LLMs, describing the desired
circuit functionality in natural language. The reference code
is the expected answer from LLMs, implementing the circuit
functionality in Verilog code. We observe that these generated
training samples exhibit high diversity and complexity in the
RTL-generation domain, encompassing a diverse spectrum of
difficulty levels.

We build this automated generation flow by taking full
advantage of the powerful general text generation ability of
the commercial tool GPT. Please notice that GPT is only used
for dataset generation in this work and GPT-3.5 is adopted
here. The automated dataset generation flow is illustrated in
Figure 1, which includes three stages: 1) RTL domain keywords
preparation, 2) instruction generation, and 3) reference code

generation. We designed several general prompt templates to
control GPT generating the desired outputs in each stage.

A. Stage 1: Keywords Preparation

The first stage of our data generation flow targets preparing
RTL domain keywords for subsequent stages. At process 1
shown in Figure 1, we request GPT to generate keywords related
to digital IC design (i.e., commonly used logic components)
based on a set of prompts Pkey . We obtain a keyword pool
Lkey with hundreds of digital design keywords.

Specifically, in this process 1 , to collect a comprehensive
range of RTL design task topics, we utilize a tree-like structure
with multiple branches to issue queries to GPT. We first prompt
GPT at the root node to provide categories and examples of
frequently used block keywords in RTL design. The response
from GPT has a tree structure that consists of some related
subfields. With the response, we could use the categories and
examples as branches to continue prompting GPT for more
design keywords within each topic. For example, we can use
scripts to ask GPT about more types of the block “multiplier”,
it will return more specific design names such as “Booth
multiplier, Wallace tree multiplier, etc.”. After this process, we
obtain hundreds of keywords related to RTL design in the
Keywords pool Lkey .

B. Stage 2: Instruction Generation

The second stage targets generating sufficient instructions
based on the initial keywords and Verilog source code. At
process 2 , we extend existing keywords from Lkey to complete
instructions. Specifically, we randomly sample one or two
keywords from Lkey each time, combined with prompts Pext,
and feed them into GPT to obtain an RTL design instruction.

In addition to keyword-based instruction generation in pro-
cess 2 , we also propose to generate instructions based on
existing source code collected by us, as shown in process 3 .
This is partially inspired by the work of [22]. By providing GPT
with either part or a complete Verilog code Lcode collected by
[13], we can inspire it to create a related Verilog design problem.
By adopting this new 3 together with 2 , we further enhance the
diversity of our dataset by utilizing a vast and varied collection
of source code.

Process 2 and 3 help generate the initial design instruc-
tion pool Lins based on our customized prompt Pext. After
generating the initial instruction pool Lins with hundreds of
initial instructions, we will iteratively use mutation methods to
significantly augment the scale and complexity of this pool. At
4 , we use Pmut to apply two types of mutation operations on
instructions sampled from the design instruction library Lins.
The process 5 would check every new design instruction using
a set of rules and only passed valid instructions are added to
Lins. Stage 2 is fully automated and accurate enough to generate
a high-quality ultimate instruction pool Lins, including over
50,000 instructions.

In addition, we will further request GPT to generate its
reasoning steps (i.e., how it analyzes the generation task step-
by-step). These reasoning steps further enhance the detailed
information of our instruction pool.
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Fig. 1: Our proposed automated training dataset generation flow.

C. Stage 3: Reference Code Generation

The third stage targets generating the reference code. In the
third stage, as shown in 6 , we feed each instruction from Lins

into GPT, generating 5 corresponding reference design codes
as the solution candidates. After that, in 7 , we will evaluate
these answers using a code checker. In this work, we adopt
an automated syntax checker and only syntax-correct design
code can be kept. If all 5 answers fail the syntax checking,
this instruction will be discarded. Finally, only valid instruction-
code pairs are saved as our dataset. Ideally, process 7 should
also check whether the functionality of the generated RTL
code is consistent with the instruction, but currently generating
testbenches for functionality verification cannot be automated.
This imperfect automated checking can already filter out the
most serious mistakes in the dataset.

After going through all three stages, we generate the ulti-
mate training dataset with more than 27,000 data samples. An
interesting observation is that, although we generate our training
dataset based on GPT-3.5, RTLCoder turns out to outperform
GPT-3.5 on representative benchmarks [11], [12]. One important
reason is that, for each instruction, we have employed a syntax
checker to filter out the obviously incorrect codes generated
from GPT-3.5 and retain the largely correct ones for training
RTLCoder. This process can be viewed as a refinement of GPT-
3.5’s Verilog generation capabilities.

III. NEW TRAINING SCHEME INCORPORATING CODE
QUALITY FEEDBACK

The sequence generation is autoregressive, which means the
model always predicts the next token based on its own generated
previous ones rather than the reference tokens. Therefore, the
traditional model tuning based on maximum likelihood esti-
mation (MLE) would result in a phenomenon named exposure
bias [23], [24] and the trained model would still generate many
low-quality codes. To alleviate this phenomenon, we propose
a new LLM training scheme that incorporates code quality
scoring. It further improves the RTLCoder’s performance on
the RTL generation task.

For each instruction, we will now collect multiple additional
code candidates generated by the initial pre-trained model. Then
we pack these candidates and the original reference code yi
together as yi = {yi,k}, k = 1, 2, ..,K, where K represents the
number of generated code for one instruction xi. Next, all these
candidates will be scored by the scoring mechanism R(xi, yi,k)

which could be a syntax checker or unit test for functionality
check. We will then obtain a set of score zi = {zi,k}, k =
1, 2, ..,K, denoting the quality for the code sample {yi,k}. In the
training process, we make the model learn to assign relatively
higher generation probabilities to answers with higher scores.

To further make this training scheme more memory efficient,
we decompose the computation graph calculation and use the
gradient accumulation-alike method to reduce the space com-
plexity from O(K) to O(1).

IV. EXPERIMENTAL RESULTS

A. Evaluation Benchmark and Metric

To evaluate the performance of Verilog code generation,
there are two representative benchmarks VerilogEval [12] and
RTLLM [11]. The VerilogEval [12] benchmark consists of two
parts, EvalMachine and EvalHuman, each including more than
100 RTL design tasks. We follow the original paper [12] and
use the widely-adopted pass@k metric. The RTLLM V1.1 [11]
benchmark contains 29 RTL design tasks at a larger design
scale. We use Synopsys VCS [25] to calculate the scores of the
design syntax part and design functionality part separately. In
both parts, following the original benchmark [11], each task is
counted as success as long as any of 5 trials passes the test. This
can be interpreted as pass@5 metric. In the generation process,
we set topp = 0.95 and temperature = {0.2, 0.5, 0.8}. For all
tested models (i.e., baselines, RTLCoder, and ablation studies),
we evaluate all 3 temperature conditions and report the best
of each model.

B. Model Training

To ensure a fair evaluation of our proposed RTLCoder,
before training, we explicitly examined the similarity between
samples in our proposed training dataset and those test cases
in benchmarks [11], [12] using Rouge-L metric. Then we get
rid of our training samples that are highly similar to test cases
during the training process.

Based on our generated dataset with 27K instruction-code
pairs, we choose the latest Mistral-7B-v0.1 [21] and DeepSeek-
Coder-6.7b [26] as the basic pre-trained model for finetuning. In
all experiments, we opted for the Adam optimizer with β1 = 0.9,
β2 = 0.999, and learning rate γ = 1e-5, while abstaining from
the use of weight decay. Concurrently, we established a context
length of 2048 and a global batch size of 256. We trained the
model on only 4 consumer-level RTX 4090 GPUs (24GB each),
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Model Type Evaluated Model
Num of

VerilogEval Benchmark [12] RTLLM V1.1 [11]

Params
(using pass@k metric) (using pass@5 metric)

Eval-Machine (%) Eval-Human (%) Syntax-VCS Func
k=1 k=5 k=10 k=1 k=5 k=10 (%) (%)

Closed-Source
GPT-3.5 N/A 46.7 69.1 74.1 26.7 45.8 51.7 89.7 37.9

Baseline
GPT4 N/A 60.0 70.6 73.5 43.5 55.8 58.9 100 65.5

ChipNeMo⋆ [3] 13B 43.4 N/A N/A 22.4 N/A N/A N/A N/A
VerilogEval⋆ [12] 16B 46.2 67.3 73.7 28.8 45.9 52.3 N/A N/A

BetterV⋆ [18] 7B 64.2 75.4 79.1 40.9 50.0 53.3 N/A N/A

Open-Source
Codegen2 [19] 16B 5.00 9.00 13.9 0.90 4.10 7.25 72.4 6.90

Baseline
Starcoder [20] 15B 46.8 54.5 59.6 18.1 26.1 30.4 93.1 27.6

Thakur et al. [13] 16B 44.0 52.6 59.2 30.3 43.9 49.6 86.2 24.1

Base Model Mistral-7B-v0.1 [21] 7B 36.9 48.8 57.4 4.49 12.6 18.6 72.4 20.7
DeepSeek-Coder-6.7b [26] 6.7B 54.1 63.8 67.5 30.2 42.2 46.2 89.6 34.5

Less Training Data RTLCoder-Mistral-10k 7B 56.5 66.6 69.4 31.7 42.2 46.5 86.2 34.5
(10K Samples) RTLCoder-DeepSeek-10k 6.7B 55.3 70.4 76.2 36.7 47.0 50.4 79.3 37.9

Direct Training RTLCoder-Mistral-Direct 7B 58.9 70.0 74.1 34.4 42.3 45.1 89.7 41.4
RTLCoder-DeepSeek-Direct 6.7B 59.8 73.6 77.2 39.1 48.3 51.3 86.2 44.8

RTLCoder RTLCoder-Mistral 7B 62.5 72.2 76.6 36.7 45.5 49.2 96.6 48.3
RTLCoder-DeepSeek 6.7B 61.2 76.5 81.8 41.6 50.1 53.4 93.1 48.3

⋆We cannot directly evaluate VerilogEval [12], ChipNeMo [3] and BetterV [18] on RTLLM Benchmark due to closed-source models. We fully understand
and respect the authors’ privacy concerns. The accuracy values of VerilogEval [12], ChipNeMo [3], BetterV [18], GPT-3.5, and GPT-4 on the VerilogEval
Benchmark [12] are directly cited from the original publication [3], [12], [18].

TABLE II: Performance comparison of RTL code generators on VerilogEval Benchmark [12] and RTLLM Benchmark [11]. The
top scores ranked 1st, 2nd, and 3rd in each column are marked in Green , Blue , and Red , respectively. RTLCoder outperforms
GPT-4 on EvalMachine of [12]. It is only second to GPT-4 on the other benchmarks.

each of which could only afford 2× 2048 context length using
DeepSpeed stage-2 [27].

To implement our proposed training scheme, we first gener-
ated 3 code candidates for each instruction using a pre-trained
model with Beam search method. Then we use Pyverilog [28]
as the syntax checker to score the code candidates.

C. Experiment Results Overview

Table II summarizes the comparison of all relevant RTL gen-
eration solutions, including commercial models GPT3.5/GPT4,
models customized for Verilog generation [12], [13] [18],
software code generators [19]–[21], and ablation studies of
RTLCoder.

In the VerilogEval benchmark [12], for both EvalMachine
and EvalHuman categories, RTLCoder-DeepSeek scores 61.2
and 41.6 respectively. It clearly outperforms GPT-3.5 and is
only inferior to GPT-4 among all the models in EvalHuman.
Specifically, in the EvalMachine part, RTLCoder-DeepSeek and
RTLCoder-Mistral even outperform GPT4 by an absolute value
of 1.2% and 2.5%. A similar trend can be observed in the
RTLLM benchmark V1.1 [11]. RTLCoder is second only to
GPT-4. In summary, RTLCoder outperforms GPT-3.5 and all
non-commercial baseline models in most of the metrics.

Furthermore, we validate the effectiveness of our pro-
posed dataset and algorithm through an ablation study. The
RTLCoder-Mistral-Direct and RTLCoder-DeepSeek-Direct are
directly trained with the traditional MLE method. Using our
training dataset, they can already significantly outperform the
base model and even GPT-3.5 on part of these indexes. Then
the RTLCoders trained with our proposed training scheme

further outperform those using Direct training method on all
benchmarks, indicating that our training method greatly further
improves the model performance.

We also randomly selected 10K samples from the 27K train-
ing dataset to finetune the base models and obtained RTLCoder-
Mistral-10k and RTLCoder-DeepSeek-10k respectively. Com-
pared with the two models, RTLCoders trained on a 27K
dataset are clearly superior on all metrics. Increasing the size of
the training dataset and enhancing its diversity clearly further
improves the model performance.

V. CONCLUSION

This work presents a fully open-sourced LLM solution named
RTLCoder for RTL code generation, achieving state-of-the-art
performance in non-commercial solutions and outperforming
GPT-3.5. We contribute a new data generation flow and a com-
plete dataset with over 27 thousand labeled samples, addressing
the serious data availability problem in hardware-design-related
tasks. Also, we contribute a new training scheme based on
design quality scoring. It greatly boosts the model performance.
RTLCoder’s lightweight property and low hardware barrier
allow anyone to easily replicate and further improve based on
our existing solution.
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