
A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA

WENJI FANG†, Hong Kong University of Science and Technology (HKUST), Hong Kong
JING WANG†, Hong Kong University of Science and Technology (HKUST), Hong Kong
YAO LU, Hong Kong University of Science and Technology (HKUST), Hong Kong
SHANG LIU, Hong Kong University of Science and Technology (HKUST), Hong Kong
YUCHAO WU, Hong Kong University of Science and Technology (HKUST), Hong Kong
YUZHE MA, Hong Kong University of Science and Technology (Guangzhou) (HKUST(GZ)), China
ZHIYAO XIE∗, Hong Kong University of Science and Technology (HKUST), Hong Kong

Artificial intelligence (AI)-driven electronic design automation (EDA) techniques have been extensively
explored for VLSI circuit design applications. Most recently, foundation AI models for circuits have
emerged as a new technology trend. Unlike traditional task-specific AI solutions, these new AI models are
developed through two stages: 1) self-supervised pre-training on a large amount of unlabeled data to learn
intrinsic circuit properties; and 2) efficient fine-tuning for specific downstream applications, such as early-stage
design quality evaluation, circuit-related context generation, and functional verification. This new paradigm
brings many advantages: model generalization, less reliance on labeled circuit data, efficient adaptation to new
tasks, and unprecedented generative capability. In this paper, we propose referring to AI models developed
with this new paradigm as circuit foundation models (CFMs). This paper provides a comprehensive survey
of the latest progress in circuit foundation models, unprecedentedly covering over 130 relevant works. Over
90% of our introduced works were published in or after 2022, indicating that this emerging research trend has
attracted wide attention in a short period. In this survey, we propose to categorize all existing circuit foundation
models into two primary types: 1) encoder-based methods performing general circuit representation learning
for predictive tasks; and 2) decoder-based methods leveraging large language models (LLMs) for generative
tasks. For our introduced works, we cover their input modalities, model architecture, pre-training strategies,
domain adaptation techniques, and downstream design applications. In addition, this paper discussed the
unique properties of circuits from the data perspective. These circuit properties have motivated many works
in this domain and differentiated them from general AI techniques. Finally, we shared our observed challenges
and potential future research directions about developing foundation AI models for EDA methodologies.

CCS Concepts: • Hardware → Very large scale integration design; • Computing methodologies →
Machine learning.

1 INTRODUCTION
Integrated circuit (IC) is the foundation of our information society. Its complexity has been con-
tinuously growing, recently exceeding 100 billion transistors [1]. Such increases in IC complexity
have led to sky-rocketing IC design costs, which are estimated to surpass US$500 million for 3nm
technology [2]. These challenges result in a compelling need to improve IC design efficiency, possi-
bly achieved by ground-breaking next-generation electronic design automation (EDA) techniques.
Many EDA practitioners in both academia and industry have placed high hopes in new artificial
intelligence (AI) or machine learning (ML) methods in IC design and EDA techniques, targeting
more agile design for lower IC design costs, less human efforts, and shorter turnaround time.
AI for EDA/chip design. In recent years, AI for chip design, also named AI/ML for EDA or

AI-assisted EDA [3, 4], has been viewed as a highly promising technique, owing to its ability to
reuse knowledge from prior circuit design data. Relevant AI-driven EDA techniques are also adopted
in commercial EDA tools [5, 6]. Various ML models can be trained to provide early predictions or
†These authors contributed equally to this work.
∗Corresponding author (eezhiyao@ust.hk).

HTTPS://ORCID.ORG/XXXX-XXXX-XXXX-XXXX
HTTPS://ORCID.ORG/XXXX-XXXX-XXXX-XXXX
HTTPS://ORCID.ORG/XXXX-XXXX-XXXX-XXXX
HTTPS://ORCID.ORG/XXXX-XXXX-XXXX-XXXX
HTTPS://ORCID.ORG/XXXX-XXXX-XXXX-XXXX
HTTPS://ORCID.ORG/XXXX-XXXX-XXXX-XXXX
HTTPS://ORCID.ORG/0000-0002-4442-592X

2 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

(a) Type I: Task-Specific AI for EDA Paradigm

Feature
Extraction

ML Model
Design

Single-Stage
Circuit Data

Single
EDA Task

Label
Collection

ML Model
Training

(c) Type II: General Decoder-Based Circuit Foundation Model Paradigm

LLM Decoder
(General)

Phase 1: Pre-Train

Auto-

Regressive

Phase 2: Application

Task-Specific
Circuit Data Generate

Prompt
RAG
SFT
….

Textual
Unlabeled Data

(b) Type II: General Encoder-Based Circuit Foundation Model Paradigm

Phase 2: ApplicationGeneral
Circuit

Embedding

Embeddings of
similar circuits
will be closer

Circuit Encoder
(General)

Phase 1: Pre-Train

Self-Supervise

(no label)

Fine-Tune

Lightweight
ML Model

(Task-Specific)

Graph Text

Unlabeled
Circuit Data

+

Pre-trained LLM

Predictive EDA Tasks
Function

✓ Reasoning
✓ Verification
✓ …

Quality
✓ Timing
✓ Area
✓ …

✓ RTL Code
✓ Verification
✓ Flow control
✓ …

Generative EDA Tasks

Main Research Focus in Circuit Foundation Models

Fig. 1. Different paradigms of AI for EDA techniques. (a) Type I: Supervised Predictive AI Techniques for
EDA. This type of work has been extensively studied. (b)& (c) Type II: Foundation AI Techniques for
EDA (i.e., Circuit Foundation Models). This type of work includes two paradigms, named encoder-based
and decoder-based circuit models. Both paradigms develop the foundation AI model through two stages:
self-supervised pre-training and fine-tuning. Our survey will focus on the emerging type II methods.

optimizations for circuits, bypassing time-consuming downstream design and simulation steps.
Learning from prior design solutions, ML models can perform circuit quality evaluations at early
design stages and thus guide early design optimizations. Existing AI for EDA techniques have been
extensively explored for almost all standard VLSI design stages (e.g., architecture stage, high-level
synthesis (HLS) code, register-transfer level (RTL) code, gate-level netlist, post-placement layout,
clock tree, and post-routing layout) and all primary circuit design objectives (e.g., timing, power,
area, congestion, IR drop, signal integrity, and functionality).
Foundation AI for EDA/chip design: a new trend and our focus. Recently, general foun-

dation AI models in natural language processing (NLP) and computer vision (CV) (e.g., BERT [7],
CLIP [8], DALLE [9], and ChatGPT [10]) have emerged and represent a significant leap in AI
techniques. These foundation models, characterized by their large model scale and application
scopes, have demonstrated an incredible ability to understand, predict, and generate content [11].
In comparison with these foundation models in NLP and CV, previous AI applications in circuits
lag far behind well-explored general natural languages and images. This has motivated the latest
trend of exploring foundation AI models for EDA techniques and circuit design applications.
The trending works on foundation AI for EDA have demonstrated unprecedented ability in

model generalization, few-shot learning, and generation tasks. These models typically leverage
a two-stage paradigm of pre-training on large-scale datasets followed by fine-tuning for specific
applications, significantly enhancing adaptability across various EDA tasks. Their great potential
has attracted wide attention from the EDA community. Some representative works [12–15] are
relatively highly cited since their publication, compared with average EDA publications. However,
there is a lack of systematic definition, analysis, or survey on this series of latest works, leading
to confusion when discussing many concepts in our communities (e.g., large circuit model vs.
LLM-aided design vs. AI agents for EDA). In this survey paper, we will cover all representative

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 3

DeepGate

DeepGate2

FGNN

HOGA

DeepGate3 PolarGate

DeepSeq

Circuit
Encoder

NetTAGDeepCell

ProgSG

Design2Vec

Circuit
Encoder

Circuit
Fusion

DeepGate4

TAG

LLM-HD

HARP
SNS v2

MGVGA

R
TL

H
LS

La
yo

u
t

Open-Source

Close-Source

2025

2024

2023

2022

2021

N
e

tl
is

t

Encoder-Based

Circuit
GNN

GAMORA

(a) Encoder-based circuit foundation model, covered in Section 4.

Open-Source

Close-Source

2025

2024

2023

R
TL

 C
o

d
e

Decoder-Based

RTLLM

VerilogEval

CreativeEval

RTL-repo

VHDL-Eval

ChipGPTV

VerilogEval v2

Chip-Chat

AutoChip

VGen

ChipNemo

MG-Verilog

VerilogCoder

CraftRTL

RTLSquad

BetterV

ChipGPT

RTLRewriter

LLM4DV

AutoSVA2

AssertLLM

ChIRAAG

Verilog
Reader

UVLLM

MEIC

RTLFixerHLSPilot

C2HLSC

GPTAIG
Chip

SpecLLM

DIVAS

ChatEDA

RAG-EDA

LADAC

Artisan

Analog
Xpert

Analog
Coder

LaMAGICH
LS

 C
o

d
e

RTL-Coder

AutoVCoder

Origen

AVIRIL

CodeV

ChipAlign

SynthAI

NL2SVA

O
p

t. Se
cu

ri
ty

Kande
et al.

NSPG

A
rc

h
it

e
ct

u
re

DeepRTL

HDL
Debugger

V
er

if
ic

at
io

n
 &

 D
e

b
u

g

VeriAssist

FabGPT

DRC-Coder

Fl
o

w
&

La
yo

u
t

DAVE
(2020)

Pearce
et al.
(2021)

Analog
Genie

A
n

al
o

g

Self-
HWDebug

SecRT-
LLM

FVEval

Assertion
Bench

(b) Decoder-based circuit foundation model, covered in Section 5.

Fig. 2. Evolutionary tree of foundation AI models for VLSI design and EDA.

4 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

works on foundation AI for EDA. We propose referring to this type of work as circuit foundation
models (CFMs). Figure 2 illustrates the evolutionary tree of existing circuit foundation models,
including both encoder-based and decoder-based paradigms. This paper also covers the potential
and challenges of CFMs from our perspective.

Structure of Section 1. In this Introduction, we will first propose our own taxonomy of existing
AI for EDA techniques in Section 1.1, categorizing all existing AI for EDA techniques into two major
types. Then we will briefly introduce the already extensively studied Type I techniques (supervised
AI for EDA) in Section 1.2 and elaborate on the emerging Type II techniques (foundation AI for
EDA, the focus of our survey) in Section 1.3. After that, in Section 1.4, we will summarize all existing
surveys that cover similar topics and elaborate on the contributions of this survey. In Section 1.5,
we will introduce the overall structure of this whole survey paper.

1.1 Our Taxonomy of AI for EDA Techniques: Two Different Types
In this survey, we propose to categorize existing AI for EDA techniques into two main types, as
listed below. Figure 1 summarizes and compares all three paradigms of these two types of works.

• Type I: Supervised Predictive AI Techniques for EDA. The mainstream paradigm of
previous AI for EDA solutions adopts supervised predictive AI models. These supervised
predictive models have been developed for various applications, including early-stage design
quality prediction, fast design quality simulation, design space exploration, etc. Relevant
works have been extensively studied and covered in existing surveys [3, 4] and book [16].

• Type II: Foundation AI Techniques for EDA (Circuit Foundation Model). This trend-
ing technique is the focus of this survey. The development of foundation AI solutions,
according to our proposed definition, involves two phases: 1) Pre-training phase; 2) Fine-
tuning phase. The first pre-training step, which is typically self-supervised on a large amount
of unlabeled data, enables the AI model to learn more general circuit intrinsic patterns. The
subsequent fine-tuning step can efficiently make the model adapt to specific EDA tasks.

Figure 1(b) & (c) summarize two different paradigms of foundation AI models for circuits.
We propose to incorporate both paradigms into the scope of circuit foundation models:
– Encoder-based circuit foundation models. One primary paradigm performs circuit

representation learning to support predictive tasks. They typically encode a circuit design
into a general embedding (i.e., a vector with rich circuit information). This embedding
will be the input to lightweight downstream models for various EDA applications.

– Decoder-based circuit foundation models. The other primary paradigm performs
decoding tasks, thus supporting generative tasks. They typically adopt decoder-based
large language models (LLMs) to help generate circuits, including design HLS or RTL
code, design functionality descriptions, verification assertions, EDA tool scripts, etc.

1.2 Type I: Supervised Predictive AI Techniques for EDA (covered in prior surveys)
Existing AI for EDA methods are mostly tailored to specific tasks, such as early prediction of
various design quality metrics (e.g, timing [17–22], area [23–26], power [27–35], IR drop [36–40],
routability [41–47], crosstalk [48–50], and manufacturability [51–53]) or the reasoning of circuit
functionalities [54–58] for verification applications. Additionally, tasks for circuit optimization (e.g.,
flow tuning [59–61], design space exploration [62–64], design quality optimization [65, 66]) also
largely rely on the prediction of circuit quality to provide feedback. As Figure 1 (a) shows, these
methods are typically developed by supervised training, which requires extensive label collection,

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 5

model customization, and model development for every single task. Despite obvious effectiveness,
this mainstream supervised paradigm has several inter-related general limitations:

(1) Difficulty to get sufficient labeled data. It is typically difficult to accumulate sufficient
labeled training data: 1) Many coarse-grained prediction tasks do not support many la-
bels. For example, to predict the layout area of a netlist, each circuit layout only provides
one label (i.e., its layout area). 2) The label generation process is inherently highly time-
consuming. A dilemma is, most predictive AI models are trained to bypass the the slowest
design/simulation steps. However, these slowest steps are exactly required to collect labels.

(2) Time-consuming AI model development process. The development process of super-
vised task-specific solutions is tedious and time-consuming. The development steps include
circuit collection, label generation, feature engineering, model architecture design, model
training, and model testing. This whole process easily takes months of engineering efforts.

(3) Lack of generalization across tasks. Since supervised task-specific models cannot be
directly generalized to other tasks, it leads to an inefficient repetitive development of ML
solutions. Moreover, from the methodology perspective, it implies that these supervised
ML solutions only learned task-specific patterns, instead of understanding more general
knowledge of target circuit designs.

Due to the page limit and the large number of extensively explored type I works, we will not
exhaustively cover all prior type I works. For a more comprehensive list of type I supervised
predictive works, we refer our readers to prior surveys [3, 4] and a book [16] co-authored by many
researchers in this domain.

1.3 Type II: Foundation AI Techniques for EDA (the focus of this paper)
This survey focuses on the emerging paradigms of foundation AI techniques for EDA. As illustrated
in Figure 1 (b) and (c), this type of technique leverages pre-trained foundation AI models for circuits
(referred to as circuit foundation models), which can be efficiently fine-tuned using a small amount
of task-specific labeled circuit data. Compared to traditional task-specific supervised AI for EDA
solutions, this type II techniques offer significant advantages:

(1) Learning unlabeled circuit intrinsics.Circuit foundationmodels are typically pre-trained
on a large amount of unlabeled data, enabling them to capture the underlying intrinsic
information about circuits, without requiring expensive labeled datasets.

(2) Efficient fine-tuning for solving EDA task. Well-pre-trained models require only a
small amount of labeled data for fine-tuning. It significantly reduces the time and resources
needed to solve each specific EDA task compared to training models from scratch.

(3) Generalization across various tasks. General circuit intrinsics learned by foundation
models can be adapted to multiple tasks, making the models versatile and reducing the need
for repetitive task-specific model development.

(4) Unprecedented generative capability for EDA tasks. Some circuit foundation models
exhibit remarkable generative capabilities, unprecedentedly automating tasks such as circuit
code generation, assertion generation for verification, and design flow script generation.
These models go beyond existing predictive tasks, enabling innovative AI-driven solutions
that enhance design productivity and streamline circuit development flow.

Encoder-based circuit foundation model. Figure 1 (b) demonstrates the paradigm of circuit
encoders. Circuit encoders transform various circuit modalities (e.g., graphs or text formats) into
generalized embeddings that contain rich intrinsic circuit properties. These encoders are typically
pre-trained on circuit data. Due to the uniqueness of the circuit data compared with well-studied

6 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

images or natural language, encoder models have to be specifically customized to handle circuit
data. Research works primarily focus on two aspects: (1) in phase 1, developing specialized ML
architectures and pre-training techniques to effectively capture circuit semantics, structural in-
formation, and physical attributes, and (2) in phase 2, leveraging pre-trained circuit encoders to
support various predictive EDA tasks, including design quality evaluation and functional reasoning.
In this survey, we systematically categorize existing circuit encoders according to their respective
design stages and provide a comprehensive analysis of their supported downstream tasks.
Decoder-based circuit foundation model. Figure 1 (c) illustrates the paradigm of circuit

decoders. Circuit decoders typically leverage LLMs as their backbone, which are typically extensively
pre-trained on vast text datasets spanning multiple domains. Leveraging the powerful pre-trained
LLMs, circuit decoders mainly focus on domain adaptation to circuit-related generative tasks,
such as prompt engineering, fine-tuning, retrieval-augmented generation, etc. In this survey, we
categorize existing decoder-based methods based on their application domains, covering key areas
such as circuit code generation, verification, design flow automation, etc. For each category, we
analyze representative benchmarks, model development techniques, and the latest advancements.

Key differences between encoder- and decoder-based models are summarized below:
(1) Circuit modality as input: Encoders primarily process graph-based circuit structures,

such as netlists and control-data flow graphs, often leveraging graph learning models. Some
recent works integrate multimodal learning, combining structural graphs with textual
descriptions. In contrast, decoders focus on text-based formats like HDL code and natural
language specifications, utilizing LLMs for interpretation and generation.

(2) Circuit learning techniques: Encoders require customized pre-training and fine-tuning on
circuit data. They are typically built from scratch using graphAImodels. There is no standard
architecture for circuit encoding, leading to diverse model designs and self-supervised
learning techniques. In contrast, decoders typically rely on LLMs already extensively pre-
trained on vast text datasets. Relevant works rely on existing pre-trained LLMs in the public
domain, including both open-sourced (e.g., Llama, Mistral, DeepSeek) and commercial (e.g.,
GPT-3.5, GPT-4o) LLMs. These works focus on adaptation to the circuit domain through
prompt engineering, fine-tuning, and retrieval augmented generation (RAG).

(3) Target downstream tasks: Encoders typically support predictive tasks such as design
quality evaluation and functional reasoning, leveraging encoded circuit embeddings. De-
coders are typically tailored for generative tasks, such as circuit code generation, verification
automation, design flow generation, etc.

1.4 Comparison of Existing Relevant Surveys and This Paper.
Table 1 compares all existing survey papers [11, 67–73] about foundation AI models for circuit
applications. Notably, almost all surveys [67–73] focus only on decoder-based models (i.e., LLM for
EDA). This trend reflects the rapid evolution of LLMs and their significant potential for generative
EDA tasks, such as HDL code generation, verification, debugging, etc. Among these surveys on
decoder-based LLMs for EDA, some surveys [67–69] try to provide comprehensive reviews on
multiple relevant tasks, while some others [70–73] focus on one specific topic, mostly about
circuit security. The only exception is a special perspective paper [11] co-authored by many EDA
researchers. It advocates for an ambitious framework of multiple encoder-based foundation models
aligned across design stages. This envisioned concept is named large circuit model (LCM) [11].
Different from existing surveys, our survey paper incorporates both encoder-based and decoder-
based circuit foundation models, analyzing their similarities and differences.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 7

Surveys Design Design Design Design Design Design Encoder Decoder Time No. of CFM
Generation Verification Debugging Security Optim. Flow -based -based Published Works Covered

[70] ✓ ✓ 2023-10 15
[67] ✓ ✓ ✓ ✓ ✓ 2023-12 22

[11] ✓ ✓ ✓ ✓ 2024-03 6 (Encoder)
+ 21 (Decoder)

[71] ✓ ✓ ✓ ✓ 2024-04 14
[72] ✓ ✓ ✓ ✓ ✓ 2024-05 32
[73] ✓ ✓ ✓ ✓ ✓ 2024-06 24
[74] ✓ ✓ ✓ ✓ ✓ 2024-10 29
[69] ✓ ✓ ✓ ✓ 2024-12 71
[68] ✓ ✓ ✓ 2025-01 39

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 2025-03 21 (Encoder)
+ 111 (Decoder)

Table 1. Comparison of existing surveys on foundation models for chip design, covered in Section 1.4.

Table 1 also reports the number of CFM-related works covered in each survey paper. We only
count works in the scope of the circuit foundation model (i.e., pre-train and fine-tuned AI models
targeting circuit design tasks). Partially due to the fast development in this emerging direction,
most existing surveys only covered less than 40 related works. In comparison, our comprehensive
survey unprecedentedly introduces the largest number of (i.e., over 130) relevant works, covering
all key circuit design tasks listed in Table 1. We briefly introduce each existing survey and highlight
the unique contributions of our study below.

Surveys on decoder models covering broad tasks. LLM4EDA [67] is an early comprehensive
review, covering various EDA tasks such as chatbot-based methods, circuit code and script genera-
tion, and circuit verification. However, since it was published in 2023 and this direction developed
very fast, it only covered 22 works. Xu et al. [74] summarize 29 early-stage studies on circuit
code generation, debugging, verification, and physical implementation. While it provides insights
into these areas, it lacks coverage of the latest developments and broader topics such as security,
design optimization, and architecture design. Abdollahi et al. [69] provide a more extensive survey,
analyzing 71 studies on LLM-assisted circuit design, including applications in circuit generation,
verification, and debugging. However, possibly due to their automated literature screening process,
we observed several incorrect descriptions in this survey. For example, the survey [69] incorrectly
categorizes works of [75–77] as LLM-aided design methodologies, while these works actually
primarily focus on the acceleration of LLMs (i.e., designing hardware accelerators). A recent survey
by Pan et al. [68] reviews LLM applications in EDA. Despite its recency, it still only covers a limited
number of works (39 works), primarily focusing on design generation and design flow automation.
It lacks a broader discussion on design verification, security, architecture design, and analog tasks.

Surveys on decoder models covering a specific task. In addition to surveys targeting broad
EDA applications, the other series of surveys [70–73] focus specifically on circuit security topics
with LLM-assisted techniques. Saha et al. [70] pioneered the discussion of integrating LLMs into the
SoC security verification paradigm in 2023. At the time, not many specialized LLM-based solutions
had been customized for SoC security. Therefore this work [70] primarily summarizes applying
general LLM techniques in hardware security tasks. In 2024, three short surveys (all less than 7
pages) [71–73] cover LLM methods for hardware security, each covering 10 to 30 works.

A perspective paper on LCM. In 2024, a special perspective paper [11] co-authored by many
EDA researchers proposes and advocates an interesting and ambitious concept of large circuit
model (LCM). This LCM can be viewed as an envisioned framework of multiple aligned encoder-
based circuit foundation models, each devoted to one design stage. This paper also reviews both
supervised task-specific AI solutions and foundation AI models for EDA (i.e., 6 encoders and 21

8 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

decoders). It identifies key challenges in developing large-scale circuit encoders and sets the stage
for future advancements in encoder-based circuit foundation models.

The contributions of this survey, compared with prior surveys, can be summarized below:
(1) This survey proposes the concept of circuit foundation model. It incorporates both encoder-

based circuit representation learning techniques and decoder-based LLM for EDA methods
into a unified framework, enabling comparison between these two paradigms.

(2) This comprehensive survey systematically introduces over 130 works. All existing circuit
foundation models cited in prior surveys [11, 67–73] have been covered in this work.

(3) The 21 encoder-based models span all standard design stages, including HLS, RTL, netlist,
and layout stages, along with their supporting predictive EDA tasks.

Section 2: Preliminary

Specification

Netlist

module a
 input in [2];
 ……
endmodule

RTL

Layout

void a
 data_t x;
 ……
 loop: for …

HLS

VLSI Design Flow

V
e

rificatio
n

x

Logic D
esign

P
h

ysical D
esign

Section 4: Encoder-Based
Circuit Foundation Models

Section 5: Decoder-Based
Circuit Foundation Models

Section 3: Unique Circuit Properties

• Multiple Design Stages

• Functional equivalence

• Multimodal Circuit Format

• Different circuit aspects

• Target Objective

• Design quality & Functionality

• Hardware-Specific Property

• Parallel execution

• Circuit Data Availability

• Scaling law

• Circuit Reusability

• Semantic similarity

Section 6: Challenges & Potential Directions

• Performance & Scalability

• Encoder & decoder enhancement
• Divide-and-conquer for large circuits

• Circuit Data Avaliability

• Synthetic circuit generation
• Circuit data augmentation

• Unifying Encoder-Decoder

• Circuit embedding for enhanced generation
• Generated circuits for enhanced training

Circuit Encoders for Predictive Tasks

• Section 4.1: HLS Encoder

• Design space exploration

• Section 4.2: RTL Encoder

• PPA prediction
• Functional verification

• Section 4.3: Netlist Encoder

• PPA prediction
• Functional reasoning
• Logic design and verification

• Section 4.4: Layout Encoder

• Congestion prediction
• Hot spot detection

• Section 4.5: New Trend for Encoder

• ML architecture & pretext tasks
• Circuit multimodal fusion
• Cross-design-stage alignment

Circuit Decoders for generative tasks

• Section 5.1 – 5.3: LLM for Circuit Code

• RTL code generation
• HLS code generation
• Circuit code optimization

• Section 5.4 & 5.5: LLM for Verification

• Functional verification
• Circuit code debugging

• Section 5.6: LLM for Hardware Security

• Security assertion generation
• CWE verification

• Section 5.7: LLM for Design Flow & layout

• Design flow automation
• Physical design &fabrication

• Section 5.8: LLM for Architecture

• Software-hardware co-design
• Specification generation

• Section 5.9: LLM for Analog Circuit

• Analog circuit generation

Section 1: Introduction

• Section 2.1: VLSI design stage and flow

• Section 2.2: LLM Techniques

• Section 2.3: Self-Supervised Learning Techniques

• Section 2.4: Multimodal Learning Techniques

• Section 1.1 – 1.3: Our Taxonomy of AI for EDA

• Type I: Supervised Predictive AI for EDA

• Type II: Circuit Foundation Model

• Section 1.4: Related Surveys vs. This Paper

• Section 1.5: Overall Structure

Fig. 3. Overview of this survey paper. Section 2 provides the background of VLSI circuit design and foundation
AI model techniques. Section 3 discusses the unique properties of circuit data that motivate AI-driven solutions.
Section 4 and Section 5 comprehensively review existing circuit encoders and decoders, respectively. Finally,
Section 6 explores key challenges and future directions in circuit foundation models.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 9

(4) The 111 decoders-based models cover all mainstream EDA applications, including VLSI
circuit code processing (generation, optimization, verification, and debugging), hardware
security, design flow automation, physical design, architecture design, and analog design.

(5) Besides the in-depth analysis of these approaches, we highlight key advancements, chal-
lenges, and future research directions to further enhance circuit foundation models and
their impact on modern VLSI design automation.

This survey tries to cover all publications within the scope of the circuit foundation model,
including journals, transactions, conference and workshop proceedings, thesis, and pre-prints.
However, very short articles (e.g., late-breaking results, experiment reports) that are equal to or
less than 3 pages may not be covered. For the same work with multiple versions and possibly
different titles, we will avoid duplicated citations and tend to cite the latest version. When counting
the publication date, we use the date when the earliest version gets released to the public.

1.5 Overall Structure of This Survey Paper
Figure 3 provides the overall structure of this paper.

• In Section 2, we will summarize related preliminary knowledge, covering both standard
VLSI circuit design flow (Section 2.1) and basic techniques of general foundation AI models,
including LLM techniques (Section 2.2), self-supervised learning techniques (Section 2.3),
multimodal learning techniques (Section 2.4).

• In Section 3, we will introduce all our observed unique properties of circuit data. These
properties have largely motivated many CFM works in this survey, and differentiate these
works from general AI solutions in other domains (e.g., CV, NLP).

• In Section 4, wewill cover all existing encoder-based circuit foundationmodels, covering
the HLS stage (Section 4.1), RTL stage (Section 4.2), netlist stage (Section 4.3) and layout
stage (Section 4.4). The emerging and more advanced circuit encoder techniques will be
covered in Section 4.5.

• In Section 5, wewill cover all existing decoder-based circuit foundationmodels, covering
all application domains: RTL code generation (Section 5.1), HLS code generation (Section 5.2),
design optimization (Section 5.3), hardware code verification (Section 5.4), hardware code
debugging (Section 5.5), hardware design security (Section 5.6), design flow automation and
layout design (Section 5.7), hardware architecture design (Section 5.8), and analog circuit
design (Section 5.9).

• In Section 6, we will analyze the challenges and opportunities of the circuit foundation
models, based on our own research experience.

10 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

2 PRELIMINARY
Before covering specific CFM works, in this Section, we first summarize preliminary knowledge
related to circuit foundation model, covering both standard VLSI circuit design flow in Section
2.1 and the basic techniques of foundation AI models, including LLM techniques in Section 2.2,
self-supervised learning techniques in Section 2.3, multimodal learning techniques in Section 2.4.

2.1 Standard VLSI Design Stage and Flow
A standard VLSI circuit design flow comprises several stages: specification definition, RTL design,
logic synthesis, and physical design, as shown in the center of Figure 3. At each stage, the design is
represented in the corresponding format: specification, RTL code, netlist, and layout. In addition
to these standard stages, high-level synthesis (HLS) is sometimes employed for more agile design
or FPGA prototyping, based on HLS code in C/C++/SystemC. Verification and design quality
analysis are carried out at various stages to ensure functional correctness and meet design quality
constraints, respectively. Together, these stages transform the initial design specifications into a
manufacturable and verified digital circuit layout. We introduce each design stage below.

Specification definition. The design process begins with a clear natural language specification
that outlines the expected functionality, as well as performance, power, and area (PPA) requirements
for a target digital circuit. This specification serves as the blueprint for subsequent design steps.
HLS code design. The specification can be translated into an abstract design using high-level

programming languages or description languages like C/C++ or SystemC. Designers develop
algorithms that meet the functional requirements. The algorithms are described at a high level,
focusing on functionality rather than hardware specifics.
RTL design. RTL design is the process of translating the high-level specification into a more

detailed and implementable representation using hardware description languages (HDLs) such as
Verilog or VHDL. These HDLs describe the behavior of digital circuits at the register-transfer level.
The HDL code captures how data moves between registers (i.e., sequential registers) and how logic
gates operate on that data within each clock cycle (i.e., combinational logic). Viewing each design
as a finite-state machine, RTL defines the state transitions across clock cycles, ensuring that the
circuit responds correctly to changes in input signals and synchronizes with the clock.

Logic synthesis. Logic synthesis converts high-level RTL designs into low-level, optimized gate-
level netlists. This process consists of three key steps: translation (i.e., elaboration), optimization,
and technology mapping. First, the synthesis process begins by translating the RTL code into an
intermediate representation, such as the AND-Inverter Graph (AIG) in synthesis tools like ABC [78].
The synthesis tool then optimizes the logic based on constraints like delay and logic depth. Finally,
technology mapping is performed, where the optimized logic is mapped to specific gates from a
technology library provided by semiconductor foundries. This library contains various gate types,
each with unique characteristics. The final output is a gate-level netlist, which represents the circuit
in terms of logic gates and their interconnections.

Physical design. Physical design translates the gate-level netlist into a manufacturable physical
layout. This process includes several key steps: floor planning, placement, clock tree synthesis
(CTS), and routing. The first step, floor planning, involves arranging the major functional blocks
of the chip in a way that optimizes performance while minimizing area. Designers determine
the approximate locations of various components. Following floor planning, placement positions
individual gates and components within the predefined floorplan, aiming to minimize wire length
and ensure efficient placement. CTS follows placement, where the clock distribution network is
designed to ensure the proper synchronization of all clock signals across the chip. Finally, routing
connects the placed components using metal layers to form the required electrical connections.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 11

During routing, considerations such as signal integrity, minimization of crosstalk, and adherence
to design rules are essential to ensure the layout is functionally correct and manufacturable.
Verification. Verification ensures the design meets specifications [79] and includes functional

and physical verification. Functional verification checks if the design meets its specifications, using
testbench simulations to model real-world conditions. Formal verification applies mathematical
techniques, with equivalence checking to ensure consistency between design representations
(e.g., RTL and gate-level). Physical verification ensures the layout complies with manufacturing
constraints using design rule checking (DRC) and layout versus schematic (LVS) to detect and
correct violations for manufacturability.
Analysis. Analysis evaluates the design against performance metrics to ensure it meets spec-

ifications. Static timing analysis (STA) verifies that timing constraints are met, ensuring signals
propagate within required time limits. Power analysis estimates both dynamic (switching activity)
and static (leakage currents) power consumption. Signal integrity analysis checks for issues like
crosstalk, noise, and electromagnetic interference. Additionally, thermal analysis assesses heat
generation and dissipation to ensure proper thermal management and reliable operation.

2.2 LLM Techniques in AI Foundation Models
The evolution of LLMs marks a pivotal advancement in artificial intelligence, particularly in NLP.
Before delving into their applications in circuit design, it’s essential to understand their techniques.
Below, we introduce the brief evolution history of LLM and the key techniques employed in the
morden advanced LLM models. This foundational understanding highlights the transformative
potential of LLMs across various domains, including circuit design.
A brief history of LLM. LLMs have evolved from early rule-based approaches to modern

deep learning-driven foundation models, significantly advancing natural language processing
(NLP). These advancements have enabled models like BERT and GPT to capture complex semantic
and contextual nuances, leading to breakthroughs in various language-related tasks. Below, we
summarize the key evolutionary stages of LLM development.

(1) Rule-based method: The earliest NLP systems relied on manually crafted linguistic rules
and statistical models [80]. These approaches defined explicit syntactic and semantic rules
for processing text but were limited in scalability and adaptability. While rule-based meth-
ods could handle predefined patterns effectively, they struggled with the complexity and
variability of natural language, making them unsuitable for large-scale applications.

(2) ML solution by manual feature engineering: The introduction of statistical machine
learning improved NLP by enabling data-driven language modeling. Early machine learning
solutions required extensive manual feature engineering, where domain experts designed
handcrafted features such as n-grams, part-of-speech tags, and dependency structures.
Traditional models, including HiddenMarkovModels (HMMs) and Support Vector Machines
(SVMs), demonstrated better adaptability than rule-based methods but still relied on human-
designed representations, limiting their generalization capabilities.

(3) Task-specific deep learning: The emergence of deep learning revolutionized NLP by
replacing manual feature engineering with automatic representation learning. Models like
Word2Vec [81] and GloVe [82] introduced word embeddings, representing words in continu-
ous vector spaces to capture semantic relationships. Recurrent Neural Networks (RNNs)[83]
and Long Short-Term Memory Networks (LSTMs)[84] further improved sequence modeling
by capturing contextual dependencies in text. However, these models faced challenges with
long-range dependencies and computational efficiency due to their sequential nature.

12 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

(4) General transformer-based foundation model: The introduction of the Transformer
architecturemarked a paradigm shift in NLP. Transformers utilize self-attentionmechanisms
to process entire sequences in parallel, capturing global dependencies efficiently. Encoder-
based models like BERT excel in understanding context through bidirectional masked
language modeling, while decoder-based models like GPT specialize in generative tasks
using autoregressive token prediction. These foundation models are pre-trained on massive
datasets and fine-tuned for various downstream applications, eliminating the need for
task-specific model development. Their success has extended beyond NLP, inspiring new
research directions in domains such as circuit design, where they are increasingly being
used for tasks such as RTL code generation, verification, and design optimization.

Key techniques in decoder-only LLMs. Modern decoder-only LLMs, such as GPT, leverage
a range of advanced techniques to enhance their performance and adaptability across various
tasks. Below, we summarize five key techniques used in state-of-the-art decoder-based language
models. (1) Auto-regressive generation: Decoder-only LLMs follow an auto-regressive approach,
where they generate text sequentially, predicting one token at a time based on previously generated
tokens. This autoregressive process allows models to produce coherent and contextually relevant
text, making them highly effective for generative tasks such as text completion, summarization,
and code generation. (2) Prompt engineering: Prompt engineering involves carefully crafting
input text (prompts) to guide LLMs toward producing desired outputs. Since decoder-based models
lack inherent task-specific fine-tuning for every possible use case, effective prompting helps steer
model behavior without requiring additional training. Techniques such as zero-shot prompting
(providing a task description), few-shot prompting (including examples), and chain-of-thought
prompting (explicit reasoning steps) have been widely explored to enhance model performance
across different applications. (3) Supervised fine-tuning (SFT): SFT refines pre-trained LLMs
on specific datasets with labeled examples, enabling better adaptation to specialized tasks. By
providing high-quality training examples, SFT improves accuracy and reliability in domain-specific
applications, such as HDL code generation, circuit verification, and design optimization. Many
domain-adapted LLMs, including those for EDA tasks, leverage SFT to improve performance
on structured data and technical domains. (4) Retrieval-augmented generation (RAG): RAG
enhances LLMs by incorporating external knowledge sources during inference. Instead of relying
solely on pre-trained knowledge, the model retrieves relevant documents or contextual information
from databases, augmenting its response with up-to-date and factual content. This technique is
particularly useful for knowledge-intensive applications, such as circuit debugging and design flow
optimization, where dynamic information retrieval improves response accuracy and relevance.
(5) Reinforcement learning from human feedback (RLHF): RLHF refines LLM behavior
using human preferences to optimize response quality. In this approach, human annotators rank
model outputs, and reinforcement learning algorithms adjust the model’s reward function to
align responses with human expectations. RLHF has been instrumental in making LLMs more
aligned with human intent, improving coherence, factual correctness, and ethical considerations in
generated outputs.

2.3 Self-Supervised Learning Techniques in AI Foundation Model
In the development of AI foundation models, a variety of machine learning techniques are employed
to enable these models to generalize across a wide range of tasks. These techniques are categorized
into two primary phases: self-supervised learning for pre-training and supervised fine-tuning for
downstream tasks.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 13

Self-supervised learning is a powerful technique that allows models to learn from unlabeled data
by generating labels from the data itself, often using auxiliary tasks. This phase helps the model
understand general representations that can later be fine-tuned for specific tasks. We demonstrate
the representative self-supervised learning techniques below.

• Contrastive learning. This method learns representations by comparing similar (positive)
and dissimilar (negative) pairs. For example, in image processing, positive pairs may be
different augmentations of the same image, while negative pairs come from different classes.
This method helps models generate useful embeddings for downstream tasks like retrieval
or classification. It has been successful in computer vision and natural language processing
(e.g., SimCLR [85], CLIP [8], MoCo [86]).

• Mask-reconstruction. This method involves randomly masking parts of the input and
training the model to predict the missing information. This forces the model to learn context
from the surrounding data, improving its ability to understand structure and relationships.
In NLP, BERT [7] predicts masked words in sentences, while in vision tasks, Masked
Autoencoders (MAE) [87] show how masking portions of an image can lead to effective
representation learning, aiding tasks like classification or segmentation.

• Auto-regressive. The auto-regressive method involves predicting the next element in a
sequence, given the previous elements. In natural language processing, models like GPT [88]
generate coherent text by predicting the next word based on the preceding context. In vision
tasks, pixel-based auto-regressive models predict pixel values given prior pixels, such as in
PixelCNN [89]. The strength of auto-regressive models lies in their ability to learn complex
dependencies within sequential or spatial data, allowing them to generate high-quality
outputs for tasks like text generation, image synthesis, and beyond.

After pre-training with self-supervised methods, foundation AI models are fine-tuned on labeled
data to adapt to specific tasks. This fine-tuning process enhances their performance across various
applications, such as in the domain of NLP and CV.

2.4 Multimodal Learning Techniques in AI Foundation Model
Multimodal learning techniques are essential for AI foundation models, as they enable the integra-
tion and processing of multiple data modalities such as text, images, and video. We summarize the
key multimodal learning techniques into two categories: multimodal encoders for representation
learning and multimodal decoders for generation.
Multimodal encoders for representation learning focus on learning joint representations

across multiple modalities, allowing the model to extract and relate information effectively. Notable
examples include CLIP [8], which aligns visual and textual representations to enable zero-shot
learning for tasks like image classification and retrieval. ALBEF [90] builds upon CLIP by aligning
text and image representations and then performing multimodal fusion, improving performance in
multimodal reasoning tasks such as visual question answering. These techniques lay the founda-
tion for multimodal circuit representation learning, where textual descriptions (e.g., HDL code),
structural graphs (e.g., netlists), and layout images can be effectively integrated for comprehensive
circuit analysis and optimization.
Multimodal decoders for generation utilize one modality as input to generate content in

another modality, such as describing images with text or synthesizing images and videos from
textual descriptions. The BLIP family [91, 92] bridges image understanding and text generation by
introducing a connector that adapts image embeddings for frozen LLMs, enabling accurate textual
descriptions of images. LLaVA [93] enhances image understanding by fine-tuning LLMs with visual-
text instruction pairs, improving the model’s ability to process and describe images. Extending this

14 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

approach to video, Video-LLaVA [94] generates video content based on textual or image-based
inputs. Beyond generating text from visual inputs, some models focus on the reverse task—creating
visual content from textual descriptions. DALL·E [95] pioneers this field by generating diverse and
high-quality images from textual prompts, facilitating creative content synthesis. Parti [96] further
refines this capability, enabling the generation of high-resolution, contextually accurate images
from detailed prompts. These advancements in multimodal generation highlight the potential of
circuit foundation models, where similar approaches could be employed to generate circuit layouts
from textual specifications, convert hardware design schematics into structured descriptions, or
facilitate design debugging by linking textual analysis with circuit visualizations.

3 UNIQUE CIRCUIT DATA PROPERTIES
In this section, we will summarize the unique properties of circuits, especially from the data
perspective. We will compare the circuit data with other common data formats, such as general
images or natural languages. Understanding these unique properties of circuits is important, since
they largely motivate many circuit foundation models and thus differentiate these CFM from
general AI solutions in other domains like CV or NLP.
Equivalence across design stages. In the standard digital IC design flow, which includes

specification, HLS code, RTL, netlist, and layout, ensuring equivalence across these stages is
crucial for maintaining the integrity of the design. Each design stage refines the design from an
abstract specification into a more detailed representation, but the underlying functionality and
performance must remain consistent. This concept of equivalence has led to the use of circuit
equivalent transformations as a data augmentation technique, allowing for the generation of
multiple, functionally equivalent representations of a circuit. Furthermore, it has inspired cross-
design-stage alignment in circuit foundation models, enabling these models to capture and align
information across different stages of the design flow. This alignment enhances the model’s ability
to transfer knowledge between stages and improves cross-stage consistency.

Multimodal circuit format. As shown in Figure 4, circuit data inherently can be represented
in multiple formats and modalities, each capturing different aspects of the circuit, including:

• Text. This modality includes hardware description languages (HDLs) such as Verilog and
VHDL, along with high-level specifications in natural language. Text-based representations
define circuit functionality, behavioral constraints, and design requirements, emphasizing
semantic information of circuits.

• Graph. Circuit structures are naturally represented as graphs, where nodes correspond to
components (e.g., logic gates, registers, functional blocks) and edges capture connectivity
(e.g., data flow, control dependencies). Graph-based formats, including control-data flow
graphs and gate-connected graphs, preserve the topological relationships, which are crucial
for structural reasoning in EDA tasks.

• Image. The physical layout of circuits, particularly at the post-synthesis stage, can be
represented in two-dimensional visual formats, similar to the format of images. These
‘images’ capture geometric features, including component placement and interconnect
routing, which are critical for the physical design process and manufacturability.

Each of these modalities provides a unique perspective of the circuit, and fusing them enables a com-
prehensive understanding of the design, facilitating advancing foundation AI techniques for circuits.
Multiple objectives. The ultimate target objectives in circuit design are PPA (i.e., power, per-

formance, and area) and functionality. PPA metrics are crucial for optimizing the overall design,
ensuring that the circuit meets the required performance standards while minimizing power

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 15

reg [1:0] R1,R2,R3;

reg [2:0] R4;

wire [2:0] W1,W2;
...

assign W1 = R0 + R1;

...

always @(posedge clk)

R4 <= W2;

Verilog Code

(b) RTL (HLS)

Code Text Control-Data Flow Graph

R1 [0:2]

R2 [0:2]

ADD

C1 [0:2]

MUL

MUX
XOR

C2 [0]

…

(c) Netlist

Gate Connected Graph

… + Real
SPEF

(d) Layout

Graph w. Physical Features Layout Image

Logic
Synthesis

Specification

(a) Specification

Natural Language Text

The module is designed to
handle division operations and
provides a negative output
when the division operation
results in a negative quotient.

Logic
Design

Physical
Design

Fig. 4. VLSI design stages and corresponding modalities.

consumption and chip area. Functionality metric targets fulfilling the intended specifications,
guaranteeing that the circuit behaves correctly under various conditions. Achieving both PPA
optimization and functional correctness is essential for delivering robust and efficient hardware.

Parallel execution of hardware. Hardware circuits inherently operate with parallelism, clearly
distinguishing them from the sequential execution of software code. In combinational logic, multi-
ple logic operations are computed simultaneously, enabling high-speed parallel data processing.
Meanwhile, sequential elements, such as registers and flip-flops, update synchronously at each
clock cycle, ensuring efficient and coordinated circuit state transition. This fundamental parallelism
plays a crucial role in defining circuit behavior, making it essential for accurately capturing circuit
intrinsic properties in AI-driven design automation.
Circuit data availability. AI-driven EDA solutions depend on access to high-quality, diverse,

and representative circuit data for both model development and evaluation. However, the scarcity
of open circuit datasets remains a significant technical bottleneck. This challenge primarily arises
from the semiconductor industry’s reluctance to share proprietary circuit designs, which are con-
sidered valuable commercial IP. The absence of publicly available datasets hampers AI-driven EDA
advancements, as collecting labeled data is both time-consuming and resource-intensive. Moreover,
the limited diversity of open-source circuit designs restricts model generalization and performance.
As circuit foundation models gain traction in agile IC design, data availability becomes even

more critical, particularly in the context of scaling laws for circuit foundation models, as observed
in several existing works [97, 98]. These laws suggest that model performance improves with larger
datasets, making the shortage of diverse and extensive circuit data a fundamental limitation in
training highly capable models. Addressing this challenge is crucial for unlocking the full potential
of AI-driven EDA solutions.
Circuit reusability. Reusability is a key factor in practical circuit development, as companies

often rely on pre-designed IP blocks rather than building circuits from scratch. This inherent
reusability presents an opportunity for circuit foundation models to exploit semantic similarities
across designs, enhancing performance on downstream tasks. By leveraging patterns and shared
features within circuit datasets, these models can improve efficiency and adaptability in various
EDA applications.

16 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

4 FOUNDATION MODEL AS A CIRCUIT ENCODER
In this section, we will cover all encoder-based circuit foundation models. The circuit encoder
paradigm consists of two major stages: (1) It first pre-trains AI models to encode circuits into
generalized embedding vectors that capture rich intrinsic properties of circuits. These embeddings
provide a flexible representation that can further be fine-tuned with task-specific supervision. (2)
The fine-tuning process enables the embeddings to support various predictive downstream tasks,
such as early-stage design quality prediction and functional reasoning, thus supporting design
space exploration. The goal is to predict specific outcomes based on given circuit data. Figure 5
summarizes our covered encoder works based on their proposed pre-training techniques.

Circuit
Encoder

Pretext Tasks

Self-supervised

Supervised

Unlabeled
Circuit

Unlabeled
Circuit +

[C]…

[C]…

Masked
Unlabeled

Circuit

P
re

d
icto

r

Graph

Pretext Task
labeled
Circuit

…

P
re

d
icto

r

Circuit-related
Supervisions

Circuit
Encoder

Task-
Specific
Circuit
Data

EDA
Downstream Tasks

HARP
ICCAD’23

CircuitFusion
ICLR’25

LLM-HD
DAC’24

MGVGA
ICLR’25

SNS v2
MICRO’23

FGNN
DAC’22

CircuitFusion
ICLR’25

CircuitEncoder
ASP-DAC’25

ProgSG
MLCAD’24

Design2Vec
NeurIPS’21

DeepGate Family
DAC/ICCAD/ICLR 22-25

HOGA
DAC’24

PolarGate
ICCAD’24

TAG
ICCAD’22

DeepSeq
ASP-DAC’25

Circuit GNN
NeurIPS’22

Text

Unlabeled Circuit Data

Unlabeled
Circuit

[C]…Min ℒcontrastive

ℒmask

ℒsupervision

Ground-Truth

Ground-Truth

ℒtask

Pre-training Fine-tuning

(a) Contrastive Learning (b) Mask-Reconstruction

(c) Circuit Pre-training Supervisions

RTL
• Testing coverage
• Test vector generation

Netlist

• Signal probability/toggle
• logic synthesis
• Equivalence checking
• SAT solving
• Gate function reasoning
• Functional ECO

FunctionalityDesign Quality

HLS
• Design space exploration

RTL&Netlist

• PPA/QoR prediction

Layout

• Coguestion prediction
• Wirelength prediction
• Capacitance prediction
• Hotspot detection

P
re

d
icto

r

NetTAG
DAC’25

NetTAG
DAC’25

DeepCell
Feb 2025

Design2Vec
NeurIPS’21

TAG
ICCAD’22

ProgSG
MLCAD’24

CircuitFusion
ICLR’25

NetTAG
DAC’25

(d) Multimodal Circuit Fusion

Graph

Text

Graph
Encoder

Text
Encoder

…

…

Fu
sio

n

… Pretext Tasks

transfer

Augment
Circuit

Encoder
Circuit

Encoder

Circuit
Encoder

GAMORA
DAC’23

Fig. 5. Summary of pre-training techniques used in circuit encoders, covered in Section 4. Representative pre-
training techniques include (a) self-supervised contrastive learning, (b) self-supervised mask-reconstruction,
(c) circuit-related supervisions, and (d) multimodal circuit fusion.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 17

Existing works mainly focus on exploring the pre-training techniques that capture the structural,
semantic, and physical aspects of circuits. As summarized in Figure 5, we categorize the existing
circuit encoder pre-training techniques into four types, each focusing on different aspects of
learning circuit representations:

• Self-supervised contrastive learning in Figure 5 (a). This technique minimizes the
distance between embeddings of similar circuits while maximizing the distance between
embeddings of dissimilar circuits based on the circuits’ functionality. This process pre-trains
the model to differentiate between functionally equivalent and non-equivalent circuits. In
this way, the pre-trained model learns meaningful representations that reflect the intrinsic
functional properties of the circuit designs.

• Self-supervised mask-reconstruction in Figure 5 (b). In this technique, parts of the
circuit representation are masked, and the model is pre-trained to reconstruct the masked
missing parts. This process pre-trains the model to learn robust, complete representations of
circuits, capturing both the structural and functional aspects. The pre-training task typically
involves masking graph nodes or textual tokens of a circuit and using the remaining circuit
information to predict the missing parts.

• Supervised circuit pre-training tasks in Figure 5 (c). In addition to self-supervised pre-
training techniques, certain approaches incorporate task-related supervision to pre-train
circuit encoders. Unlike direct target-task supervision in supervised methods, these pre-
training tasks provide generalizable guidance to help the model learn circuit properties
from labeled data. For example, predicting the truth-table distance between circuit pairs
pre-trains the model to capture functional properties, which can then be leveraged for
functional tasks such as SAT solving and logic synthesis.

• Multimodal circuit fusion in Figure 5 (d). This technique integrates multiple modalities
of circuit data, such as textual, structural, and physical information, to create richer, more
comprehensive representations. The model is pre-trained to fuse these different modalities,
enabling it to capture a broader range of circuit characteristics. In this way, the model
supports complex tasks that require information from different modalities.

In the following subsections, we summarize existing circuit encoders based on their target circuit
design stages, including HLS stage (Section 4.1), RTL stage (Section 4.2), netlist stage (Section 4.3)
and layout stage (Section 4.4). A detailed comparison and summary of these circuit encoders
are provided in Table 2 and Table 3, respectively. Section 4.5 will cover the emerging and more
advanced circuit encoder techniques. For each stage, we first summarize the employed circuit
dataset, including detailed statistics and data collection process, then detail the proposed encoding
techniques, including circuit preprocessing, ML model architecture, and pre-training techniques,
and finally discuss the supported downstream tasks with evaluation metrics.

4.1 Circuit Encoder for HLS
In the context of HLS, the circuit encoder plays a pivotal role in representing and optimizing the
design space for HLS circuits. HLS involves the transformation of high-level programming languages
(e.g., C/C++) into hardware description languages (e.g., Verilog), with the goal of improving the
design, performance, and power efficiency of hardware systems. Efficient exploration of this design
space is critical, and HLS encoders are explored to learn meaningful representations of the circuit
designs, enabling better optimization and decision-making. As shown in Figure 6 (a), two notable
methods in this domain are HARP [99] and ProgSG [100], both pre-train HLS encoders with
self-supervised learning, improving the exploration of the HLS design space.

4.1.1 Dataset for HLS circuits.

18 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

Target
Stage Method Modality Pre-Training Downstream Task

Graph Text Self-Supervised Supervised Design Quality Functionality

HLS HARP [99] ✓ ✓ ✓
ProgSG [100] ✓ ✓ ✓ ✓

RTL

Design2Vec [101] ✓ ✓ ✓ ✓
SNS v2 [25] ✓ ✓

CircuitEncoder [102] ✓ ✓ ✓
CircuitFusion [97] ✓ ✓ ✓ ✓

Netlist

DeepGate [103] ✓ ✓ ✓
DeepGate2 [104] ✓ ✓ ✓

DeepGate3/4 [98, 105] ✓ ✓ ✓
GAMORA [54] ✓ ✓ ✓
HOGA [106] ✓ ✓ ✓ ✓

PolarGate [107] ✓ ✓ ✓
DeepSeq [108, 109] ✓ ✓ ✓
FGNN [110, 111] ✓ ✓ ✓

CircuitEncoder [102] ✓ ✓ ✓
MGVGA [112] ✓ ✓ ✓ ✓ ✓
NetTAG [113] ✓ ✓ ✓ ✓ ✓
DeepCell [114] ✓ ✓ ✓

Layout
Circuit GNN [115] ✓ ✓ ✓

TAG [116] ✓ ✓ ✓
LLM-HD [117] ✓ ✓ ✓

Table 2. Comparison of modality, pre-training techniques, and supported downstream tasks for existing
encoder-based circuit foundation models, as covered in Section 4.

The HLS dataset [118] used in these works consists of 42 unique kernels, each with multiple
optimization pragmas generated by the AMD/Xilinx HLS tool, resulting in over 10,000 design
configurations. The HLS designs serve both text and graph modalities. In the text modality, the data
consists of C/C++ code, averaging 1,286 tokens per program. In the graphmodality, the programs are
converted into the control-data flow graphs (CDFG), with an average of 354 nodes and 1,246 edges.

4.1.2 Encoding techniques for HLS circuits.
Both HARP [99] and ProgSG [100] employ self-supervised learning techniques to pre-train HLS

encoders. HARP [99] focuses on encoding the graph format of HLS CDFG, while ProgSG [100]
extends this by adding textual input for richer multimodal circuit representation learning. We detail
the HLS encoding techniques below.
Self-supervised HLS graph encoder with masked pragma reconstruction. HARP [99]

focuses on HLS control-data flow hierarchical graphs for representing circuit designs. Specifically,
HARP [99] utilizes a hierarchical graph representation of HLS designs, incorporating both high-
level and low-level views, where the high-level view combines C/C++ code and LLVM intermediate
representation (IR) to capture the program’s structure and semantics, and the low-level view
focuses on LLVM IR to capture detailed implementation details. This dual-level representation
helps mitigate long-range dependencies within the program. The model employs a GNN to encode
this hierarchical graph into circuit embeddings. During pre-training, it applies a self-supervised
learning technique called masked pragma reconstruction, with paradigm demonstrated in Figure 5
(b). In this approach, certain pragmas (compiler directives) are masked, and the GNN model is
trained to predict these masked pragmas based on the surrounding node embeddings in the graph.
This enables the model to learn the specific effects of each pragma, enhancing its performance and
improving its ability to transfer knowledge across tasks.

Self-supervisedHLS encoder enhanced viaHLS graph-textmulimodal fusion. ProgSG [100]
builds upon HARP [99] by integrating multimodal learning to improve HLS encoding. It combines
two modalities: CDFG hierarchical graph used in HARP [99] and HLS C/C++ source code text,

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 19

HARP
ICCAD’23

ProgSG
MLCAD’24

Design2Vec
NeurIPS’21

SNS v2
MICRO’23

CircuitFusion
ICLR’25

CircuitEncoder
ASP-DAC’25

+ HLS code text

+ Multimodal fusion

• RTL graph & code text
• Multimodal fusion

• RTL graph
• Contrastive

+ Cross-stage
+ RTL Code & summary text

+ Multimodal fusion

HLS Encoder

RTL Encoder
• HLS graph
• Mask-reconstruction

self-supervised

self-supervised

supervised

(a) Timeline for HLS encoders (b) Timeline for RTL encoders

Fig. 6. Timeline for HLS (Section 4.1) and RTL (Section 4.2) encoders.

allowing the model to capture both structural and semantic aspects of the design. ProgSG [100]
uses a GNN for graph encoding and an LLM for text encoding. It introduces a node-token message
passing mechanism for multimodal fusion, where information is exchanged through block nodes
and tokens from the high-level view before being propagated to normal nodes and tokens via
GNN and transformer layers. To address the scarcity of labeled designs, ProgSG [100] employs a
self-supervised pre-training technique based on compiler-generated data flow analysis tasks. This
static analysis task predicts the relationship between two nodes in a CDFG, such as reachability
and data dependencies, enabling the model to learn how data moves through the program. This
pre-training improves the model’s ability to generalize, boosting its performance in downstream
tasks such as design space exploration and design optimization.

4.1.3 Downstream tasks for HLS encoders.
The two methods, HARP [99] and ProgSG [100], support downstream tasks that predict various

HLS design quality metrics, including latency (in cycle counts), block RAM utilization, digital signal
processor utilization, flip-flop utilization, and lookup-table utilization. These metrics are critical
for evaluating the performance and efficiency of HLS designs. The models are assessed using the
regression metric root mean square error (RMSE), which measures the accuracy of the design
performance predictions.
In addition to performance prediction, these HLS encoders are further used for design space

exploration, a task aimed at finding the optimal design for a given kernel. This process involves
exploring various design configurations to identify the best-performing design in terms of resource
utilization and latency.

4.2 Circuit Encoder for RTL Stage
In the RTL stage of VLSI design, the RTL encoder can capture both the semantics and structure
of RTL circuits. As illustrated in Figure 6 (b), which shows the timeline of existing RTL encoders,
four notable methods have emerged in this domain: Design2Vec [101] utilizes supervised pre-
training tasks for functional verification tasks. In contrast, SNS v2 [25], CircuitEncoder [102], and
CircuitFusion [97] employ self-supervised learning techniques for design quality prediction tasks.

4.2.1 Dataset for RTL circuits.
The RTL designs are used in both text and graph modalities: the text modality directly adopts

the HDL code (e.g., Verilog), while the graph modality converts the RTL code into a CDFG based on
the abstract syntax tree. For functional verification tasks, Design2Vec [101] employs three designs,
including two RISC-V CPUs and one TPU. For each design, the authors generated random tests and
sampled each test parameter uniformly. They used a testbench to randomly sample input test stimuli
and a Verilog RTL simulator to obtain ground-truth labels of whether a cover point was covered by
that test, resulting 4118 cover points in total. As for design quality evaluation tasks, SNS v2 [25] and

20 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

CircuitFusion [97] collect various types of RTL designs from various open-sourced benchmarks,
including ITC’99 [119], OpenCores [120], Chipyard [121], VexRiscv [122], XiangShan [123], and
other open-sourced designs. The RTL designs are synthesized using logic synthesis tools such as
Synopsys Design Compiler, and the design quality metrics (i.e., PPA values) are obtained from the
post-synthesis netlists. In the latest work CircuitFusion [97], the dataset scale includes up to 500K
nodes for the circuit graph and up to 20M tokens for Verilog code text.

4.2.2 Encoding techniques for RTL.
As shown in Figure 6 (b), in the supervised encoding branch, Design2Vec [101] pioneers RTL

encoding by learning functional semantics through pre-training supervisions for verification tasks.
In the self-supervised learning branch, SNS v2 [25] proposes to leverage functional contrastive learn-
ing on RTL graphs to capture RTL circuit representations, while CircuitEncoder [102] enhances this
by introducing cross-stage alignment with netlist stage, incorporating implementation details from
netlists. CircuitFusion [97] further improves by integrating code text and functional summaries with
the RTL graph formultimodal fusion, and adds additional self-supervised techniques to learn RTL cir-
cuits at multiple modalities and granularities. We detail the key techniques for RTL encoders below.

Supervised RTL semantic encoder with functional supervisions. Design2Vec [101] learns
semantic representations of RTL circuits for functional verification. The input to Design2Vec [101]
includes the hardware design represented as a CDFG derived from the RTL Verilog code, along
with the corresponding source code text. The CDFG captures both the control and data flow aspects
of the design, providing a comprehensive view of the hardware’s functionality. Design2Vec [101]
employs a GNN to process the RTL CDFG, with each node augmented by RTL code text embeddings
obtained from an LSTM for multimodal fusion. To capture the sequence dependency of circuit
functionality, an additional LSTM is used to generate final node embeddings. During pre-training,
Design2Vec [101] uses a supervised learning pre-training task that predicts the coverage of specific
points in the design when simulated on test inputs. This task requires the model to integrate both
the structural and functional aspects of the hardware design, effectively learning the interactions
between control and data flow.
Self-supervised RTL encoder with contrastive learning. Although the supervised pre-

training task is designed to learn the circuit functionality, it cannot be generalized to other function-
unrelated tasks. The other three RTL encoders (i.e., SNS v2 [25], CircuitEncoder [102], and Circuit-
Fusion [97]) employ self-supervised learning techniques that learn a generalized circuit embedding.
The pioneering work SNS v2 [25] first introduces self-supervised contrastive learning to learn
generalized circuit embeddings. The input to the SNS v2 [25] model is the graph format of HDL
code based on the abstract syntax tree. It proposes a hierarchical graph format for RTL designs,
where the low-level graph consists of subgraphs sampled from registers, and the high-level graph
represents register dependency. The model uses a two-level hierarchical GNN architecture. The low
level processes small subgraphs, capturing local structural and functional features, while the high
level aggregates these embeddings to predict quality metrics such as power, area, and timing for the
entire design. For pre-training, SNS v2 [25] employs a contrastive learning approach to pre-train the
subgraph GNN on unlabeled hardware designs. The model learns to create functionally equivalent
circuit representations, where similar embeddings are assigned to functionally equivalent circuits,
despite differences in their representation. This self-supervised learning task enables the model to
understand circuit equivalence. After pre-training, the model is fine-tuned using labeled datasets
and adapted to new domains, allowing it to predict design quality metrics for various RTL circuits.

Self-supervised RTL encoder enhanced with cross-stage alignment. Following SNS v2 [25],
CircuitEncoder [102] also converts circuit RTL code into a graph-based representation using the
abstract syntax tree. The model processes the graph using a graph transformer, which allows it

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 21

to learn from the structural relationships of RTL designs. For pre-training, CircuitEncoder [102]
employs graph contrastive learning on RTL designs, similar to SNS v2 [25]. In addition, CircuitEn-
coder [102] introduces multi-stage contrastive learning, which involves learning embeddings both
within the same design stage (intra-stage) and across different stages (inter-stage) between RTL
and netlist designs. This technique helps align the embeddings from different design stages into a
shared latent space, improving the model’s ability to transfer learning between different stages and
enhancing its generalization across the hardware design process.
Self-supervised RTL encoder enhanced with multimodal fusion. Another recent work

CircuitFusion [97] proposes self-supervised learning and advances the RTL encoder by fusing
multiple modalities of RTL designs to enhance chip design workflows. Specifically, it processes three
input modalities: HDL code, representing circuit functionality in textual form (e.g., Verilog); graph
format, capturing the circuit’s structure through an abstract syntax tree; and functionality summary,
a high-level textual abstraction of the design’s function. The model uses unimodal encoders for each
modality, including graph, code, and summary encoders, followed by a multimodal fusion encoder
with a cross-attention mechanism to combine the outputs into a unified latent space. During
pre-training, CircuitFusion [97] utilizes several self-supervised tasks: (1) Intra-modal learning,
including contrastive learning and masked graph modeling to capture the internal structure of each
modality, (2) Cross-modal alignment, where contrastive learning aligns the different modalities in
a shared space, (3) Multimodal fusion, which involves tasks like masked summary modeling and
mixup-embedding matching to combine structural and semantic information from all modalities,
and (4) Implementation-aware alignment, which aligns RTL and netlist representations to ensure
the design’s functionality maps accurately to its physical implementation.

4.2.3 Downstream tasks for RTL encoders.
The RTL stage is crucial for implementing the functionality of the specification and serves as

the foundation for design quality optimization, such as PPA. The primary downstream tasks for
RTL encoders focus on functional verification and early-stage PPA prediction. For functional
verification, the Design2Vec [101] model uses the semantic representations learned through pre-
training tasks to predict whether a given test covers specific portions of the design and to generate
test vectors. The model is evaluated based on its ability to predict coverage and detect bugs in
hardware designs. By improving test generation and bug detection efficiency, themodel enhances the
overall verification process. For design quality prediction, SNS v2 [25], CircuitEncoder [102], and
CircuitFusion [97] all focus on predicting key synthesis results, including area, power consumption,
and timing for hardware designs. These models are evaluated using performance metrics such as
the correlation coefficient (R) and Mean Absolute Percentage Error (MAPE), providing insights into
the accuracy of design quality predictions and contributing to early-stage optimization for PPA.

4.3 Circuit Encoder for Netlist Stage
The netlist stage is one of the most actively explored stages in circuit encoders, with circuit
encoding playing a critical role in extracting meaningful representations from the structural and
functional properties of logic circuits. In recent years, several methods have been developed that
apply graph learning techniques (e.g., GNNs and Graph Transformers), to improve netlist analysis.
As shown in Figure 7 (a), the timeline for netlist encoders includes both supervised methods, such
as the DeepGate Family [98, 103–105], HOGA [106], PolarGate [107], and DeepSeq [108, 109],
as well as self-supervised methods like FGNN [110, 111], CircuitEncoder [102], NetTAG [113],
and DeepCell [114]. These encoders have evolved from encoding simple AND-Inverter Graphs
(AIGs) of netlists to more complex post-synthesis netlists involving various types of gates. For
downstream tasks, these netlist encoders support a wide range of applications. These include

22 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

CircuitEncoder
ASP-DAC’25

• AIG graph → scalability
• Truth-table supervision

• AIG graph
• SSL contrastive

+ Seq netlist
+ Cross-stage

FGNN
DAC’22

NetTAG
DAC’25

DeepCell
Feb 2025

DeepGate Family
DAC/ICCAD/ICLR 22-25

HOGA
DAC’24

+ GNN
arch.

PolarGate
ICCAD’24

DeepSeq
ASP-DAC’25

+ Seq AIG

Netlist Encoder

+ Netlist text-attributed graph

+ Multimodal fusion

self-supervised

supervised

Circuit GNN
NeurIPS’22

TAG
ICCAD’22

LLM-HD
DAC’24

Layout Encoder

• Text &
graph

• Topo &
geom

• GDSII
as text

(b) Timeline for layout encoders

self-supervised

supervised

(a) Timeline for netlist encoders

+ GNN
arch.

+ GNN
arch.

Gamora
DAC’23

Fig. 7. Timeline for netlist (Section 4.3) and layout (Section 4.4) encoders.

functional reasoning and verification tasks, such as arithmetic block identification, SAT solving,
and logic synthesis, as well as netlist-stage design quality evaluation tasks like timing, power, and
area estimation.

4.3.1 Dataset for circuit netlists.
Most of the netlist encoders [98, 103–111] target the And-Inverter Graph (AIG) format of the

netlist, which is an intermediate representation commonly used in logic synthesis and verification.
Recently, works [113, 114] have expanded their scope beyond basic AIG gates to handle more
complex post-synthesis netlists, which include various standard cells. For AIG datasets, the en-
coders gather data from various benchmarks like OpenABC-D [124], ITC’99 [119], IWLS [125],
OpenCores [120], EPFL [126], GAMORA [54], arithmetic modules [110], Chipyard [121], and
LGSynth-93 [127]. RTL designs from these benchmarks are typically converted into AIG formats
using the ABC open-source logic synthesis tool. These encoders primarily focus on combinational
logic within AIGs, with DeepSeq [109] also considering sequential registers in its encoding process.
As for the post-synthesis netlist datasets, they are obtained from RTL benchmarks like ITC’99 [119],
IWLS [125], OpenCores [120], EPFL [126], Chipyard [121] and VexRiscv [122]. Logic synthesis
is conducted using technology libraries to generate the post-synthesis netlists. NetTAG [113]
processes both combinational and sequential netlist gates, while DeepCell [114] focuses on the
combinational aspects. This expansion enables the models to handle a wider range of netlist formats
and to predict design quality more accurately at post-synthesis stages.

4.3.2 Encoding techniques for netlist.
As shown in Figure 7 (a), we categorize the encoding methods into supervised pre-training tasks

and self-supervised learningmethods. In the supervised encoding branch, DeepGate family [98, 103–
105] pioneers AIG encoding for netlists, learning functional semantics for logic synthesis and
verification tasks. They have improved scalability with advanced supervision, better graph learning
models, and optimized memory consumption. Other methods, like HOGA [106] and PolarGate [107],
refine AIG encoding with customized GNN architectures and message-passing mechanisms to
capture both structural and functional properties. DeepSeq [108, 109] extends the DeepGate Fam-
ily to handle sequential circuits, improving the model’s ability to process more complex circuit
behaviors. In the self-supervised learning branch, FGNN [110, 111] first introduces functional
contrastive learning to solve the arithmetic block identification problem. CircuitEncoder [102]
enhances this with cross-stage alignment, incorporating RTL-stage information to improve netlist
encoding. NetTAG [113] and DeepCell [114] push the boundaries of AIG encoding by advancing it
to handle more complex post-synthesis netlists, allowing for the processing of designs with various

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 23

Target
Stage Method Technique Downstream Task

Pre-train objective

HLS HARP [99] Masked pragma reconstruction HLS design space exploration
ProgSG [100] Data flow analysis tasks for graph and node HLS design space exploration

Design2Vec [101] Testing cover point prediction Verification coverage prediction and test generation
SNS v2 [25] Functional contrastive learning Post-synthesis PPA prediction

RTL

CircuitEncoder [102] Intra-stage functional contrastive learning
Cross-stage functional contrastive alignment Post-synthesis PPA prediction

CircuitFusion [97]

Masked gate reconstruction
Functional contrastive for graph/ summary

Modality fusion
Cross-design-stage alignment

Post-synthesis PPA prediction

DeepGate [103] Signal probability prediction Signal probability prediction on large AIGs
DeepGate2 [104] Truth-table supervisions on node Logic synthesis and SAT solving

DeepGate3/4 [98, 105] Truth-table supervisions on node and graph SAT solving
GAMORA [54] Task-specific supervisions Logic functional reasoning
HOGA [106] Task-specific supervisions Logic synthesis QoR prediction, functional reasoning

Netlist

PolarGate [107] Truth-table supervisions Signal probability and truth-table distance prediction
DeepSeq [108, 109] Truth-table supervisions on node Toggle rate prediction for power analysis
FGNN [110, 111] Functional contrastive learning Gate function reasoning

CircuitEncoder [102] Intra-stage functional contrastive learning
Cross-stage functional contrastive alignment Register function reasoning

MGVGA [112] Masked gate reconstruction QoR prediction, logic equivalence identification

NetTAG [113]

Logic expression contrastive
Masked gate reconstruction

Netlist graph contrastive learning
Netlist graph size prediction

Post-layout PPA prediction
Gate/Register function prediction

DeepCell [114] Masked circuit modeling Functional ECO

Layout
Circuit GNN [115] Task-specific supervisions Congestion and wirelength prediction

TAG [116] Layout instance distance prediction Wirelength, and net parasitic capacitance prediction
LLM-HD [117] Masked language modeling Hotspot detection

Table 3. Summary of the pre-training techniques and supported downstream tasks of circuit encoders, covered
in Section 4.

standard cells and more intricate gate structures, thus improving the prediction and optimization
of hardware designs in post-synthesis stages.

Supervised AIG encoder with functional supervision. The DeepGate family [98, 103–105]
is one of the pioneers in netlist encoders. They handle circuit AIGs using customized graph
learning models, which are pre-trained using supervised pre-training tasks. These works primarily
focus on functional-related tasks, such as training on pairwise truth table differences between
sampled logic gates. The DeepGate family continuously improvesmodel performance and scalability,
with DeepGate3 [98] introducing a graph transformer to capture global circuit relationships, and
DeepGate4 [105] optimizing the model by eliminating redundant computations.
Specifically, DeepGate [103] employs a GNN architecture specifically tailored for AIG graphs,

incorporating an attention mechanism and recurrent layers to aggregate information across the
graph. Each node’s embedding is computed based on its gate type and its relationships with
neighboring nodes. The recurrent GNN is designed to capture the functional behavior of the circuit
by using both forward and reversed propagation layers, simulating the logic behavior. Signal
probability (the probability of a node being in logic ‘1’) is used as the supervision task, with signal
probabilities derived from random logic simulations. These simulations are run on the circuits to
obtain accurate probability values, allowing the model to learn functional behavior more effectively.

DeepGate2 [104] enhances the functionality-awareness encoding by introducing the Hamming
distance between the truth tables of logic gates as supervision. The model uses a one-round
GNN architecture, which processes both functional and structural embeddings for each gate.
Unlike the multi-round GNN used in the original DeepGate, this one-round architecture efficiently
propagates embeddings in a single pass. The functional embeddings represent the logic behavior of
gates, incorporating the pairwise truth table difference as a supervisory signal, while structural

24 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

embeddings capture the topology of the circuit. A self-attention mechanism is used to aggregate
information across different gates, enabling the model to focus more on controlling fan-in gates.
During pre-training, a functionality-aware loss is proposed, which aligns gate embeddings with
their functional equivalence. This loss minimizes the distance between embeddings corresponding
to gates that perform similar logical operations, thereby improving the model’s ability to recognize
functionally equivalent gates.

DeepGate3 [98] improves upon DeepGate2 [104] by enhancing both performance and scalability
with a graph transformer model. It uses DeepGate2 [104] as the AIG node tokenizer and refines the
node embeddings with a graph transformer to capture long-range dependencies within the graph.
For generating graph-level embeddings, another graph transformer is used for pooling. During
pre-training, in addition to the gate-level supervisions used in DeepGate2, graph-level tasks are
introduced. These tasks involve using fan-in cones to segment circuits into smaller subgraphs and
predict intrinsic features such as the size and depth of these subgraphs, further improving the
model’s ability to understand circuit structures at a broader level.

DeepGate4 [105] further improves the scalability and efficiency challenges of large-scale circuit
AIG representation learning by integrating a GAT-based sparse transformer. By leveraging graph
sparsity, the model reduces the time and memory complexity of the transformer, making it suitable
for processing large circuits. The architecture also incorporates structural encodings for gates,
such as level and out-degree, to enhance the learning of circuit properties. The circuit graph
is partitioned into smaller cones based on logic levels, which are then processed by the sparse
transformer. This approach significantly improves both accuracy and computational efficiency,
particularly for large-scale circuit designs, outperforming previous methods in terms of scalability
and overall performance.

Supervised AIG encoder enhanced with GNN architecture. In addition to DeepGate family,
other works (i.e., GAMORA [54], HOGA [106] and PolarGate [107]) explore to customize the
GNN architecture and message-passing mechanism to enhance the scalability and performance
of AIG encoding, combining with supervised pre-training tasks. In GAMORA [54], netlist AIGs
are transformed into a graph representation and processed using a GNN. During pre-training,
the GNN is trained with multiple functionally driven tasks, which jointly reason about Boolean
function aggregation and structural topology. This enables efficient symbolic reasoning for large-
scale Boolean networks. Specifically, GAMORA [54]’s model is designed to recognize fundamental
functional components within circuits, including identifying adder root and leaf nodes and detecting
XOR and MAJ functions. The multi-task learning framework enhances the model’s ability to
generalize across various functional tasks, leveraging shared representations to improve both
accuracy and scalability in processing large AIG-based netlists.

In HOGA [106], hop-wise features are precomputed for each design to capture interactions over
multiple hops before training. This step is done independently of the graph structure, enabling
scalability for distributed training. The AIG format of circuits is processed using a customized GNN
with a hop-wise aggregation scheme, which precomputes features based on multiple hops. It also
employs gated self-attention to adaptively learn high-order circuit structures. This approach avoids
recursive aggregation, which can be computationally expensive for large circuits. The model is
then trained using task-specific labels, allowing it to be adapted for downstream tasks.

In PolarGate [107], each node in the netlist AIGs represents two logical states: low level (0) and
high level (1), which are fundamental for Boolean logic tasks. Themodel employs a GNNwith a novel
functionality-aware message passing mechanism that aggregates information from neighboring
nodes while distinguishing between AND and NOT gates through specialized operators. To achieve
this, PolarGate [107] introduces an ambipolar embedding space, where each node is mapped to both
a positive and a negative embedding to represent the two logical states. It also uses differentiable

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 25

logical operators, such as OPAND and OPNOT, that are designed to be differentiable and compatible
with embedding propagation in the AIG structure. Additionally, the message passing strategy is
modified to adhere to Boolean logical behavior, ensuring more accurate functional representation
of the circuit. These innovations enable PolarGate [107] to effectively capture the logical operations
of circuits and improve the model’s ability to process and learn from netlist-based designs.
Supervised AIG encoder enhanced for sequential circuits. Beyond focusing on the com-

binational logics of AIGs, DeepSeq [109] explores capturing the sequential behavior of AIGs.
DeepSeq [109] further advances this by using a directed acyclic GNN, which is optimized for
sequential netlists. It incorporates a customized propagation scheme that avoids recursive prop-
agation and handles cyclic sequential netlists in a single forward pass. The architecture separates
learning into three distinct embedding spaces: structure embedding for circuit connectivity, function
embedding for logic computations, and sequential embedding for capturing the temporal behavior
between consecutive clock cycles. During pre-training, DeepSeq [109] uses multiple functional
pre-training supervisions, including transition probability prediction to model sequential behav-
ior, logic probability prediction to capture logic functionality, and pairwise truth-table difference
to identify functional similarities among logic gates. These techniques enable DeepSeq [109] to
effectively learn both the functional and sequential aspects of sequential AIG circuits.

Self-supervisedAIG encoderwith contrastive learning. In addition to customized supervised
pre-training tasks based on circuit properties, another key approach for netlist encoders is leveraging
self-supervised learning techniques to learn from unlabeled circuit data and capture the intrinsic
information of the circuit. FGNN [110, 111] is a pioneer in adopting self-supervised contrastive
learning for AIG netlist encoding. It uses a customized GNN to encode AIGs into embeddings,
integrating a contrastive learning framework to enhance circuit functionality learning. The GNN
architecture incorporates two types of learnable message aggregators: an ANG aggregator for
AND gates and an INV aggregator for inverters. Asynchronous message passing is employed to
efficiently propagate information through the graph while preserving functionality semantics.
During pre-training, the model uses a contrastive learning scheme to learn circuit embeddings
that reflect the Boolean functionality of the circuits. This scheme ensures that the embeddings of
functionally equivalent circuits are close in the embedding space. Additionally, a new loss function
is introduced to effectively capture the relative functional distance between circuits, taking into
account input order invariance and circuits with different input widths, further improving the
model’s ability to represent the circuits’ functionality.
Self-supervised netlist encoders with cross-stage alignment. Recent advancements in

self-supervised learning for netlist encoders have introduced cross-design-stage alignment to en-
hance model awareness of different abstraction levels in circuit design. CircuitEncoder [102] and
MGVGA [112] both propose novel alignment strategies to bridge the high-level abstract semantics
of RTL with the low-level implementation details of netlists, enabling more robust circuit repre-
sentation learning. CircuitEncoder [102] represents both RTL and netlist circuits as graph-based
structures and processes them using a GNN. To learn circuit intrinsics, the model employs graph
contrastive learning within each design stage, differentiating functionally similar and dissimilar
circuit graphs. Additionally, it introduces intra-stage contrastive learning between RTL and netlist
stages, effectively aligning representations across design stages. This cross-stage awareness signifi-
cantly improves the encoder’s adaptability for downstream tasks following fine-tuning. Similarly,
MGVGA [112] proposes the concept of RTL-netlist alignment by integrating LLM-based processing
for RTL descriptions and GNN-based encoding for AIG netlists. During pre-training, it introduces
masked gate modeling, a technique that masks gates in the latent space while preserving logi-
cal equivalence, ensuring functional consistency throughout the representation learning process.
Furthermore, a cross-modal learning strategy is implemented, where Verilog-based functional

26 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

Symbolic Expression
Extraction for each Gate

Graph

Step 1: Text Encoder Pre-Training
(enhancing gate Boolean logic understanding)

Step 2: Graph Encoder Pre-Training
(fusing gate semantic & graph structure)

[C]…

[C]…

NetTAG

Graph Encoder
• GT-Based
• Global Attention

Pre-Trained
Text Encoder

Pred. vs. Real

Gate Type

MLP
[C]…

[C]…

[C] …

[C] …

RTL Encoder

Pre-Trained
LLM

Layout Encoder

Pre-Trained
GT

…

Obj #1:
Expression

Contrastive Learning

Ui = ! (R2 & R3)

Ui = ! R2 | ! R3

Expr. Augmentation

• LLM-Based
• Bidirectional

Attention

Text Encoder

Obj #2.1:
Masked Gate

Reconstruction

Graph Augment. (for Task #2.2)

Obj #2.2:
Graph Contrastive

Obj #2.3:
Graph Size Prediction

Obj #3:
Cross-Design-Stage

Contrastive

Gate Masking (for Task #2.1)

TAG

[C]…

RTL

Min

Min

[CLS] embedding[C]

Tunable

Frozen

Tunable (auxiliary)

Masked Gate embedding

Frozen (auxiliary)

Only for pre-train

Ui = ! (R2 & R3)

…

R4 = 𝐼𝑡𝑒(…)

Gate Expr. Dataset

U1 = R1 ⊕ …

Layout

Cross-Stage Alignment
(awaring func. & phys.)

&

Gate embedding

Masked Gate[MASK]

…

Netlist

…

R1

R3
U4

U1

U5

U3

R4R2 U2

…

TAG

…

[MASK]

[MASK]

TAG
U5 = U1& … U2

𝑁𝑖
mask

Netlist
Embeddings

Fig. 8. Multimodal pre-training techniques used in NetTAG [113], including representative self-supervised
learning methods such as contrastive learning, mask-reconstruction, and cross-design-stage alignment.

constraints guide AIG-based representation learning, reinforcing the structural-functionality align-
ment. These cross-stage alignment techniques enhance the capability of netlist encoders, improving
their generalization across multiple circuit design stages and boosting performance in downstream
EDA applications.
Self-supervised post-synthesis netlist encoder with multimodal fusion. While many

existing netlist encoders focus on simpler AND-Inverter gates, they struggle with more complex
post-synthesis netlists that involve various gates from standard liberty cells. To address this
challenge, two recent works have advanced netlist encoding by incorporating multimodal fusion
(i.e., NetTAG [113]) or AIG-netlist alignment (i.e., DeepCell [114]) to unprecedentedly handle the
complexities of post-synthesis netlists.

As shown in Figure 8, in NetTAG [113], post-synthesis netlists are represented as text-attributed
graphs, where each node corresponds to a gate and is associated with attributes that include
both functional symbolic logic expressions and physical characteristics (such as area, power, and
delay). The model employs a two-stage multimodal hybrid architecture: first, an LLM-based text
encoder processes the textual attributes of the gates to generate semantic-rich embeddings. Then,
a graph transformer refines these embeddings by capturing the global circuit structure through
graph-based attention mechanisms. During pre-training, the model utilizes four key self-supervised
objectives. Expression contrastive learning enhances the LLM’s understanding of Boolean logic
by contrasting symbolic expressions. Masked gate reconstruction is a graph-based task where
certain gates are masked, and the model predicts the gate type, encouraging it to capture structural
roles. Netlist graph contrastive learning aims to group similar netlists together while separating
dissimilar ones, improving the model’s ability to recognize functional equivalence in different
netlist structures. Finally, cross-stage contrastive alignment aligns netlist embeddings with RTL
and layout embeddings, combining functional and physical information to improve performance
across various design stages. These self-supervised tasks enable NetTAG [113] to learn both the
functional and structural aspects of post-synthesis netlists, significantly enhancing its ability to
predict design qualities and optimize circuits across different stages of the design process.

Self-supervised post-synthesis netlist encoderwithAIG-netlist alignment.DeepCell [114]
proposes multiview representation learning to simultaneously capture structural and functional
information from both post-synthesis netlists and AIGs. The model uses two separate encoders:
the PM Encoder, which is a GNN designed to capture the features of standard cells from the
post-synthesis netlists, integrating both structural and functional embeddings through specialized
aggregators, and the AIG Encoder, which is a pre-trainedAIG encoder based onDeepGate2 [104] that
generates gate-level embeddings to provide additional structural information. During pre-training,
DeepCell [114] employs a self-supervised mask circuit modeling task, where a subset of the cell

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 27

embeddings is masked, and the model reconstructs these embeddings using the information from
the AIG encoder. This approach refines the post-synthesis netlist representations by integrating
insights from both the local circuit view (i.e., netlist) and the global gate-level view (i.e., AIG),
enhancing the overall quality of the circuit representation and improving downstream tasks such
as design quality prediction and functional verification.

4.3.3 Downstream tasks for netlist encoders.
Netlist encoders support a wide range of downstream tasks, including functional reasoning and

verification tasks, as well as netlist-stage design quality evaluation tasks such as timing, power, and
area estimation. In functional reasoning and verification, key tasks ensure circuit functional
correctness. Logic probability prediction estimates the likelihood that a gate outputs a logic ‘1’,
evaluated by Mean Absolute Error (MAE). Equivalence class identification groups functionally
equivalent gates, with performance assessed by classification accuracy. SAT solving checks Boolean
satisfiability, evaluated by solving time and satisfiability accuracy. Arithmetic function block
identification identifies components like adders, assessed using classification metrics. Finally,
functional ECO identifies mismatches post-synthesis, with evaluation based on error reduction
and change cost. In design quality prediction, tasks focus on estimating key metrics like power,
area, and delay. Logic synthesis QoR prediction uses MAPE to predict power, area, and delay after
synthesis. Power evaluation estimates power based on toggle rate, evaluated by MAE and accuracy.
Post-layout PPA prediction estimates power, performance, and area after layout, using MAPE to
compare predicted versus actual results. These tasks enhance circuit optimization and validation.

4.4 Circuit Encoder for Layout Stage
In the layout stage of hardware design, circuit encoders process either the netlist or the GDSII
format of circuit layouts. As shown in Figure 7 (b), the timeline for layout encoders includes both
supervised methods such as Circuit GNN [115] which handles layout topology and geometry, and
self-supervised methods like TAG [116], which employs text-graph multimodal encoding, and
LLM-HD [117] which treats layout GDSII data as text. These methods focus on effectively capturing
the physical and structural properties of layout designs to improve design quality prediction.

4.4.1 Dataset for layout circuits.
The datasets used in Circuit GNN [115] come from the ISPD2011 benchmark [128] for congestion

prediction (12 designs) and the DAC2012 dataset [129] for net wirelength prediction (7 designs).
These are preprocessed into a Circuit Graph that combines topological and geometrical information.
TAG [116] uses 447 industrial AMS circuits in sub-10nm technology. The data is processed with
StarRC extraction tools to obtain placement coordinates and create spatial and text embeddings
by annotating the netlists with instance names and device types. For LLM-HD [117], the ICCAD
2012 [130] and ICCAD 2020 [131] benchmarks are used for layout hotspot detection, with GDSII
layouts. The ICCAD 2012 dataset [130] focuses on metal layer hotspots, and ICCAD 2020 [131]
on via-layer patterns. The data is processed directly from GDSII to preserve spatial and geometric
features, using semantic and hierarchical encoding.

4.4.2 Encoding techniques for layout.
Figure 7 (b) illustrates the categories of layout encoders. In the supervised branch, Circuit

GNN [115] customizes the GNN architecture to capture both the topology and geometry of the
circuit layout. In the self-supervised branch, TAG [116] proposes text-graph multimodal learning,
while LLM-HD [117] focuses on leveraging LLMs for textual layout encoding. These approaches
enable the models to effectively learn and represent the topology, geometry, and physical property
of circuit layouts for downstream tasks.

28 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

Supervised layout encoder with customized GNN architecture. In Circuit GNN [115], the
input modalities consist of topological data (from the netlist) and geometrical data (from the layout).
These modalities are represented in a circuit graph, where cells and nets are the vertices, and
topo-edges and geom-edges connect them. The model is built upon a GNN, which processes the
heterogeneous circuit graph. The GNN utilizes message-passing to propagate information across
both topological and geometrical edges. Topological information is passed through topo-edges,
while geometrical information is transmitted via geom-edges. These messages are then fused to
update the representations of cells and nets. During pre-training, the integration of topological
and geometrical information is achieved through the message-passing paradigm, with topo-geom
message-passing ensuring both types of data contribute to the final learned representation. Task-
specific supervisions are employed to train the model.

Self-supervised layout encoder with text-graph multimodal fusion. TAG [116] framework
employs three primary modalities: (1) Text embedding, where the instance names and device/sub-
circuit types from the circuit netlists are used as text inputs, processed using fastText to generate
word embeddings, (2) Graph format, where the circuit is represented as a heterogeneous hierarchical
graph encoding devices (nodes) and their connections (edges), including device types (e.g., NMOS,
PMOS, capacitors) and hierarchical relationships between sub-circuits, and (3) Self-attention, where
a multi-head self-attention layer is applied to the embeddings to capture global dependencies
between instances within sub-circuits. The model architecture combines a GNN with self-attention
to process both graph and text embeddings. GNN layers aggregate node information, while the
self-attention mechanism ensures a global view of the circuit by considering the entire sub-circuit
during training. During pre-training, the model is trained in an unsupervised manner with a focus
on predicting the relative layout distance between instances within a sub-circuit. This distance
prediction task is framed as a regression problem, where the embeddings are trained to predict the
normalized relative distance between instances in manual layouts.

Self-supervised layout encoder with text semantic encoding. In LLM-HD [117], the input
modalities of this layout encoder include GDSII layout data and its semantic encoding. The GDSII
data is transformed into a sequential format to make it suitable for processing by a language model.
The key components include polygon shapes and spatial relationships between them, encoded as
sequential tokens. The model architecture employs a BERT-based transformer specifically designed
for layout patterns, utilizing multi-head self-attention to capture relationships between layout
features both locally and globally. The architecture consists of an embedding layer, followed by
LLM-HD [117] layers, and concludes with a classification layer. During pre-training, the model uses
masked language modeling, an unsupervised task where portions of the input data are randomly
masked, and the model predicts the masked portions. This pre-training enables the model to learn
representations of layout patterns, before fine-tuning for specific tasks such as hotspot detection.

4.4.3 Downstream tasks for layout encoders.
Circuit GNN [115] supports both congestion prediction and net wirelength prediction tasks.

For congestion, it predicts routing congestion during both the logic synthesis and placement
stages, evaluated using correlations and classification metrics like precision, recall, and F1-score.
TAG [116] handles three layout-stage tasks: layout matching prediction (binary classification of
layout constraints, evaluated by accuracy, TPR, FPR, PPV, and F1-score), wirelength estimation
(HPWL evaluated with R2, MAE, and sMAPE), and net parasitic capacitance prediction (evaluated
using R2 and MAE). LLM-HD [117] focuses on hotspot detection, a binary classification task
identifying layout areas prone to manufacturing defects.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 29

CircuitFusion
ICLR’25

CircuitEncoder
ASP-DAC’25

NetTAG
DAC’25

MGVGA
ICLR’25

• Contrastive align • Mask-reconstruction align

DeepCell
Feb 2025

RTL &
Netlist

RTL &
Netlist

RTL &Netlist
& Layout

RTL &
AIG

AIG &
Netlist

(a) Multimodal fusion

self-supervisedHLS RTL Netlist Layout

Design2Vec
NeurIPS’21

TAG
ICCAD’22

ProgSG
MLCAD’24

CircuitFusion
ICLR’25

NetTAG
DAC’25

Cross-
attention

Hybrid
model

Hybrid
model

Hybrid
model

Hybrid
model

• C/C++ Code
• HLS CDFG

• NL Summary
• HDL Code
• RTL CDFG

• Netlist Graph
• Gate Expression

• Layout Graph
• Gate Text

(b) Cross-design-stage alignment

Fig. 9. Timeline for multimodal fused and cross-stage aligned encoders.

4.5 Summary of Trending Techniques for Advancing Circuit Encoders
4.5.1 Trend 1: Customized ML model architecture and pre-training tasks for circuits.

ML model architecture customized for circuits. To effectively capture the unique structural
and functional properties of circuit data, various customized architectures have been developed,
particularly in graph-based learning models. These architectures integrate specialized message-
passingmechanisms to enhance the representation of circuit structures. For instance, GAMORA [54]
and PolarGate [107] introduce customized GNN-based message passing tailored for AIGs, enabling
the model to efficiently capture both Boolean functionality and structural connectivity.
Pre-training tasks customized for circuits. Pre-training tasks for circuit encoders can be

divided into supervised and self-supervised methods, with each method specifically designed to
capture the unique properties of circuit data. In supervised learning, for example, DeepGate2 [104]
uses truth table supervision to train encoders by comparing the pairwise differences between truth
tables of logic gates, thereby capturing the functional behavior of the circuit. This approach helps
the encoder learn how different gates function in the context of their logic operations. On the other
hand, for example, SNS v2 [25] introduces self-supervised learning for RTL encoders with func-
tional contrastive learning. The model learns to cluster functionally similar circuits and separate
dissimilar ones in the latent space. Another notable self-supervised pre-training task is masked
circuit reconstruction, such as used in NetTAG [113], where specific gates in a circuit’s netlist
are masked, and the model learns to predict the missing gates based on the surrounding context.
These pre-training tasks are vital for learning generalized representations that can be fine-tuned
for various downstream tasks, such as design space exploration and functional verification.

4.5.2 Trend 2: circuit multimodal fusion.
Circuit design involves multiple modalities, including hardware description languages, graphical

representations, and functional summaries, each capturing different aspects of the circuit. Recent
works in circuit foundation models have focused on integrating these modalities through multi-
modal fusion techniques, enabling models to leverage both structural and semantic information
for more robust representation learning. Two primary approaches have emerged in this area:
hybrid ML model architecture that combines different encoders for various modalities and cross-
attention-based fusion with self-supervised learning. The timeline of multimodal fused encoders is
demonstrated in Figure 9 (a).

Multimodal fusion by hybridmodels.Hybrid models integrate distinct encoding architectures
tailored to specific circuit modalities. For example, ProgSG [100] and Design2Vec [101] focus on
HLS and RTL-stage circuits, respectively, where the source code contains rich semantic information.
These models employ LLMs to encode textual descriptions while using GNNs to capture struc-
tural information from control-data flow graphs. This dual-modality approach ensures that both
functional intent and circuit topology are preserved in the learned representations. At the netlist
and layout stages, where the netlist code provides limited functional information, NetTAG [113]

30 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

and TAG [116] adopt a similar hybrid approach but with modifications suited for lower-level
representations. NetTAG [113] extracts detailed symbolic logic expressions for each gate, encoding
them using an LLM, while a GNN captures the circuit’s global structural dependencies. TAG [116]
follows a similar strategy, leveraging textual attributes alongside graph-based structural encodings
to improve netlist representation.
Multimodal fusion by cross attention. In addition to hybrid models, cross-attention-based

fusion has been proposed as an alternative strategy for multimodal integration. CircuitFusion [97],
designed for RTL-stage encoding, processes three primary modalities—HDL code, functional sum-
maries, and structural graphs—in parallel. Each modality is first encoded independently, after which
an additional multimodal fusion encoder with cross-attention mechanisms aligns and integrates
the learned representations. The cross-attention mechanism ensures that the fused representation
retains complementary information from all modalities while mitigating redundancy. CircuitFu-
sion [97] further enhances representation learning through self-supervised tasks such as masked
summary modeling and embedding mixup, reinforcing the alignment between modalities.

4.5.3 Trend 3: cross-design-stage alignment.
Cross-design-stage alignment has become a promising direction in circuit foundation mod-

els, enabling representations learned at earlier design stages (e.g., RTL) to be aligned with their
corresponding lower-level implementations (e.g., netlist, layout). This alignment enhances general-
izability, allowing models to better capture the functional and physical characteristics of circuits
throughout the design process. Two primary approaches have been explored for achieving cross-
stage alignment: contrastive learning-based alignment and mask-reconstruction-based alignment.
The timeline of cross-stage aligned encoders is demonstrated in Figure 9 (b).

Cross-stage alignment via contrastive learning. Contrastive learning-based alignment has
been effectively used for bridging different design stages by learning stage-invariant circuit rep-
resentations. CircuitEncoder [102] and CircuitFusion [97] focus on RTL-to-netlist alignment by
integrating structural and functional representations through self-supervised contrastive learning.
These models enforce similarity constraints between functionally equivalent circuits across design
stages, ensuring that embeddings capture both high-level design intent and low-level implemen-
tation details. NetTAG [113] extends this approach beyond RTL and netlist, incorporating layout
information to enable RTL-netlist-layout alignment. By leveraging cross-modal contrastive learn-
ing, NetTAG [113] aligns representations across all three design stages, facilitating more accurate
early-stage predictions of post-layout circuit characteristics.

Cross-stage alignment via mask-reconstruction. Mask-reconstruction-based alignment, on
the other hand, focuses on recovering masked portions of a circuit while maintaining logical and
structural consistency across design stages. MGVGA [112] is designed for RTL-to-AIG alignment,
where it employsMaskedGateModeling to selectivelymask gate-level details in AIG representations
while preserving functional equivalence. This ensures that the learned embeddings retain both
RTL-level semantics and AIG-level logic properties. DeepCell [114] also employs this technique
for AIG-to-netlist alignment, incorporating a self-supervised masking strategy to reconstruct
standard cell representations from their lower-level gate descriptions. This approach enhances the
model’s ability to understand structural variations while preserving functional equivalence across
abstraction levels.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 31

5 FOUNDATION MODEL AS A CIRCUIT DECODER
Another major paradigm of circuit foundation models is circuit decoders, which leverage LLMs for
the automated generation of circuit-related content. These models facilitate the creation of RTL code
(e.g., Verilog or VHDL), HLS code (e.g., SystemC or C++), design scripts (e.g., Tcl or Python), design
descriptions, etc. As summarized in Figure 10, this section provides a comprehensive overview of

Foundation
model
as

circuit
decoder

RTL code
generation
(Section 5.1)

DAVE [132], ChipGPT [133], VerilogEval [14],
GPT4AIGChip [134], Chip-Chat [135], AutoChip [136],

RTLLM [12], VeriGen [137], RapidGPT [138], CodeV [139],
AutoVCoder [140], BetterV [141], ChipNemo [13],

Chang et al. [142], OriGen [143], VerilogCoder [144],
Thakur et al. [15], RTLCoder [145], MG-Verilog [146]

CreativeEval [147], VHDL-Eval [148], Chang et al. [149],
OPL4GPT [150], RTLSquad [151], MAGE [152],

RTL-repo [153], OpenLLM-RTL [154], Sun et al. [155],
DeepRTL [156], CraftRTL [157], [158–166]

HLS code generation
(Section 5.2)

HLSPilot [167], C2HLSC [168], SynthAI [169],
Liao et al. [170], Gai et al. [171]

Design optimization
(Section 5.3)

BetterV [141], ChipGPT [133], RTLRewriter [172],
Martine et al. [173], Xu et al. [174], Thorat et al. [175],

Sandal et al. [161], DeLorenzo et al. [162]

Hardware
verification
(Section 5.4)

ChipNeMo [13], RTLFixer [176], AutoSVA [177],
NSPG [178], DIVAS [179], SimEval [180],

AssertLLM [181], ChIRAAG [182], UVLLM [183],
LLM4DV [184], VerilogReader [185], FVEval [186],

OpenLLM-RTL [154], AssertionBench [187], [188–198]

Circuit code debugging
(Section 5.5)

MEIC [199], RTLFixer[176], VeriAssist [191],
HDLdebugger [200], Chrysalis [201],
Llm4sechw [202], [179, 203, 204]

Hardware security
(Section 5.6)

DIVAS [179], Saha et al. [205], Self-HWDebug [206],
Ahmad [207], AutoSVA2 [208], ChIAAG [182],

Latibari et al. [209], Netlist Whisperer [210], SCAR [211],
Kande et al. [188], Pearce et al. [212],

[70–73, 178, 193, 213–215]

Design flow & Layout
(Section 5.7)

ChatEDA [216], SmartonAI [217], LLSM [218],
MetRex [219], DRC-Coder [220],
ChipAlign [221], FabGPT [222],
Chen et al. [223], Ho et al. [224]

Architecture design
(Section 5.8)

AIGChip [134], ChatEDA [216], SpecLLM [225],
[217, 226–228]

Analog design
(Section 5.9)

LADAC [229], AnalogCoder [230], FLAG [231],
ADO-LLM [232], LaMAGIC [233], Artisan [234],

LEDRO [235], AnalogXpert [236], AnalogGenie [237]

Fig. 10. Research tree of foundation models as circuit decoder, covered in Section 5.

32 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

LLM-assisted circuit design techniques, categorizing them into 7 main directions according to their
applications in generative EDA tasks:

(1) LLM-assisted hardware code generation and optimization. This category explores the
application of LLMs in generating hardware code across different abstraction levels, such as
RTL and HLS code. We will discuss the use of LLMs for RTL code generation in Section 5.1
and HLS code generation in Section 5.2. Additionally, we will examine efforts in producing
optimized hardware in Section 5.3. Some works in this optimization category overlap with
the hardware code generation.

(2) LLM-assisted hardware code verification and debugging. Beyond code generation,
LLMs are employed to verify the correctness of hardware code (HLS or RTL) and to fix
potential bugs. Section 5.4 will cover the role of LLMs in hardware code verification, while
Section 5.5 will focus on hardware debugging techniques.

(3) LLM for hardware security.Works on hardware security focus on security-oriented design,
debugging, and verification. We will delve into these topics in Section 5.6, highlighting the
unique challenges in security as distinct from general verification and debugging.

(4) LLM for design flow automation and layouts. Section 5.7 explores the application of
LLMs in automating the design flow based on natural-language instructions, as well as
enhancing circuit layout processing for improved manufacturability.

(5) LLM for hardware architecture design. Section 5.8 addresses the application of LLMs at
a higher level of abstraction, focusing on design architecture and specifications. This includes
applications for memory design and AI accelerators.

(6) LLM for analog circuit design. Beyond the scope of digital VLSI design, LLM-assisted
analog circuit design is another important direction. In Section 5.9, we will explore how
LLMs can benefit analog circuit design, highlighting the significance of this area in the
broader context of hardware development.

5.1 LLM for RTL Code Generation
RTL design is a crucial step in the whole VLSI design process. This process defines the expected
behavior of circuits with hardware description languages (HDLs) like Verilog and VHDL. However,
RTL design remains a manual, time-consuming, tedious, and error-prone task. Recently, leveraging
LLMs for RTL generation offers a promising automated solution. Specifically, LLM solutions can
directly generate expected design RTL in HDL code, typically based on design descriptions in natural
language as LLM input. Such RTL code generation is the most extensively explored application
of LLM-assisted EDA techniques. The existing works contribute primarily in two ways: 1) new
benchmarks evaluating LLM performance, covered in Section 5.1.1 and listed in Table 4; and 2) new
LLM solutions on RTL code generation, covered in Section 5.1.2 and listed in Table 5 and Figure 12.

5.1.1 RTL code generation benchmarks.
As LLMs become popular for RTL design generation, benchmarks become crucial for assessing

the accuracy, efficiency, and reliability of LLM-based solutions for circuits. We summarize all
benchmarks on RTL generation in Table 4, among which RTLLM [12] and VerilogEval [14] are two
pioneering and most widely-adopted benchmarks for evaluating RTL code generation. Figure 11
illustrates the evaluation process of the RTL code generation benchmarks. A typical benchmark [12,
14] will provide dozens of design cases, each corresponding to one small circuit design or component.
For each case, the benchmark will provide three types of files: 1) design descriptions as the LLM
input, 2) test benches to verify the correctness of LLM-generated HDL code, and 3) the correct HDL
code (i.e., reference model), typically handcrafted by designers, as a reference.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 33

Benchmarks for RTL Code Generation
Benchmarks Open-sourced link Date

RTLLM [12, 154] ✓ https://github.com/hkust-zhiyao/rtllm 2023-10
VerilogEval [14]

✓ https://github.com/NVlabs/verilog-eval 2023-12
VerilogEval v2[165] 2024-08
CreativeEval [147] ✓ https://github.com/matthewdelorenzo/creativeval 2024-04
RTL-repo [153] ✓ https://github.com/AUCOHL/RTL-Repo 2024-05
VHDL-Eval [148] 2024-06
ChatGPTV [149] ✓ https://github.com/aichipdesign/chipgptv 2024-11

Table 4. Collection of benchmarks on LLMs for RTL generation in Section 5.1. VerilogEval [14] and its second
version [165] share the same open-source link.

RTLLM [12] is one of the first benchmarks on design RTL generation based on natural language
descriptions. It introduces a comprehensive evaluation framework with three progressive goals:
syntax correctness, functionality correctness, and design quality (i.e., PPA metrics). The benchmark
includes 30 diverse designs, ranging from simple arithmetic circuits to complex systems like a RISC
CPU, and provides automated evaluation pipelines with natural language descriptions, testbenches,
and human-crafted reference designs. RTLLM also adopts a self-planning prompt engineering
technique, which significantly improves the performance of GPT-3.5 [88] by decomposing the RTL
generation task into planning and code generation steps. The latest version (i.e., RTLLM 2.0) is
available in OpenLLM-RTL [154] and expands the benchmark to 50 designs.

VerilogEval [14] is the other pioneering benchmark on RTL generation based on natural language
descriptions. It comprises 156 problems sourced from HDLBits, covering a wide range of topics from
combinational circuits to finite state machines. VerilogEval offers two types of problem descriptions:
machine-generated (using LLMs) and human-curated, ensuring clarity and reducing ambiguity. The
benchmark provides an automated testing environment using the ICARUS Verilog simulator and
employs the pass@k metric to evaluate functional correctness. Additionally, VerilogEval explores
supervised fine-tuning (SFT) with a synthetic dataset of 8,502 problem-code pairs, demonstrating
that fine-tuning can enhance LLM performance, especially for models not originally trained on
Verilog. Based on VerilogEval [14], VerilogEval v2 [165] evaluates the performance of new models
and enhances the infrastructure and further discusses the importance of prompt engineering for
RTL generation task.
In addition to the widely adopted RTLLM and VerilogEval benchmarks, there are several other

benchmarks that assess LLMs in RTL code generation. CreativeEval [147] evaluates LLM creativity
in Verilog generation based on fluency, flexibility, originality, and elaboration, finding GPT-3.5
to be the most creative among tested models. RTL-Repo [153] collects 4,000 GitHub samples to

LLM Coder

RTL Code

Synthesis Tool Failed

Simulator Tool
Sim Logs

Pass Rates
Mismatch Signals

No
Mismatch

No error

Failed

Passed
Y

N

Benchmark

Spec
Reference

Model <Testcase>

① ② ③
Prompt

①

②

Fig. 11. Illustration of the benchmark on LLMs for RTL generation, recent works are covered in Section 5.1.
Benchmark workflow comprises three steps: 1) LLMs generate RTL code from specifications, 2) The code
is input into a synthesis tool to identify syntax errors, and 3) A simulation process checks for mismatches
against predefined reference models or test case golden results.

https://github.com/hkust-zhiyao/rtllm
https://github.com/NVlabs/verilog-eval
https://github.com/matthewdelorenzo/creativeval
https://github.com/AUCOHL/RTL-Repo
https://github.com/aichipdesign/chipgptv

34 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

LLM for RTL Code Generation
Works Open Link Date Method

Nair et a. [158]* 2023-02
Enrique et al. [238] ✓ https://github.com/99EnriqueD/verilog_autocompletion 2023-04
ChipGPT [133] (Opt) 2023-06

RTLLM [12] ✓ https://github.com/hkust-zhiyao/rtllm 2023-08
AutoChip [136] ✓ https://github.com/shailja-thakur/AutoChip 2023-11 Prompt
Chip-Chat [135] 2023-11 engineering

Sandal et al. [161] (Opt) 2024-01
Goh et al. [164] 2024-03

VerilogCoder [144] 2024-08
AIVRIL2 [138] 2024-09

Nakkab et al. [159] 2024-09
Vijayaraghavan et al. [160] 2024-09

MAGE [152] 2024-12
RTLSquad [151] ✓ https://github.com/observerw/RTLSquad 2025-01
VRank [239] 2025-01

DeLorenzo et al. [162] (Opt) 2024-02 Monte Carlo
tree search

DAVE [132] ✓ 2020-11
VerilogEval [14] ✓ https://github.com/NVlabs/verilog-eval 2023-09 SFT with
ChipNemo [13] 2023-10 private

BetterV [141] (Opt) 2024-02 data
Chang et al. [142] 2024-05
VeriSeek[163] ✓ https://huggingface.co/LLM-EDA/VeriSeek 2024-08 SFT with RL
DeepRTL [156] 2025-02 Representation

Learning
VeriGen [137] ✓ https://github.com/shailja-thakur/vgen 2023-07 UFT
RTLCoder [145] ✓ https://github.com/hkust-zhiyao/RTL-Coder 2023-12
CodeV [139] ✓ https://github.com/IPRC-DIP/CodeV 2024-07

MG-Verilog [146] ✓ https://github.com/GATECH-EIC/mg-verilog 2024-07 SFT with
AutoVCoder [140] ✓ https://github.com/sjtu-zhao-lab/AutoVCoder 2024-07 open-sourced

Origen [143] ✓ https://github.com/pku-liang/OriGen 2024-09 data
CraftRTL [157] ✓ https://github.com/NVlabs/CraftRTL 2024-09

Table 5. Works on LLMs for RTL generation. In the ‘Works’ column, denotation ‘*’ refers to works on security,
while ‘(Opt)’ means the work focuses on design optimization. Though VerilogEval [14, 165] is a benchmark
(in Table 4), it also proposes SFT with problem-pair pairs, while the training dataset is not open-sourced.
DeLorenzo et al. [162] introduce an RTL generation framework that integrates the MCTS sampling process,
which we classify as a form of prompt engineering since it solely alters the inference process, without
necessitating fine-tuning. Some works provide code through GitHub but don’t provide open-source models
or training datasets. We classify them as SFTs with private data.

evaluate LLMs on ‘long-range dependency handling’ ability through several metrics. However,
the dataset lacks corresponding functional specifications, preventing it from being considered a
standard benchmark. VHDL-Eval [148] addresses the lack of VHDL-specific benchmarks, offering
202 problems with self-verifying testbenches to evaluate functional correctness through zero-shot
generation and fine-tuning. ChatGPTV [149] introduces a multi-modal benchmark for Verilog
synthesis, incorporating visual inputs to improve LLM performance in handling spatial circuit
complexity, showing significant accuracy gains over text-only approaches.

5.1.2 RTL code generation techniques.
RTL code generation is the most extensively explored application of LLM-assisted EDA techniques.

Given the growing body of work in this area, we categorize existing approaches into four distinct
strategies. Table 5 and Figure 12 list the comparison and timeline of all related works, respectively.

https://github.com/99EnriqueD/verilog_autocompletion
https://github.com/hkust-zhiyao/rtllm
https://github.com/shailja-thakur/AutoChip
https://github.com/observerw/RTLSquad
https://github.com/NVlabs/verilog-eval
https://huggingface.co/LLM-EDA/VeriSeek
https://github.com/shailja-thakur/vgen
https://github.com/hkust-zhiyao/RTL-Coder
https://github.com/IPRC-DIP/CodeV
https://github.com/GATECH-EIC/mg-verilog
https://github.com/sjtu-zhao-lab/AutoVCoder
https://github.com/pku-liang/OriGen
https://github.com/NVlabs/CraftRTL

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 35

OriGen
Sep. 2024

AutoVCoder
Jul. 2024

CodeV
Jul. 2024

AIVRIL
Sep. 2024

RTLSquad
Jan. 2025

VeriSeek
Aug. 2024

MAGE
Dec. 2024

DeepRTL
Feb. 2025

CraftRTL
Sep. 2024

VerilogCoder
Aug. 2024

ChipGPT
Jun. 2023

ChipNemo
Oct. 2023

VeriGen
Jul. 2023

RTLLM
Aug. 2023

AutoChip
Nov. 2023

Chip-Chat
Nov. 2023

RTLCoder
Dec. 2023

VerilogEval
Sep. 2023

BetterV
Feb. 2024

Prompt Engineering

Fine-tuned

DAVE
Nov. 2020

Fig. 12. Timeline of works on RTL generation, covered in Section 5.1. The timeline also includes the works
of generation for design optimization (e.g., BetterV [141]). Recent works (e.g., Origen [143] and Verilog-
Coder [144]) show a trend of utilizing feedback from EDA tools to improve generation quality.

(1) Prompt engineering. This approach designs specific prompts to guide LLMs in generating
RTL outputs. The effectiveness of the generated code largely hinges on the quality of
these prompts, which often requires iterative refinements and experimental trial-and-error.
Well-crafted prompts can lead to correct and even high-quality RTL code.

(2) LLMs trained on private datasets with instruction-code pairs. This approach fine-tunes
LLMs (based on already pre-trained LLMs) using proprietary data, such as industrial in-
house circuit designs. It tailors models to an organization’s needs, enhancing performance
but requires significant resources and access to high-quality private data.

(3) LLMs trained on open datasetswith code only.This approach uses open-source codebases
to fine-tune LLMs, eliminating the need for labor-intensive, high-quality datasets that require
manual annotation. Such unsupervised fine-tuning process can help LLMs capture inherent
structures of RTL code but is less effective for instruction-following tasks.

(4) LLMs trained on open datasets with instruction-code pairs. Fine-tunes models on pairs
of design specifications and RTL implementations, helping them translate specifications
into code. This requires a large number of high-quality pairs, which can be challenging to
obtain but is quite effective in boosting LLMs’ ability on hardware code generation tasks.

The first strategy, prompt engineering, primarily leverages commercial LLMs via API calls. In
contrast, the other three strategies focus on customizing local LLMs by fine-tuning pre-trained
models, mostly from open-source communities. Each strategy has its own advantages and drawbacks.
Commercial models (e.g., GPT) reduce the substantial costs of training and deploying LLMs but may
raise security and intellectual property concerns. On the other hand, fine-tuning local open-sourced
LLMs (e.g., Llama, DeepSeek) can address these security and IP issues but requires significant
resources and limits the model size. Smaller-scale customized LLMs tend to be less general compared
with large commercial solutions.

The four distinct strategies for RTL generation using LLMs present unique advantages and
challenges. Prompt engineering focuses on crafting precise prompts to guide LLMs in generating
RTL code, which usually involves iterative refinement with EDA tools. In contrast, LLMs trained on
private datasets (‘Supervised Fine-Tuning’, denoted as ‘SFT’ in Table 5) enhance model performance
by fine-tuning them with proprietary data tailored to specific organizational needs. However, this
method demands computational resources for fine-tuning, and the private circuit dataset is not
open-sourced to facilitate the advancement of the community. Alternatively, LLMs trained on
open datasets with code only (‘Unsupervised Fine-Tuning’, denoted as ‘UFT’ in Table 5) leverage
open-source codebases for unsupervised fine-tuning, reducing the need for labor-intensive dataset
preparation. However, this approach is less effective for RTL generation, which requires strict
adherence to specific instructions including design descriptions. The UFT trains LLMs to predict

36 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

LLM Interaction

Feedback Loop based
on Mismatch or

Syntax Error

Synthesis Tool

Simulator Tool

Syntax
Error

Mismatch
Cases

Prompt Engineering

Emphasizing
Structure

Design
Principles

LLMs

RTL Code
GenerationPrompt

No errors

<Testcases>

Yes

Yes

Rewrite

Code
Description

Fig. 13. Illustration of the basic flow of RTL design using prompt engineering. Related works are covered
in Section 5.1. The design specification will be combined with manually designed structure analysis and
design principles (in VerilogCoder [144]), and then the LLMs will take the prompt to generate corresponding
RTL code. Most early works (RTLLM [12], AutoVCoder [140]) on RTL generation stop at this step. The more
recent works incorporate the feedback from EDA tools into the design flow, for example, utilizing the error
information and mismatch log to prompt LLMs for rewriting.

the next token based on the preceding context, which aids LLMs in grasping code syntax, but
is limited in understanding required functional specifications. Consequently, this UFT approach
is typically less effective and thus less adopted. Finally, LLMs trained on open datasets with
instruction-code pairs (these methods also involve Supervised Fine-Tuning, denoted as ‘SFT’)
utilize pairs of design specifications and RTL code to train the LLMs, and the dataset is open-sourced.
This last strategy is both effective and benefits the community with open-source datasets.

Figure 14 compares the performance of variousmodels onVerilogEval-Human [14] and RTLLM [12]
over time, including both general-purpose coding LLMs (e.g., DeepSeek-Coder, CodeLlama) and
RTL-specific coding LLMs (e.g., RTL-Coder [145], BetterV [141]). This comparison highlights
the advancements in Verilog code generation, illustrating how domain-specific fine-tuning and
architectural modifications enhance the effectiveness of LLMs in hardware design automation.

Strategy 1: Prompt engineering. Prompt engineering is one of the earliest strategies used for
RTL generation due to its simplicity and effectiveness in applying LLMs to circuit design, including
commercial LLMs. While recent efforts have focused on developing new fine-tuned LLMs for RTL
generation, research about prompt engineering continues to evolve. Prompt engineering [240]
mainly focuses on designing and optimizing input prompts to effectively communicate with LLMs
and elicit desired design generations. The advantage of this methodology is the elimination of the
requirement for fine-tuning and adaptability across different LLMs. Tons of works [12, 133, 135,
136, 138, 158, 159, 238] have explored applying and customizing advanced prompt engineering
techniques for RTL code generation by LLMs, as demonstrated in Figure 13.
Chip-Chat [135], as a pioneering work, investigates the use of conversational LLMs, such as

OpenAI’s ChatGPT, in translating natural language specifications into HDLs for circuit design.
Through a case study, the authors explore the collaborative design of an 8-bit accumulator-based
microprocessor with GPT-4. The methodology involves breaking down the design into subtasks
managed through conversation threads, where GPT-4 generates Verilog code guided by a human
engineer who verifies and refines the output. The study finds that while LLMs can produce high-
quality code and act as effective design assistants, they require human oversight for specification
corrections and struggle with verification tasks. This research highlights the potential of LLMs to
enhance productivity in circuit design when used as a complement to human expertise.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 37

20
23

-02

20
23

-05

20
23

-08

20
23

-11

20
24

-02

20
24

-05

20
24

-08

Time

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 S

co
re

VeriGen-16B

RTL-Coder-Deepseek
BetterV-CodeQWen

CodeV-CodeQWen

CodeGen2

CodeLlama-7B-Instruct
CodeQWen-1.5-7B-Chat

Deepseek-Coder-6.7B-Instruct

GPT-4

LLM Performance on VerilogEval-Human
RTL Specific Coder
General Coder

20
23

-02

20
23

-05

20
23

-08

20
23

-11

20
24

-02

20
24

-05

20
24

-08

Time

10

20

30

40

50

60

VeriGen-16B

RTL-Coder-Mistral

CodeV-CodeLlama

CodeGen2

StarCoder
CodeLlama-7B-Instruct

CodeQWen-1.5-7B-Chat
GPT-3.5

LLM Performance on RTLLM-V1.1
RTL Specific Coder
General Coder

Fig. 14. Performance comparison of various approaches to RTL generation tasks. Involved works are covered
in Section 5.1. The first figure illustrates the performance of different methods over time as evaluated by
VerilogEval [14], while the second figure presents the results obtained from RTLLM [12].

Recently, VerilogCoder [144] presents a novel framework utilizing multiple AI agents to automate
Verilog code generation and correction. It introduces a task and circuit relation graph for structured
task decomposition, ensuring the inclusion of essential signal and state transition details. The
system incorporates an AST-based waveform tracing tool for debugging, allowing agents to identify
and correct functional errors. Using the ReAct [241] technique, agents iteratively interact with
Verilog tools, including syntax checkers and simulators, to refine the code. This methodology
significantly enhances the automation of circuit design.
Strategy 2: LLMs trained on private dataset with instruction-code pairs. Aside from

prompt engineering for circuit design generation, another powerful technique is fine-tuning. Fine-
tuning can be categorized into unsupervised fine-tuning and supervised fine-tuning. Here we focus
on models that utilize supervised fine-tuning on private datasets. Many solutions in this domain
are developed by industrial companies or in collaboration with industrial organizations. As a result,
the models or datasets are often not open-sourced. DAVE [132] presents a pioneering custom
dataset generation process that employs a template-based approach to create instruction-code pairs.
They frame the Verilog generation task as a machine translation problem, fine-tuning a GPT-2
model to produce Verilog code from English descriptions. The training dataset generation process
utilizes “Task/Result metastructure” that outlines the type of digital design task and relevant details,
together with templates representing various scenarios such as combinational assignments and
registers. The generated dataset is not open-sourced but includes diverse task instances to aid in
fine-tuning the model. AutoVCoder [140] is a framework designed to improve the accuracy of LLMs
in generating Verilog code. It addresses the challenges of low syntactic and functional correctness
in LLM-generated RTL code by employing three key techniques: a high-quality hardware dataset
generation method, a two-round LLM fine-tuning process, and a domain-specific RAG mechanism.
The framework uses a code scorer to filter a large dataset of Verilog code from GitHub and generates
a synthetic dataset using GPT-3.5. The two-round fine-tuning leverages these datasets, and the RAG
module is designed to enhance the process by providing relevant context during code generation.
OriGen [143] is a new open-source framework for generating RTL Verilog code. It addresses the
limitations of existing open-source LLMs by incorporating a novel code-to-code augmentation
technique and a self-reflection mechanism. The augmentation method uses a commercial LLM

38 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

(Claude3-Haiku) as a “teacher” to improve the quality of open-source RTL datasets. To address the
scarcity of high-quality Verilog data, CodeV [139] leverages the observation that LLMs excel at
summarizing Verilog code, rather than generating it from scratch. The system operates by first
collecting and filtering a large corpus of high-quality Verilog modules from open-source repositories.
These modules are then fed into GPT-3.5, which generates multi-level summaries—detailed func-
tional descriptions and higher-level problem statements—for each module. These description-code
pairs form a high-quality dataset used to fine-tune base LLMs (CodeLlama, DeepSeekCoder, and
CodeQwen), resulting in the CodeV series of models.
DeepRTL [156] introduces a unified representation model to enhance both understanding and

generation of Verilog code. The model addresses limitations in previous approaches, which focus
primarily on Verilog code generation, neglecting the critical task of understanding. DeepRTL [156]
is fine-tuned on a comprehensive dataset that aligns Verilog code with multi-level natural language
descriptions, covering line, block, and module levels with both detailed and high-level functional
descriptions. The dataset includes both open-source and proprietary Verilog code, annotated using a
CoT approach with GPT-4 and verified by human experts. The authors introduce a novel benchmark
for Verilog understanding and propose using semantic evaluation metrics like embedding similarity
and GPT score, which capture semantic coherence more effectively than traditional methods like
BLEU and ROUGE. Additionally, the paper employs curriculum learning, allowing the model to
incrementally build knowledge from simpler to more complex tasks, enhancing its performance in
both understanding and generation of Verilog code.
Strategy 3: LLMs trained on open datasets with code only. In the initial phase of fine-

tuning LLMs for RTL design generation, early efforts primarily relied on unsupervised data sourced
from platforms like GitHub and other open-source code repositories. The key benefit of using
unsupervised datasets is their ease of training and the large volume of existing unlabeled data,
eliminating the need for labor-intensive labeling tasks. However, the limited label alignment of
these datasets limits their effectiveness in training LLMs for RTL generation. These techniques
mainly enable LLMs to understand language patterns, structures, and semantics by processing vast
amounts of text data. LLMs are tasked to predict the next token given the previous context [88].
For example, VGen [15], as the pioneering work, first evaluates the ability of unsupervised

LLMs to generate Verilog code, a critical aspect of circuit design. The authors fine-tune several
pre-trained LLMs on a large dataset of Verilog code collected from GitHub and textbooks, creating
the largest training corpus for this purpose. They develop an evaluation framework that includes
test benches for assessing both the syntactic and functional correctness of the generated code
across various problem scenarios. Wang et al. [163] explores the use of LLMs for automatically
generating Verilog code from natural language specifications. It introduces a novel approach that
employs reinforcement learning with golden code feedback, specifically using proximal policy
optimization and a reward function based on the similarity of abstract syntax trees between
generated and reference code. This method enhances the semantic evaluation of the generated
code and addresses the limitations of existing open-source models, which often lack performance
compared to commercial alternatives. The authors present their model, VeriSeek, which has 6.7
billion parameters and achieves state-of-the-art results.
Strategy 4: LLMs trained on open datasets with instruction-code pairs. This process,

known as ‘instruction fine-tuning’ or ‘supervised fine-tuning’ [242], adjusts the model to follow
specific instructions or prompts more effectively. Different from adopting in-house private datasets
in strategy 2, this strategy tries to provide open-source datasets to benefit the community. To
address the scarcity of high-quality training data, RTLCoder [145] introduces an automated dataset
generation workflow. As illustrated in Figure15, the dataset generation workflow follows a three-
step process, establishing a foundational paradigm for dataset creation. Its generated dataset enables

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 39

Keywords
Pool
ℒ𝒌𝒆𝒚

Mutation Prompt
𝑷𝒎𝒖𝒕

• Single Circuit Variation

• Circuits Combining

Keywords
Gen Prompt

𝑷𝒌𝒆𝒚

GPT-based Flow

Code

Checker

RTL Instruction-Code
Pairs

RTL Instruction-Code
dataset

Stage 1: Domain Keywords Preparation Stage 2: Instruction Generation Stage 3: Reference Code Generation

Extending
Prompt
𝑷𝒆𝒙𝒕

❶ ❷
Instruction

Pool

ℒ𝒊𝒏𝒔

❺

fail

pass

Local Automated Flow

pass

fail

Instruction

Checker ❼
New

Instruction

SourceCode
Pool

ℒ𝒄𝒐𝒅𝒆

❸

❹

❻

Fig. 15. Data generation flow of RTLCoder [145]. Following works (like AutoVCoder [140], Origen [143]) also
adopts similar methodologies for dataset generation. The dataset generation consists of three steps. The first
two steps are designed to generate diverse instructions (design specifications) and the final step is to generate
high-quality reference code for the next fine-tuning step.

a fine-tuned LLM coder that outperforms GPT-3.5 [88] and achieves performance comparable to
GPT-4 [88]. This pioneering work provides the first open-source RTL LLM coder with instruction
fine-tuning. Similar to the paradigm introduced by RTLCoder, CraftRTL [157] further analyzes
existing LLM’s performance on Verilog, identifying two key weaknesses: poor handling of non-
textual representations (like Karnaugh maps and waveforms) and inconsistent performance due to
minor coding errors. Targeting these weaknesses, CraftRTL creates a "correct-by-construction"
synthetic dataset that includes Karnaugh maps, finite state machines, and waveform representations.
They develop an automated framework for generating detailed error reports that identify common
minor mistakes in code completions, which are then used to create a targeted code repair dataset
by injecting errors into correct open-source code.

5.2 LLMs for HLS Code Generation
Similar to RTL code generation, several works have explored LLM-based HLS code generation
to improve automation and efficiency when designing hardware with high-level programming
languages. As summarized in Table 6, existing solutions primarily rely on prompt engineering
without fine-tuning themodels. Additionally, manyworks are open-sourced. Notably, HLSPilot [167]
and Liao et al. [170] introduce new benchmarks for evaluating HLS code generation performance.

For example, SynthAI [169] introduces a multi-agent generative AI framework for modular HLS
design, integrating ReAct agents, CoT prompting, RAG, and web search capabilities to enhance
decision-making. By systematically planning and executing modular designs, SynthAI improves
design quality and scalability. HLSPilot [167] focuses on hybrid CPU-FPGA architectures, proposing
a three-stage approach: C/C++ to HLS translation, design space exploration, and LLM-based
profiling. It integrates C-to-HLS optimization strategies to generate complex circuit designs, employs
a DSE tool for pragma parameter tuning, and leverages LLMs for performance profiling to identify
bottlenecks and optimize HLS designs. Liao et al. [170] investigate the translation of natural
language specifications or C code into RTL, evaluating the capability of LLMs to automate hardware
design. C2HLSC [168] explores fully automated C-to-HLS transformation, refactoring generic C
code into an HLS-compatible format while supporting hierarchical designs and pragma generation
for optimizing area and throughput. These works collectively highlight the potential of LLMs in
improving HLS design automation, enabling more efficient translation from high-level code to
synthesizable hardware descriptions.

5.3 LLMs for Design Optimizations
During circuit code generation using LLMs, besides functional correctness focused by Section 5.1 and
5.2, design quality metrics such as power, performance, and area (PPA) are also critical for ensuring

40 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

LLM for HLS Generation

Method
New New Open New Prompt Link Date
Model Dataset Method Benchmark Engineering

SynthAI [169] ✓ ✓ https://github.com/sarashs/FPGA_AGI 2024-05
HLSPilot [167] ✓ ✓ ✓ https://github.com/xcw-1010/HLSPilot 2024-08
Liao et al. [170] ✓ ✓ 2024-08
C2HLSC [168] ✓ ✓ https://github.com/Lucaz97/c2hlsc 2024-11

Table 6. Existing explorations in LLM-aided HLS code generation, covered in Section 5.2.

LLM for Design Optimization
Works Open Link Date

Martine et al. [173] 2023-07
Sandal et al. [161] 2024-01
BetterV [141] 2024-02

DeLorenzo et al. [162] 2024-02
RTLRewriter [172] ✓ https://github.com/yaoxufeng/RTLRewriter-Bench 2024-09
Xu et al. [174] 2024-10

Table 7. Collection of works on design optimization, covered in Section 5.3.

efficiency and practicality. Recent advancements have explored optimizing LLM-generated circuits,
focusing on both RTL code optimization and HLS code optimization to enhance hardware
performance. A detailed comparison of existing works in this domain is provided in Table 7.
RTL code optimization. RTL code optimization leverages LLMs to refine hardware designs

for better efficiency, focusing on improving PPA metrics. For example, ChipGPT [133] employs an
enumerative search strategy, generating multiple design variations and selecting the one with the
best PPA. BetterV [141] fine-tunes LLMs on domain-specific Verilog datasets, applying instruct-
tuning and generative discriminators to improve Verilog code quality and optimize synthesis
outcomes. However, current evaluations in BetterV primarily assess design quality based on AIG
node reduction during synthesis, without directly considering final PPA metrics. RTLRewriter [172]
introduces a framework for RTL code rewriting, breaking down large circuits into smaller segments
to enhance synthesis efficiency and leveraging multi-modal program analysis to incorporate visual
and textual information. Its benchmark demonstrates superior performance compared to traditional
RTL compilers such as Yosys and E-graph. Additionally, the work by Martínez et al. [173] focuses
on identifying key computational patterns like GEMM, convolution, and FFT within hardware
code using LLM-based prompting techniques. Their method reduces false positives by employing a
two-phase prompting approach, first interpreting the code and then verifying algorithm presence,
highlighting the importance of prompt engineering for optimizing LLM-driven hardware design.
HLS code optimization. Besides RTL code optimization, optimizing HLS code, particularly

pragma optimization, is a crucial task in high-level synthesis. Xu et al. [174] propose RALAD (Re-
trieve Augmented Large Language Model Aided Design), a framework leveraging LLMs and RAG
to optimize HLS programs without requiring computationally expensive fine-tuning. HLS allows
circuit design using high-level languages like C/C++, but manual optimization remains highly
expertise-driven. RALAD mitigates this challenge by embedding user code and a knowledge base
(e.g., FPGA textbooks), retrieving relevant code snippets via a top-k search, generating prompts that
incorporate user instructions and retrieved snippets, and using an LLM like CodeLlama to produce
optimized code. The study also explores the impact of manual annotations to further refine optimiza-
tion quality, demonstrating the framework’s effectiveness in automating HLS code improvements.

https://github.com/sarashs/FPGA_AGI
https://github.com/xcw-1010/HLSPilot
https://github.com/Lucaz97/c2hlsc
https://github.com/yaoxufeng/RTLRewriter-Bench

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 41

VerilogReader
Aug. 2024

ChIRAAG
Jan. 2024

AssertLLM
Feb. 2024

LLM4DV
Oct. 2023

UVLLM
Nov. 2024

AutoSVA2
Sep. 2023

NL2SVA
Sep. 2023

VeriAssist
May. 2024

MEIC
May. 2024

RTLFixer
Nov. 2023

HDLDebugger
Mar. 2024

Works on Verification

Works on Debugging

FVEval
Oct. 2024

AssertionBench
Feb. 2025

Fig. 16. Timeline of RTL verification (Section 5.4) and debugging works (Section 5.5).

5.4 LLM for Hardware Code Verification
In addition to circuit code generation, verifying the functional correctness of circuit designs is
a critical yet highly labor-intensive task that heavily relies on human engineers. To address this
challenge, LLM-based solutions have been explored to automate hardware verification. Table 8
summarizes existing works in this direction. Current LLM-based verification approaches focus on
two primary directions: 1) Assertion generation with LLMs. These approaches leverage LLMs to
generate assertions based on design specifications or RTL code [177, 178, 181, 182, 188–191]. The
generated assertions are then used to validate whether the design under test (DUT) complies with
its specifications, with either formal verification tools (e.g., Cadence JasperGold) for static formal
property verification or simulation tools (e.g., Synopsys VCS) for dynamic verification on test
benches. 2) Test bench generation with LLMs. LLMs are also employed to generate test stimuli,
enhancing the simulation-based verification process [183–185, 191, 195]. The comparison of these
explorations is listed in Table 8, with the timeline demonstrated in Figure 16, almost all existing
explorations directly employ prompt engineering due to the lack of high-quality verification data
for fine-tuning. Some of these verification efforts focus specifically on security verification, which
will be further discussed in Section 5.6.

5.4.1 Assertion generation with LLMs.
We categorize existing works on assertion generation into two main types: assertion generation

benchmarks and assertion generation techniques. The former focuses on evaluating the effec-
tiveness of LLMs in generating functionally correct assertions, while the latter explores various
methodologies to improve the accuracy and reliability of LLM-generated assertions. We detail these
two categories below.
Benchmarking LLM-aided assertion generation. Similar to RTL code generation, bench-

marking is crucial for evaluating the quality of LLM-generated assertions. The evaluation process
involves three key aspects: syntax correctness, functional correctness, and overall assertion qual-
ity. Syntax correctness can be verified using RTL code compilers, while functional correctness
can be validated through simulation-based verification or formal property checking based on the
golden RTL implementations. However, assessing assertion quality remains an open challenge, as
it depends on multiple factors, such as completeness and relevance to the design specification.

Currently, key assertion generation benchmarks include AssertionBench [187], AssertEval [154],
and FVEval [186], all of which use Cadence JasperGold for formal property verification of generated
assertions against golden RTL implementations. Specifically, AssertionBench [187] consists of 100
Verilog hardware designs from OpenCores [120], with formally verified assertions derived from
GOLDMINE [243] and HARM [244] tools. The evaluation metrics include syntax correctness and

42 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

LLM for RTL Verification

Method New New Open Open Prompt Link Date
Model Dataset Model Benchmark Engineering

AutoSVA2 [177] ✓ 2023-09
NL2SVA [189] ✓ 2023-09
LLM4DV [184] ✓ ✓ https://github.com/ZixiBenZhang/ml4dv 2023-10
ChIRAAG [182] ✓ 2024-01
AssertLLM [181] ✓ ✓ ✓ https://github.com/hkust-zhiyao/AssertLLM 2024-02
Xiao et al. [194] ✓ 2024-03

Blocklove et al. [196] ✓ 2024-04
Liu et al. [190] ✓ ✓ 2024-04

Huang et al. [191] ✓ 2024-05
Bhandari et al. [195] ✓ ✓ 2024-06
VerilogReader [185] ✓ github.com/magicYang1573/llm-hardware-test-generation 2024-06

FVEval [186] ✓ ✓ ✓ https://github.com/NVlabs/FVEval 2024-10
UVLLM [183] ✓ ✓ https://github.com/amyuch/UVLLM 2024-11

AssertionBench [187] ✓ ✓ 2025-02

Table 8. Explorations in LLM-aided RTL code verification (Section 5.4).

functional correctness. AssertEval [154] from OpenLLM-RTL [154] includes 17 OpenCores [120]
designs, each accompanied by a natural language specification and golden RTL implementation. It
evaluates assertions based on syntax correctness, functional correctness, and COI (cone-of-influence)
coverage. FVEval [186] assesses assertions in three scenarios: (1) NL2SVA-Human, generating
assertions from human-written specifications and real-world testbenches; (2) NL2SVA-Machine,
translating formal logic from synthetic natural language descriptions to SystemVerilog assertions;
and (3) Design2SVA, directly generating assertions from RTL designs. It evaluates various LLMs
(e.g., GPT-4o, Gemini, LLaMA3) based on syntax correctness, full functional correctness, and partial
correctness (assertions that are logically related but not fully equivalent to the reference).

Generate design assertions with LLMs. LLMs automate hardware verification by leveraging
natural language specifications and RTL code to produce SystemVerilog Assertions (SVA). These
techniques can be categorized based on their input types: (1) Natural language specifications
alone (e.g., ChIRAAG [182], AssertLLM [181]). (2) RTL code alone (e.g., AutoSVA2 [177]). (3)
Both specification and RTL code (e.g., NL2SVA [189]). Due to the scarcity of high-quality assertion
datasets, most works employ prompt engineering rather than fine-tuning LLMs. Evaluation methods
typically rely on formal property verification (FPV) using tools like Cadence JasperGold, ensuring
that generated assertions maintain logical correctness. Some works, such as ChIRAAG [182], also
incorporate simulation-based validation using Synopsys VCS with test benches.
For example, AutoSVA2 [177] prompts GPT-4 with RTL code and a refined rule-based system

to generate valid SVAs, validated through FPV. NL2SVA [189] employs few-shot prompting with
both RTL and natural language descriptions to guide assertion generation, also evaluated via FPV.
ChIRAAG [182] relies solely on natural language specifications, using prompt engineering for
assertion synthesis, with validation conducted through simulation. AssertLLM [181] processes entire
specification documents, utilizing a three-phase approach where different LLMs handle specification
extraction, waveform analysis, and assertion generation, with verification performed through FPV.

5.4.2 Test bench generation with LLMs.
In addition to assertion generation, recent advancements in LLM-based verification have intro-

duced automated test bench generation [183–185, 191, 195], significantly reducing the manual effort
involved in verifying RTL designs. These approaches aim to enhance coverage metrics, including
code coverage and functional coverage, by generating high-quality test benches for simulation.

https://github.com/ZixiBenZhang/ml4dv
https://github.com/hkust-zhiyao/AssertLLM
github.com/magicYang1573/llm-hardware-test-generation
https://github.com/NVlabs/FVEval
https://github.com/amyuch/UVLLM

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 43

Existing explorations also fall into these main categories: (1) Test bench generation for code cover-
age. This type focuses on measuring how thoroughly the RTL code is exercised during simulation.
This includes metrics such as statement coverage, branch coverage, toggle coverage, and FSM
state coverage. Achieving high code coverage ensures that most structural elements of the design
have been tested but does not guarantee full functional correctness. (2) Test bench generation for
functional coverage. This type ensures that all intended design behaviors are tested according to
the specification. Functional coverage is often defined using assertions and covergroups, verifying
that different functional scenarios, corner cases, and expected behaviors are exercised. Unlike code
coverage, functional coverage validates the correctness of the design beyond just its structural
execution. We detail the two categories below.

Test bench generation for code coverage. VerilogReader [185] integrates LLMs into coverage-
directed test generation, focusing on achieving code coverage closure by generating test stimuli
that target uncovered RTL lines and branches. It takes as input a Verilog design under test (DUT),
natural language descriptions, and code coverage reports from simulations. The output consists
of automatically generated test stimuli designed to improve code coverage in RTL verification.
To generate test inputs effectively, VerilogReader employs prompt engineering with a Prompt
Generator that structures LLM interactions in two stages: first, understanding the DUT and its
current coverage status, and second, generating test inputs in a structured JSON format. Additionally,
it includes a Coverage Explainer, which transforms raw simulator coverage reports into an LLM-
readable format, and a DUT Explainer, which enhances LLM comprehension of Verilog code by
providing natural language descriptions and test guidance.

Test bench generation for functional coverage.Most existing explorations [183, 184, 191, 195]
focus on functional coverage, as LLMs more excel in understanding RTL functionality and specifi-
cations rather than analyzing RTL code structure, which is required for code coverage. For example,
VeriAssist [191] takes the design specification as input and generates initial RTL code along with
corresponding test cases. It employs a self-verification process, where the generated RTL is sim-
ulated with test cases while considering timing constraints. This is followed by a self-correction
mechanism, where the LLM refines the RTL design based on simulation feedback, addressing
compilation and functional errors. By mimicking a human-in-the-loop design approach, VeriAs-
sist [191] improves the accuracy and correctness of both RTL code and test benches. Another work
UVLLM [183] integrates LLMs with Universal Verification Methodology (UVM) to automate test
case generation and RTL code repair. The framework consists of four steps: pre-processing, where
linters and LLMs eliminate syntax errors; UVM processing, which generates and runs test cases
within a UVM testbench; post-processing, which analyzes simulation logs to identify errors; and
repair, where LLMs generate RTL patches based on detected issues. While UVLLM is open-sourced
and showcases LLMs’ potential in verification automation, challenges remain, including the need
for extensive training data and the high computational cost of large-scale LLM inference.

5.5 LLM for Hardware Code Debugging
Debugging in hardware design involves identifying and fixing both syntax and functional errors
in circuit implementations. Traditionally, engineers conduct this process of fixing bugs manually,
making it a tedious and labor-intensive task. Recent advancements in LLMs automate hardware
debugging, reducing human intervention and improving efficiency. Existing research explores LLM-
assisted debugging for both RTL and HLS code, offering new methodologies for error detection,
root cause analysis, and automated patch generation, as detailed below.

5.5.1 LLM for RTL code debugging.

44 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

Generated
RTL Code

Synthesis Tool

Error Logs

Functional
Error

Simulator Tool

LLMsDatabase

Retriever

RAG

RTL without
Syntax Error

Passed

Waveform

AST

Debugging
Fix Syntax

Fix
Functionality

Fig. 17. Overview of the LLM-based flow for RTL debugging, recent works are covered in Section 5.5. This
approach includes two input methods for LLM solutions: the first method assigns debugging tasks directly to
the LLM without supplementary information, while the second method enhances the debugging process by
incorporating error information from EDA tools. This error log can be input directly into the LLM or used
to query a pre-defined debugging database (RAG). Additionally, some approaches utilize AST or waveform
tracing tools to more effectively identify problematic code segments.

LLM for RTL Debugging

Method New New Open Open Prompt Link Date
Model Dataset Model Benchmark Engineering

RTLFixer [176] ✓ ✓ ✓ https://github.com/NVlabs/RTLFixer 2023-11
HDLDebugger [200] ✓ 2024-03
VeriAssist [191] 2024-05
MEIC [199] 2024-05

Qayyum et al. [204] 2024-06
VerilogCoder [144] ✓ 2024-08

UVLLM [183] ✓ ✓ https://github.com/amyuch/UVLLM 2024-11

Table 9. Explorations in LLM-aided RTL code debugging (Section 5.5).

RTL debugging focuses on resolving errors identified during the verification process. Unlike
verification, which primarily detects inconsistencies, debugging involves both locating and cor-
recting these issues to ensure functional correctness. For example, representative debugging
works [176, 191, 199] leverage LLMs for both bug detection and bug fixing, emphasizing the
automated correction of RTL errors. The debugging process typically consists of two key steps: (1)
identifying the bug by pinpointing the exact error location within the RTL code and (2) fixing the
bug by generating corrected RTL logic. While verification highlights potential failures, debugging
requires deeper reasoning to determine the root cause of errors and propose appropriate fixes.
Table 9 and Figure 16 demonstrate the comparison and timeline of these explorations, respectively.

RTL bugs are broadly categorized into syntax bugs and functional bugs [199]. Syntax bugs, such
as missing semicolons or incorrect module instantiations, can be directly flagged by compilers
(i.e., synthesis tools). Functional bugs, on the other hand, require executing test cases or formal
verification to identify behavioral mismatches. Based on this classification, we categorize existing
works in LLM-assisted RTL debugging into syntax debugging and functional debugging. Since
functional debugging involves more complex reasoning and deeper analysis of design behavior,
tools capable of addressing both syntax and functional errors are classified as functional debuggers.

Syntax debugging. RTLFixer [176] and HDLDebugger [200] are among the pioneering works to
explore LLM-assisted RTL syntax debugging. Both works leverage the RAG technique to improve
debugging accuracy by transforming syntax-buggy RTL code into syntax-correct RTL designs.
RTLFixer [176] integrates RAG and ReAct prompting, creating an autonomous debugging agent
that retrieves expert guidance and applies iterative reasoning to correct syntax errors effectively.
It also introduces VerilogEval-Syntax, a debugging dataset consisting of 212 erroneous Verilog

https://github.com/NVlabs/RTLFixer
https://github.com/amyuch/UVLLM

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 45

implementations to benchmark LLM performance in syntax correction. HDLDebugger [200], devel-
oped around the same time, similarly employs RAG to retrieve relevant debugging information
from documentation and code databases. Additionally, it incorporates a self-guided fine-tuning
process to improve LLM-based debugging accuracy. The framework also includes a novel data
generation module that synthetically creates pairs of buggy and corrected HDL code using a reverse
engineering approach. Both methods significantly enhance LLM capabilities in syntax debugging
by integrating retrieval-based contextual learning and structured reasoning techniques.

Functional debugging. Compared with syntax debugging, functional debugging is significantly
more challenging as it requires deep reasoning about circuit functionality and identifying the root
cause of errors. Recent works [144, 183, 191, 199, 204] have explored LLM-based approaches to ad-
dress functional RTL debugging. VeriAssist [191] enhances pre-trained LLMs with self-verification
and self-correction techniques. The framework generates test cases alongside RTL code and simu-
lates the generated design to detect functional errors. If discrepancies are identified, self-correction
mechanisms iteratively refine the RTL code based on simulation feedback, improving debugging
accuracy. MEIC [199] proposes an LLM-based iterative debugging framework and introduces a
new debugging benchmark based on RTLLM-v1.0 [12], an RTL generation dataset containing 15
source designs. By introducing 178 buggy variations of these designs, MEIC categorizes errors into
syntax and functional bugs, providing a structured evaluation dataset for LLM-based debugging
research. Qayyum et al. [204] integrate RAG into functional debugging by retrieving relevant RTL
specifications and comparing them with the RTL implementation. This enables LLMs to detect
inconsistencies and suggest fixes based on the intended circuit behavior, significantly improving
debugging accuracy through formal specification guidance.
Beyond direct RTL code analysis, some works incorporate auxiliary sources such as abstract

syntax tree (AST) and waveform analysis to enhance functional debugging. UVLLM [183] introduces
an LLM-based unified verification methodology, leveraging AST representations to improve error
localization and code corrections. Similarly, VerilogCoder [144] employs a rewriting mechanism that
enhances debugging accuracy. This process integrates information from EDA tools, such as ASTs
and waveform tracing tools, to refine LLM-driven RTL debugging. By combining LLM reasoning
with structured program analysis, these methods offer improved robustness in identifying and
correcting functional design errors.

5.5.2 LLM for HLS debugging.
Compared to RTL and HLS generation tasks, significantly fewer works focus on debugging

at the HLS level. One of the pioneering efforts in this direction is Chrysalis [201], a benchmark
designed for training and evaluating LLMs’ capability to identify functional bugs in HLS code.
Unlike syntax errors that can be easily detected by compilers, many functional bugs at the HLS level
require deeper semantic analysis and program reasoning. Chrysalis provides a structured dataset
that allows LLMs to learn patterns of common HLS-specific issues and evaluate their debugging
performance in terms of both syntax correctness and functional accuracy. This benchmark sets the
foundation for future research in LLM-assisted HLS debugging by offering a standardized dataset
for evaluating model capabilities in detecting and resolving high-level synthesis errors.

5.6 LLMs for Hardware Security
Besides functional verification and debugging, a growing number of research explore the use of LLMs
for hardware security verification and threat detection. Recent works [70–73, 179, 188, 193, 205–
207, 213, 214] integrate LLMs into automated security analysis, detection of vulnerabilities, and
protection of hardware designs. As summarized in Table 10, most of these approaches rely on
prompt engineering to enhance security verification and threat detection.

46 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

LLM for Hardware Security

Method New New Open Open Open Prompt Date
Model Dataset Model Dataset Benchmark Engineering

Pearce et al. [212] ✓ ✓ 2021-12
Baleegh et al. [203] ✓ 2023-02
Kande et al. [188] ✓ ✓ 2023-06

DIVAS [179] ✓ 2023-08
NSPG [178] ✓ ✓ 2023-08
SCAR [211] ✓ 2023-10

Netlist Whisperer [210] ✓ 2023-11
SecRT-LLM [205] ✓ ✓ 2024-05

Self-HWDebug [206] ✓ 2024-05
Qayyum et al. [204] 2024-06

Table 10. Existing explorations in LLMs for security, covered in Section 5.6.

LLM-based research in hardware security can be divided into two primary directions. Protective
hardware security focuses on using LLMs to detect vulnerabilities, generate security patches,
and implement secure-by-design methodologies at the RTL and gate levels. These approaches
aim to proactively mitigate security risks through automated analysis and verification techniques.
Offensive hardware security, in contrast, explores how LLMs can facilitate attack strategies
and identify potential hardware exploits. Together, these two research directions contribute to the
development of more resilient defense mechanisms by providing insights into adversarial techniques
and enabling the design of effective countermeasures. Below, we introduce representative works
about both directions in detail.
LLM-aided protective hardware security. Research on LLM-assisted protective hardware

security can be categorized into two key areas: security bug detection through security assertion
generation and security bug fixing, which involves identifying and debugging vulnerabilities.
These approaches highlight the potential of LLMs in automating security analysis, enhancing
verification processes, and mitigating hardware vulnerabilities.

In security bug identification, LLMs have been explored to automate the detection of hardware
vulnerabilities and generate security assertions. For instance, Kande et al. [188] demonstrate the
potential of LLMs in generating hardware security assertions, a task that traditionally requires sig-
nificant expertise. Similar to the functional assertion generation process, their framework employs
LLM to generate security assertions based on security specifications and evaluates LLM performance
using a benchmark suite of real-world designs and corresponding golden reference security asser-
tions, analyzing the impact of prompt detail on accuracy. DIVAS [179] introduces an LLM-powered
framework that automates SoC security analysis and policy-based protection. The system maps vul-
nerabilities to CommonWeakness Enumerations (CWEs), generates verifiable SVAs, and implements
security policies through security modules or wrappers. Evaluated on open-source benchmarks,
DIVAS demonstrates effectiveness in automating SoC security analysis, policy enforcement, and
vulnerability detection using the DiSPEL tool. Similarly, SecRL-LLM [205] propose a database
containing 10,000 vulnerable finite state machine designs incorporating 16 security weaknesses.
They further develop an LLM-based framework, integrating in-context learning and fidelity-check
mechanisms to enhance both vulnerability insertion and detection in hardware designs.
Beyond vulnerability detection, some works also explore security bug fixing by leveraging

LLMs for automated debugging and countermeasure implementation. Pearce et al. [212] conducted
one of the earliest studies in this area, prompting LLMs to automatically repair software security
vulnerabilities as early as 2021, prior to the emergence of today’s more powerful models. Their work

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 47

LLM for Design Flow Automation
Method Open Link Date

ChatEDA [216] ✓ https://github.com/wuhy68/ChatEDAv1 2023-08
RAG-EDA [228] ✓ https://github.com/lesliepy99/RAG-EDA 2024-07
ChipAlign [221] 2024-12

LLM for Layout Design
Method Open Link Date

Ho et al. [224] 2024-05
FabGPT [222] 2024-07

Chen et al. [223] 2024-08
DRC-Coder [220] 2024-11

Table 11. Explorations on LLMs for design flow automation and layout design, covered in Section 5.7.

presents a comprehensive empirical evaluation of multiple commercial and open-source LLMs,
including OpenAI Codex, AI21’s Jurassic models, Polycoder, and gpt2-csrc, assessing their ability
to generate secure and functional patches for synthetic, handcrafted, and real-world security bugs.
Recently, Self-HWDebug [206] introduces a framework leveraging LLMs to generate debugging
instructions for security issues. By defining a set of CWEs and corresponding mitigation strategies,
the framework enhances LLM prompt effectiveness, enabling automated security debugging and
vulnerability resolution. In the domain of side-channel attack (SCA) mitigation, Netlist Whis-
perer [210] and SCAR [211] propose LLM-driven solutions to enhance security at the hardware
level. Netlist Whisperer [210] adopts a two-phase, pre-silicon LLM-based approach: first, a GPT-3
model identifies power leakage-inducing nets in a circuit, and then a second GPT-3 model generates
an SCA-resistant netlist, eliminating the need for traditional power trace collection. SCAR [211]
focuses on cryptographic accelerators, utilizing control-data flow graphs to identify and localize
SCA vulnerabilities. It then employs a deep-learning explainer to analyze the vulnerabilities and
leverages an LLM to automatically generate and insert security patches into the RTL code.

LLM-aided offensive hardware security. Besides protective solutions, research also explores
how LLMs can be leveraged to execute security threats, such as automated hardware trojan insertion.
For example, Kokolakis et al. [213] propose an LLM-based framework for automating hardware
trojan insertion and evaluating its impact on a modern RISC-V microarchitecture. Their method
begins with a filtering process to identify suitable modules for Trojan insertion. The RTL code of
selected modules is provided to the LLM, which assists in implanting hardware trojans by modifying
the design. While this approach demonstrates the feasibility of hardware trojan insertion using
fine-tuned LLMs, further research is needed for more complex attack scenarios.

5.7 LLM for Design Flow Automation and Layout Design
5.7.1 LLM for design flow automation.

LLMs have also been explored for automating design flow processes, primarily in two key areas:
design flow script synthesis [216] and chip-related question-answering (QA) [221, 228]. These
applications aim to reduce human effort in configuring and optimizing EDA toolchains while
improving accessibility to chip design knowledge. We compare existing works in Table 11.

For design flow script synthesis, ChatEDA [216] is a pioneering work that leverages LLMs for
automating EDA design flow execution. The framework decomposes user requests into structured
sub-tasks, generates EDA scripts, and autonomously executes them using EDA tools. To enhance the
model’s understanding of EDA workflows, instruction tuning techniques are applied. Additionally,
ChatEDA introduces a benchmark suite comprising 50 tasks that include simple flow calls, complex
multi-step flow executions, and parameter-tuning scenarios. The evaluation process assesses both

https://github.com/wuhy68/ChatEDAv1
https://github.com/lesliepy99/RAG-EDA

48 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

the correctness and executability of the generated scripts using real EDA tools, followed by manual
scoring to ensure logical coherence and practical usability.

For chip-related question-answering, RAG-EDA [228] presents a customized RAG framework
for EDA tool documentation QA. The framework processes EDA tool documentation and user
queries, employing hybrid information retrieval methods that combine lexical search (i.e., TF-IDF,
BM25) and semantic retrieval (i.e., vector embeddings). A contrastive learning-based reranker is
trained to filter relevant documents, improving retrieval accuracy. The LLM is then fine-tuned
through a two-stage approach: (1) domain knowledge pretraining using EDA textbooks and (2)
instruction tuning with QA datasets. The evaluation metrics include retrieval recall (recall@k) for
the retriever and reranker, and BLEU, ROUGE-L, and UniEval scores to assess the accuracy and
factual consistency of generated answers. Additionally, ChipAlign [221] extends LLM capabilities
for chip-related QA tasks by addressing the challenge of aligning domain-adapted large language
models for chip design with strong instruction-following abilities. It proposes a training-free model
merging approach that combines a domain-specific chip LLM with a general instruction-aligned
LLM. Instead of retraining on instruction-following data, ChipAlign employs a novel geodesic
interpolation technique in the weight space to produce a merged model that maintains chip design
expertise while significantly improving instruction alignment.

5.7.2 LLM for layout design.
Some recent works employ foundation models for circuit layouts to enhance the physical design

process and manufacturability, as demonstrated in Table 11. Since circuit layouts are typically
represented in the format like images, these works typically integrate vision models with LLMs
to better understand and process circuit layouts.
For instance, FabGPT [222] introduces a large multimodal model designed for wafer defect

knowledge querying in semiconductor fabrication. It processes Scanning Electron Microscope
(SEM) images of wafers alongside textual metadata extracted using Optical Character Recognition
(OCR) and predefined label sets. By fusing visual and textual information, the model enhances defect
detection and knowledge retrieval. A pre-trained multimodal encoder captures critical wafer defect
features, while a prediction module identifies defect types. Additionally, the model incorporates a
Q&A system with a modulation module that aligns visual and textual representations to improve
interpretability in querying fabrication processes. Ho et al. [224] propose an LLM-based optimization
framework for standard cell layout design, incrementally generating clustering constraints to
enhance PPA and routability. Their study assesses existing LLMs’ understanding of SPICE netlists,
clustering constraints, and physical layout descriptions. Leveraging ReAct prompting, the model
iteratively refines clustering decisions, improving standard cell layout optimization. Chen et al. [223]
integrate reinforcement learning (RL) for OPC recipe optimization with a multi-modal LLM-backed
agent system for recipe summarization. The RL component fine-tunes OPC parameters such as edge
placement error (EPE) measurement points and polygon fragmentation to improve lithography
accuracy. Meanwhile, the LLM-based agent extracts features, summarizes results, and generates
structured OPC recipes, enhancing automation in semiconductor manufacturing. DRC-Coder [220]
presents a multi-agent framework for automating design rule checking (DRC) code generation
using LLMs and vision-language models. It mimics human DRC coding by decomposing tasks
into interpretation and coding, assigning two specialized LLM agents to reduce hallucinations and
enhance reasoning accuracy. The framework also integrates domain-specific functions, including
foundry rule analysis, layout design rule violation (DRV) analysis, and automated debugging loops
to refine DRC rule generation. By incorporating vision models, DRC-Coder can interpret design
rule illustrations and layout structures, ensuring accurate and executable DRC scripts.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 49

LLM for Architecture Design
Method Open Link Date

Yan et al. [226] 2023-06
Liang et al. [227] 2023-07
GPTAIGChip [134] 2023-09
SpecLLM [225] ✓ https://github.com/hkust-zhiyao/SpecLLM 2024-01

Table 12. Explorations in LLM-aided architecture design, covered in Section 5.8

LLM for Analog Circuit Design
Method Open Link Date

LADAC [229] 2023-12
AnalogCoder [230] ✓ https://github.com/anonyanalog/AnalogCoder 2024-05

FLAG [231] 2024-05
ADO-LLM [232] 2024-06
LaMAGIC [233] 2024-07
Artisan [234] 2024-11
LEDRO [235] 2024-11

AnalogXpert [236] 2024-12
AnalogGenie [237] ✓ https://github.com/xz-group/AnalogGenie 2025-01

Table 13. Works on LLMs for analog circuit design, covered in Section 5.9.

5.8 LLMs for Hardware Architecture Design
For hardware architecture design, LLMs have been explored in two primary areas: circuit archi-
tecture design [134, 226, 227] and specification document processing [225]. The comparison
and timeline of these works are shown in Table 12. These works aim to leverage LLMs to enhance
automation, reduce design complexity, and improve efficiency in architectural decision-making.

In circuit architecture design, GPT4AIGChip [134] proposes an automated prompt-generation
pipeline using in-context learning to guide LLMs in generating high-quality AI accelerator designs.
This approach enables the structured decomposition of hardware design tasks, improving the
consistency and efficiency of generated architectures. LCDA [226] applies LLMs to accelerate the
software-hardware co-design process, particularly for compute-in-memory architectures in AI accel-
erators. It addresses the cold-start problem in traditional co-design approaches by leveraging LLMs
to guide design space exploration, significantly reducing the search time. QGAS [227] extends the
application of LLMs to quantum computing, using GPT-4 to iteratively design variational quantum
algorithm ansatz architectures and translate the architecture into quantum assembly language code.
For specification document processing, SpecLLM [225] tackles the inefficiencies and error-

prone nature of developing architecture specifications in architecture design. It explores the use of
LLMs to automate both the generation of specifications and the review of existing documentation. To
structure the problem, the authors categorize architecture specifications into three levels, covering
different degrees of design abstraction. They also introduce a dataset of 46 documents to evaluate
the effectiveness of their approach. By leveraging LLMs, SpecLLM enhances both efficiency and
accuracy in specification drafting and validation, demonstrating the potential for further automation
in this critical aspect of hardware design.

5.9 LLMs for Analog Circuit Design.
While most research on LLMs for hardware design has focused on digital VLSI circuits, recent studies
have started exploring LLM’s potential in analog circuit design. Unlike digital design, which follows
well-defined logic rules, analog circuits typically require tuning and optimization based on human

https://github.com/hkust-zhiyao/SpecLLM
https://github.com/anonyanalog/AnalogCoder
https://github.com/xz-group/AnalogGenie

50 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

expertise, making LLM-assisted automation more challenging. A summary of existing works is
provided in Table 13. These studies introduced LLM-powered frameworks targeting different analog
circuit types, such as power converters and amplifiers, focusing on knowledge-based reasoning,
topology synthesis, and circuit optimization. These approaches aim to enhance the efficiency of
analog design, addressing its inherent complexities.

LADAC [229] introduces an LLM-driven decision-making agent for analog design, incorporating
a knowledge library and interactive tools to assist in transistor sizing and simulation. Analog-
Coder [230] employs a training-free LLM approach for Python-based circuit generation, integrat-
ing prompt engineering and feedback mechanisms to refine designs. ADO-LLM [232] combines
Bayesian Optimization with LLMs to improve circuit design efficiency, leveraging Gaussian Process
models for systematic design space exploration and in-context learning for guided optimization.
LaMAGIC [233] fine-tunes LLMs for analog topology generation, particularly for power convert-
ers, developing structured input-output representations that enhance circuit synthesis accuracy.
Artisan [234] focuses on operational amplifier (opamp) design, integrating topology selection and
parameter tuning while employing Tree-of-Thought (ToT) and Chain-of-Thought (CoT) reasoning
to improve structured decision-making. LEDRO [235] enhances analog circuit sizing by using
LLMs to refine design search regions, improving the efficiency of existing optimization methods.
AnalogXpert [236] streamlines analog circuit topology synthesis by incorporating a subcircuit
library for design space reduction and using CoT prompting and iterative proofreading for better
design accuracy. AnalogGenie [237] introduces a generative AI framework that utilizes a large
dataset of over 3,000 analog circuit topologies. It employs a GPT-based model for sequential pin
connection prediction, offering a scalable and flexible approach to analog circuit generation. These
works collectively demonstrate the growing potential of LLMs in automating complex aspects of
analog design, paving the way for more efficient and scalable circuit synthesis methodologies.

6 CHALLENGES, DISCUSSION, AND POTENTIAL DIRECTIONS
Despite the significant advancements in circuit foundation models, several challenges remain in
terms of model performance, scalability, data availability, and the integration of predictive circuit
encoders and generative circuit decoders. Moreover, these challenges are closely interrelated,
often affecting and amplifying one another. We believe addressing these challenges is crucial to
further enhancing the effectiveness and applicability of foundation AI models in EDA. In this
section, we discuss our observed challenges and potential research directions to further improve
the effectiveness and applicability of foundation AI models in EDA.

6.1 Challenge 1: Circuit Foundation Model Generalization and Scalability
The development of circuit foundation models presents several challenges regarding generalization,
performance, and scalability. If we can address these challenges, circuit foundation models can
effectively support a wider range of design tasks while maintaining computational efficiency.
Towards more generalized circuit embeddings from circuit encoders. One of the key

challenges is designing circuit encoders that generate generalized embeddings capable of capturing
both the semantic and structural intrinsic properties of circuits. These embeddings should effectively
support largely different downstream tasks. For instance, design quality evaluation relies heavily on
structural characteristics, while functional reasoning and verification require a deep understanding
of circuit semantics. This requires innovations in ML model architectures, self-supervised learning
techniques tailored for circuits, multimodal fusion strategies, and cross-design-stage alignment.
The integration of graph-based encoders with text-based LLMs has shown promise in capturing
both structural and semantic information, as seen in works like CircuitFusion [97], NetTAG [113],

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 51

and ProgSG [100]. However, further advancements are needed to enhance representation learning
across different abstraction levels while ensuring alignment between circuit modalities.
Towards reducing hallucinations of circuit decoders. Decoder-based models, particularly

those leveraging LLMs, are prone to generating hallucinated or syntactically incorrect HDL code.
Unlike natural language, circuit descriptions have strict syntax and correctness constraints, requir-
ing verification and refinement mechanisms to ensure reliability. Approaches such as reinforcement
learning with human feedback (RLHF), constraint-aware decoding, and post-generation validation
can help mitigate hallucinations and improve the practicality of decoder-based circuit models.
Towards more scalable circuit foundation models. Scalability remains a critical challenge,

particularly for large-scale circuit designs. Current models struggle with handling industrial-scale
designs due to the complexity and size of modern VLSI circuits. Divide-and-conquer strategies,
such as hierarchical modeling, circuit partitioning [172], and subgraph-based processing [97], offer
potential solutions to improve scalability. By segmenting circuits into smaller, more manageable
sub-circuits and processing them independently, models can maintain computational efficiency
without sacrificing accuracy. Techniques such as progressive training, adaptive resolution encoding,
and distributed processing can further enhance the scalability of circuit foundation models, enabling
their deployment in large-scale EDA workflows.

6.2 Challenge 2: Circuit Data Avaliability
The effectiveness of circuit foundation models heavily depends on access to large and diverse
datasets for pre-training and fine-tuning. While efforts such as OpenABC-D [124], CircuitNet [245],
and DeepCircuitX [246] have contributed by collecting open-source circuit designs, obtaining a
sufficiently large and labeled dataset remains a challenge. Privacy concerns, proprietary design
restrictions, and the high cost of generating high-quality annotated data further limit dataset
availability. Overcoming these barriers may require advancements in synthetic dataset generation
or novel circuit data augmentation techniques.

Towards generating synthetic circuit datasets. One emerging approach to overcoming data
scarcity is the generation of unlimited synthetic circuit datasets, which can be created using graph-
based or text-based methods, as explored in [24, 247, 248]. Graph-based approaches can generate
large-scale circuit graphs with diverse topologies but often lack meaningful semantics, making it
difficult to ensure functional correctness. On the other hand, text-based synthesis methods, such as
automated HDL code generation, can produce realistic functional modules but typically lack scala-
bility and diversity in structural variations. Bridging the gap between these two approaches by incor-
porating both functional correctness and large-scale diversity remains an open research challenge.
Towards more advanced circuit data augmentation. Data augmentation techniques have

been widely explored in machine learning to improve model generalization. In the circuit domain,
functionally equivalent transformations, such as logic optimization from the logic synthesis tools,
have been used to create diverse training samples [97, 110, 113]. However, existing augmentation
strategies primarily focus on structural transformations while maintaining functional equivalence.
Future advancements could explore more sophisticated augmentation techniques, such as e-graph
rewriting for RTL designs [249] and netlists [250] for broader design space exploration. These
techniques can further enhance the robustness of circuit foundation models, ensuring they learn
richer representations while preserving key design constraints such as timing, power, and area.

6.3 Challenge 3: Bridging the Gap Between Circuit Encoder and Decoder
While circuit encoders and decoders have been developed separately to support predictive and
generative tasks, unifying these two paradigms presents an opportunity to create a more powerful

52 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

circuit foundation model. By integrating learned embeddings from circuit encoders into decoder-
based generative models, and leveraging synthetic circuit generation from decoders to enhance
circuit foundation model pre-training, the capabilities of both sides can be significantly improved.

Towards leveraging encoder embeddings for decoder generation. Current circuit decoders,
often based on pre-trained LLMs, generate circuit contexts without explicitly considering circuit
embeddings learned by encoders. By leveraging circuit encoders to generate structured, functionally
meaningful embeddings, decoders can refine their generation process to ensure greater correctness
and design feasibility. One potential approach is integrating decoder-based circuit text generation
with graph embeddings learned from circuit encoders, allowing decoders to generate RTL, netlist,
or layout designs that align with realistic circuit representations.

Towards leveraging decoder generated circuits for enhancing circuit foundation models.
Generating synthetic circuits at different abstraction levels (e.g., RTL, netlist, layout) not only
improves data availability but also provides a valuable resource for pre-training both encoders and
decoders. By training foundation models on synthetically generated yet functionally diverse circuits,
models can capture richer design patterns and structural relationships. Additionally, synthetic
circuits can be used to fine-tune models for specific design tasks, enhancing their generalization
across unseen circuit designs. Future research could explore hybrid approaches that combine rule-
based generation, reinforcement learning, and generative models to create high-quality synthetic
datasets that support both encoder and decoder training.

7 CONCLUSION
In this survey, we provide a systematic review of the latest progress in circuit foundation mod-
els, categorizing them into encoder-based and decoder-based approaches. Encoders aim to learn
generalized circuit embeddings through self-supervised pre-training techniques, supporting predic-
tive tasks such as design quality estimation and functional verification. Decoders, primarily built
upon pre-trained LLMs, focus on generative tasks such as HDL code generation and verification
automation. As AI techniques continue to transform the EDA landscape, circuit foundation models
hold the potential to significantly reduce design effort, accelerate the chip design process, and
improve design quality. Future potential research may target enhancing scalability, generalization,
and efficiency, ultimately driving AI-powered innovation in modern VLSI design.

8 ACKNOWLEDGMENTS
This work is supported by Hong Kong Research Grants Council (RGC) CRF Grant C6003-24Y and
ACCESS – AI Chip Center for Emerging Smart Systems, sponsored by InnoHK, Hong Kong SAR.

REFERENCES
[1] Ajay Tirumala and Raymond Wong. NVIDIA Blackwell Platform: Advancing Generative AI and Accelerated

Computing. In Hot Chips Symposium (HCS), 2024.
[2] IBS. As chip design costs skyrocket, 3nm process node is in jeopardy, 2020.
[3] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui

Zhang, Kai Zhong, et al. Machine learning for electronic design automation: A survey. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2021.

[4] Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z Pan, Marilyn Wolf, and Jörg Henkel. MLCAD: A survey of
research in machine learning for CAD keynote paper. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2021.

[5] Synopsys. DSO.ai: AI-driven design applications, 2021.
[6] Cadence. Cadence Cerebrus intelligent chip explorer, 2021.
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 53

[8] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In
International Conference on Machine Learning (ICML), 2021.

[9] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[10] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical report. arXiv preprint arXiv:2303.08774,
2023.

[11] Lei Chen, Yiqi Chen, Zhufei Chu, Wenji Fang, Tsung-Yi Ho, Ru Huang, Yu Huang, Sadaf Khan, Min Li, Xingquan Li,
et al. Large circuit models: opportunities and challenges. Springer Science China Information Sciences (SCIS), 2024.

[12] Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. RTLLM: An open-source benchmark for design rtl generation with
large language model. In Asia and South Pacific Design Automation Conference (ASP-DAC), 2024.

[13] Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang, Jonah Alben,
Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. ChipNeMo: Domain-Adapted LLMs for Chip
Design. arXiv preprint arXiv:2311.00176, 2023.

[14] Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large language models
for verilog code generation. arXiv preprint arXiv:2309.07544, 2023.

[15] Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri, Brendan Dolan-
Gavitt, and Siddharth Garg. Benchmarking large language models for automated verilog rtl code generation. In
Design, Automation and Test in Europe Conference and Exhibition (DATE), 2023.

[16] Haoxing Ren and Jiang Hu. Machine Learning Applications in Electronic Design Automation. Springer, 2022.
[17] Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. Annotating slack directly on your verilog: Fine-grained rtl

timing evaluation for early optimization. In Design Automation Conference (DAC), 2024.
[18] Ziyi Wang, Siting Liu, Yuan Pu, Song Chen, Tsung-Yi Ho, and Bei Yu. Restructure-tolerant timing prediction via

multimodal fusion. In Design Automation Conference (DAC), 2023.
[19] Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, David Z Pan, and Yibo Lin. A timing engine inspired graph

neural network model for pre-routing slack prediction. In Design Automation Conference (DAC), 2022.
[20] Erick Carvajal Barboza, Nishchal Shukla, Yiran Chen, and Jiang Hu. Machine learning-based pre-routing timing

prediction with reduced pessimism. In Design Automation Conference (DAC), 2019.
[21] Andrew B Kahng, Uday Mallappa, and Lawrence Saul. Using machine learning to predict path-based slack from

graph-based timing analysis. In International Conference on Computer Design (ICCD), 2018.
[22] Zhiyao Xie, Rongjian Liang, Xiaoqing Xu, Jiang Hu, Chen-Chia Chang, Jingyu Pan, and Yiran Chen. Pre-placement

net length and timing estimation by customized graph neural network. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2022.

[23] Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and Zhiyao Xie. MasterRTL: A
pre-synthesis PPA estimation framework for any RTL design. In International Conference on Computer-Aided Design
(ICCAD), 2023.

[24] Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and Zhiyao Xie. Transferable
pre-synthesis PPA estimation for RTL designs with data augmentation techniques. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2024.

[25] Ceyu Xu, Pragya Sharma, Tianshu Wang, and Lisa Wu Wills. Fast, robust and transferable prediction for hardware
logic synthesis. In International Symposium on Microarchitecture (MICRO), 2023.

[26] Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu. How good is your Verilog RTL code? A quick answer
from machine learning. In International Conference on Computer-Aided Design (ICCAD), 2022.

[27] Qijun Zhang, Yao Lu, Mengming Li, and Zhiyao Xie. Autopower: Automated few-shot architecture-level power
modeling by power group decoupling. In Design Automation Conference (DAC), 2025.

[28] Qijun Zhang, Mengming Li, Yao Lu, and Zhiyao Xie. Firepower: Towards a foundation with generalizable knowledge
for architecture-level power modeling. In Asia and South Pacific Design Automation Conference (ASP-DAC), 2025.

[29] Yufan Du, Zizheng Guo, Xun Jiang, Zhuomin Chai, Yuxiang Zhao, Yibo Lin, Runsheng Wang, and Ru Huang. Pow-
predict: Cross-stage power prediction with circuit-transformation-aware learning. In Design Automation Conference
(DAC), 2024.

[30] Qijun Zhang, Shiyu Li, Guanglei Zhou, Jingyu Pan, Chen-Chia Chang, Yiran Chen, and Zhiyao Xie. Panda:
Architecture-level power evaluation by unifying analytical andmachine learning solutions. In International Conference
on Computer Aided Design (ICCAD), 2023.

[31] Zhiyao Xie, Xiaoqing Xu, Matt Walker, Joshua Knebel, Kumaraguru Palaniswamy, Nicolas Hebert, Jiang Hu, Huanrui
Yang, Yiran Chen, and Shidhartha Das. APOLLO: An automated power modeling framework for runtime power
introspection in high-volume commercial microprocessors. In International Symposium on Microarchitecture (MICRO),

54 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

2021.
[32] Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and Zhiru Zhang. PRIMAL: Power inference

using machine learning. In Design Automation Conference (DAC), 2019.
[33] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanović. Simmani: Runtime power modeling for arbitrary

RTL with automatic signal selection. In International Symposium on Microarchitecture (MICRO), 2019.
[34] Zhiyao Xie, Shiyu Li, Mingyuan Ma, Chen-Chia Chang, Jingyu Pan, Yiran Chen, and Jiang Hu. DEEP: Developing

extremely efficient runtime on-chip power meters. In International Conference on Computer-Aided Design (ICCAD),
2022.

[35] Yanqing Zhang, Haoxing Ren, and Brucek Khailany. GRANNITE: Graph neural network inference for transferable
power estimation. In Design Automation Conference (DAC), 2020.

[36] Zhiyao Xie, Haoxing Ren, Brucek Khailany, Ye Sheng, Santosh Santosh, Jiang Hu, and Yiran Chen. PowerNet:
Transferable dynamic IR drop estimation via maximum convolutional neural network. In Asia and South Pacific
Design Automation Conference (ASP-DAC), 2020.

[37] Chia-Tung Ho and Andrew B Kahng. IncPIRD: Fast learning-based prediction of incremental IR drop. In International
Conference on Computer-Aided Design (ICCAD), 2019.

[38] Zhiyao Xie, Haoxing Ren, Brucek Khailany, and Sheng Ye. IR drop prediction with maximum convolutional neural
network, 2023. US Patent 11,645,533.

[39] Vidya A Chhabria, Yanqing Zhang, Haoxing Ren, Ben Keller, Brucek Khailany, and Sachin S Sapatnekar. MAVIREC:
Ml-aided vectored ir-drop estimation and classification. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2021.

[40] Yen-Chun Fang, Heng-Yi Lin, Min-Yan Sui, Chien-Mo Li, and Eric Jia-Wei Fang. Machine-learning-based dynamic IR
drop prediction for ECO. In International Conference on Computer-Aided Design (ICCAD), 2018.

[41] Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang, Yiran Chen, and Jiang Hu. RouteNet:
Routability prediction for mixed-size designs using convolutional neural network. In International Conference on
Computer-Aided Design (ICCAD), 2018.

[42] Siting Liu, Qi Sun, Peiyu Liao, Yibo Lin, and Bei Yu. Global placement with deep learning-enabled explicit routability
optimization. In Design, Automation and Test in Europe Conference and Exhibition (DATE), 2021.

[43] Su Zheng, Lancheng Zou, Peng Xu, Siting Liu, Bei Yu, and Martin Wong. Lay-net: Grafting netlist knowledge on
layout-based congestion prediction. In International Conference on Computer-Aided Design (ICCAD), 2023.

[44] Jingsong Chen, Jian Kuang, Guowei Zhao, Dennis J-H Huang, and Evangeline FY Young. PROS: A plug-in for
routability optimization applied in the state-of-the-art commercial EDA tool using deep learning. In International
Conference on Computer-Aided Design (ICCAD), 2020.

[45] Chen-Chia Chang, Jingyu Pan, Tunhou Zhang, Zhiyao Xie, Jiang Hu, Weiyi Qi, Chunwei Lin, Rongjian Liang, Joydeep
Mitra, Elias Fallon, and Yiran Chen. Automatic routability predictor development using neural architecture search.
In International Conference on Computer-Aided Design (ICCAD), 2021.

[46] Jingyu Pan, Chen-Chia Chang, Zhiyao Xie, Ang Li, Minxue Tang, Tunhou Zhang, Jiang Hu, and Yiran Chen. Towards
collaborative intelligence: Routability estimation based on decentralized private data. InDesign Automation Conference
(DAC), 2022.

[47] Yu-Hung Huang, Zhiyao Xie, Guan-Qi Fang, Tao-Chun Yu, Haoxing Ren, Shao-Yun Fang, Yiran Chen, and Jiang Hu.
Routability-driven macro placement with embedded cnn-based prediction model. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2019.

[48] Rongjian Liang, Zhiyao Xie, Jinwook Jung, Vishnavi Chauha, Yiran Chen, Jiang Hu, Hua Xiang, and Gi-Joon Nam.
Routing-free crosstalk prediction. In International Conference on Computer-Aided Design (ICCAD), 2020.

[49] Martin Kuhlmann and Sachin S Sapatnekar. Exact and efficient crosstalk estimation. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2001.

[50] Andrew B Kahng, Mulong Luo, and Siddhartha Nath. Si for free: machine learning of interconnect coupling delay
and transition effects. In International Workshop on System Level Interconnect Prediction (SLIP), 2015.

[51] Haoyu Yang, Jing Su, Yi Zou, Bei Yu, and Evangeline FY Young. Layout hotspot detection with feature tensor
generation and deep biased learning. In Design Automation Conference (DAC), 2017.

[52] Hao Geng, Haoyu Yang, Lu Zhang, Jin Miao, Fan Yang, Xuan Zeng, and Bei Yu. Hotspot detection via attention-based
deep layout metric learning. In International Conference on Computer-Aided Design (ICCAD), 2020.

[53] Haoyu Yang, Yajun Lin, Bei Yu, and Evangeline FY Young. Lithography hotspot detection: From shallow to deep
learning. In International System-on-Chip Conference (SOCC), 2017.

[54] Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning based symbolic reasoning
for large-scale boolean networks. In Design Automation Conference (DAC), 2023.

[55] Lilas Alrahis, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh, Baker Mohammad, Mahmoud Al-
Qutayri, and Ozgur Sinanoglu. Gnn-re: Graph neural networks for reverse engineering of gate-level netlists. IEEE

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 55

Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2021.
[56] Subhajit Dutta Chowdhury, Kaixin Yang, and Pierluigi Nuzzo. Reignn: State register identification using graph neural

networks for circuit reverse engineering. In International Conference on Computer-Aided Design (ICCAD), 2021.
[57] Zhuolun He, Ziyi Wang, Chen Bai, Haoyu Yang, and Bei Yu. Graph learning-based arithmetic block identification. In

International Conference on Computer-Aided Design (ICCAD), 2021.
[58] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo, Karthikeyan Natarajan, and Bei Yu. High

performance graph convolutional networks with applications in testability analysis. In Design Automation Conference
(DAC)), 2019.

[59] Zhiyao Xie, Guan-Qi Fang, Yu-Hung Huang, Haoxing Ren, Yanqing Zhang, Brucek Khailany, Shao-Yun Fang, Jiang
Hu, Yiran Chen, and Erick Carvajal Barboza. FIST: A feature-importance sampling and tree-based method for
automatic design flow parameter tuning. In Asia and South Pacific Design Automation Conference (ASP-DAC), 2020.

[60] Walter Lau Neto, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. Flowtune: End-to-end automatic logic
optimization exploration via domain-specific multiarmed bandit. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2022.

[61] Rongjian Liang, Jinwook Jung, Hua Xiang, Lakshmi Reddy, Alexey Lvov, Jiang Hu, and Gi-Joon Nam. Flowtuner: A
multi-stage eda flow tuner exploiting parameter knowledge transfer. In International Conference on Computer-Aided
Design (ICCAD), 2021.

[62] Chen Bai, Qi Sun, Jianwang Zhai, Yuzhe Ma, Bei Yu, and Martin DF Wong. Boom-explorer: Risc-v boom microar-
chitecture design space exploration framework. In International Conference on Computer-Aided Design (ICCAD),
2021.

[63] Hung-Yi Liu and Luca P Carloni. On learning-based methods for design-space exploration with high-level synthesis.
In Design Automation Conference (DAC), 2013.

[64] Benjamin Carrion Schafer and Zi Wang. High-level synthesis design space exploration: Past, present, and future.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2019.

[65] Yi-Chen Lu, Siddhartha Nath, Vishal Khandelwal, and Sung Kyu Lim. RL-sizer: VLSI gate sizing for timing optimization
using deep reinforcement learning. In Design Automation Conference (DAC), 2021.

[66] Yi-Chen Lu, Wei-Ting Chan, Deyuan Guo, Sudipto Kundu, Vishal Khandelwal, and Sung Kyu Lim. Rl-ccd: Concurrent
clock and data optimization using attention-based self-supervised reinforcement learning. In Design Automation
Conference (DAC), 2023.

[67] Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao, Qiang Xu, Mingxuan
Yuan, and Junchi Yan. Llm4eda: Emerging progress in large language models for electronic design automation. arXiv
preprint arXiv:2401.12224, 2023.

[68] Jingyu Pan, Guanglei Zhou, Chen-Chia Chang, Isaac Jacobson, Jiang Hu, and Yiran Chen. A survey of research
in large language models for electronic design automation. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 2025.

[69] Meisam Abdollahi, Seyedeh Faegheh Yeganli, Mohammad Amir Baharloo, and Amirali Baniasadi. Hardware design
and verification with large language models: A scoping review, challenges, and open issues. MDPI Electronics, 2025.

[70] Dipayan Saha, Shams Tarek, Katayoon Yahyaei, Sujan Kumar Saha, Jingbo Zhou, Mark Tehranipoor, and Farimah
Farahmandi. Llm for soc security: A paradigm shift. IEEE Access, 2024.

[71] Rahul Kande, Vasudev Gohil, Matthew DeLorenzo, Chen Chen, and Jeyavijayan Rajendran. Llms for hardware
security: Boon or bane? In VLSI Test Symposium (VTS), 2024.

[72] Zeng Wang, Lilas Alrahis, Likhitha Mankali, Johann Knechtel, and Ozgur Sinanoglu. Llms and the future of chip
design: Unveiling security risks and building trust. In Computer Society Annual Symposium on VLSI (ISVLSI), 2024.

[73] Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. Navigating soc security landscape on llm-guided paths. In Great
Lakes Symposium on VLSI (GLSVLSI), 2024.

[74] Kangwei Xu, Ruidi Qiu, Zhuorui Zhao, Grace Li Zhang, Ulf Schlichtmann, and Bing Li. Llm-aided efficient hardware
design automation. arXiv preprint arXiv:2410.18582, 2024.

[75] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas Sridharan, Xing Liu, Mustafa
Ozdal, Jade Nie, Jongsoo Park, et al. Software-hardware co-design for fast and scalable training of deep learning
recommendation models. In International Symposium on Computer Architecture (ISCA), 2022.

[76] Chengtao Lai, Zhongchun Zhou, Akash Poptani, and Wei Zhang. Lcm: Llm-focused hybrid spm-cache architecture
with cache management for multi-core ai accelerators. In International Conference on Supercomputing (ICS), 2024.

[77] Guseul Heo, Sangyeop Lee, Jaehong Cho, Hyunmin Choi, Sanghyeon Lee, Hyungkyu Ham, Gwangsun Kim, Divya
Mahajan, and Jongse Park. Neupims: Npu-pim heterogeneous acceleration for batched llm inferencing. In International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2024.

[78] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool. In International
Conference on Computer Aided Verification (CAV), 2010.

56 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

[79] Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms. Springer Science & Business Media,
2005.

[80] Bruce W. Ballard, John C. Lusth, and Nancy L. Tinkham. Ldc-1: a transportable, knowledge-based natural language
processor for office environments. ACM Transactions on Information Systems (TOIS), 1984.

[81] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781, 2013.

[82] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word representation. In
Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.

[83] Tomas Mikolov, Martin Karafiat, Lukavs Burget, Jan Honza Cernocky, and Sanjeev Khudanpur. Recurrent neural
network based language model. In Interspeech, 2010.

[84] H Sak. Long short-termmemory based recurrent neural network architectures for large vocabulary speech recognition.
arXiv preprint arXiv:1402.1128, 2014.

[85] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning
of visual representations. In International Conference on Machine Learning (ICML), 2020.

[86] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual
representation learning. In Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[87] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[88] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda
Askell, Peter Welinder, Paul Christiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions
with human feedback. In Advances in Neural Information Processing Systems (NeurIPS), 2024.

[89] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, and Koray Kavukcuoglu.
Conditional image generation with pixelcnn decoders. In Advances in Neural Information Processing Systems (NeurIPS),
2016.

[90] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi.
Align before fuse: Vision and language representation learning with momentum distillation. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[91] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In International Conference on Machine Learning (ICML), 2022.

[92] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In International Conference on Machine Learning (ICML), 2023.

[93] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Advances in Neural
Information Processing Systems (NeurIPS), 2024.

[94] Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning united visual
representation by alignment before projection. arXiv preprint arXiv:2311.10122, 2023.

[95] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Conference on Machine Learning (ICML), 2021.

[96] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku,
Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-image generation.
arXiv preprint arXiv:2206.10789, 2022.

[97] Wenji Fang, Shang Liu, Jing Wang, and Zhiyao Xie. Circuitfusion: multimodal circuit representation learning for
agile chip design. In International Conference on Learning Representations (ICLR), 2025.

[98] Zhengyuan Shi, Ziyang Zheng, Sadaf Khan, Jianyuan Zhong, Min Li, and Qiang Xu. Deepgate3: towards scalable
circuit representation learning. arXiv preprint arXiv:2407.11095, 2024.

[99] Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. Robust gnn-based representation learning for hls.
In International Conference on Computer-Aided Design (ICCAD), 2023.

[100] Zongyue Qin, Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Yizhou Sun, and Jason Cong. Cross-modality program
representation learning for electronic design automation with high-level synthesis. In International Symposium on
Machine Learning for CAD (MLCAD), 2024.

[101] Shobha Vasudevan, Wenjie Joe Jiang, David Bieber, Rishabh Singh, C Richard Ho, Charles Sutton, et al. Learning
semantic representations to verify hardware designs. In Advances in Neural Information Processing Systems (NeurIPS),
2021.

[102] Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. A self-supervised, pre-trained, and cross-stage-aligned circuit
encoder provides a foundation for various design tasks. In Asia and South Pacific Design Automation Conference
(ASP-DAC), 2025.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 57

[103] Min Li, Sadaf Khan, Zhengyuan Shi, Naixing Wang, Huang Yu, and Qiang Xu. DeepGate: Learning neural representa-
tions of logic gates. In Design Automation Conference (DAC), 2022.

[104] Zhengyuan Shi, Hongyang Pan, Sadaf Khan, Min Li, Yi Liu, Junhua Huang, Hui-Ling Zhen, Mingxuan Yuan, Zhufei
Chu, and Qiang Xu. DeepGate2: Functionality-aware circuit representation learning. In International Conference on
Computer-Aided Design (ICCAD), 2023.

[105] Ziyang Zheng, Shan Huang, Jianyuan Zhong, Zhengyuan Shi, Guohao Dai, Ningyi Xu, and Qiang Xu. Deepgate4:
Efficient and effective representation learning for circuit design at scale. In International Conference on Learning
Representations (ICLR), 2025.

[106] Chenhui Deng, Zichao Yue, Cunxi Yu, Gokce Sarar, Ryan Carey, Rajeev Jain, and Zhiru Zhang. Less is more: Hop-wise
graph attention for scalable and generalizable learning on circuits. In Design Automation Conference (DAC), 2024.

[107] Jiawei Liu, Jianwang Zhai, Mingyu Zhao, Zhe Lin, Bei Yu, and Chuan Shi. Polargate: Breaking the functionality
representation bottleneck of and-inverter graph neural network. In International Conference on Computer-Aided
Design (ICCAD), 2024.

[108] Sadaf Khan, Zhengyuan Shi, Min Li, and Qiang Xu. Deepseq: Deep sequential circuit learning. In Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2024.

[109] Sadaf Khan, Zhengyuan Shi, Ziyang Zheng, Min Li, and Qiang Xu. Deepseq2: Enhanced sequential circuit learning
with disentangled representations. In Asia and South Pacific Design Automation Conference (ASP-DAC), 2025.

[110] Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Bei Yu, and Yu Huang. Functionality
matters in netlist representation learning. In Design Automation Conference (DAC), 2022.

[111] Ziyi Wang, Chen Bai, Zhuolun He, Guangliang Zhang, Qiang Xu, Tsung-Yi Ho, Yu Huang, and Bei Yu. Fgnn2: A
powerful pre-training framework for learning the logic functionality of circuits. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2024.

[112] Haoyuan Wu, Haisheng Zheng, Yuan Pu, and Bei Yu. Circuit representation learning with masked gatemodeling and
verilog-aigalignment. In International Conference on Learning Representations (ICLR), 2025.

[113] Wenji Fang, Wenkai Li, Shang Liu, Yao Lu, Hongce Zhang, and Zhiyao Xie. Nettag: A multimodal rtl-and-layout-
aligned netlist foundation model via text-attributed graph. In Design Automation Conference (DAC), 2025.

[114] Zhengyuan Shi, Chengyu Ma, Ziyang Zheng, Lingfeng Zhou, Hongyang Pan, Wentao Jiang, Fan Yang, Xiaoyan Yang,
Zhufei Chu, and Qiang Xu. Deepcell: Multiview representation learning for post-mapping netlists. arXiv preprint
arXiv:2502.06816, 2025.

[115] Shuwen Yang, Zhihao Yang, Dong Li, Yingxueff Zhang, Zhanguang Zhang, Guojie Song, and Jianye Hao. Versatile
multi-stage graph neural network for circuit representation. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[116] Keren Zhu, Hao Chen, Walker J Turner, George F Kokai, Po-HsuanWei, David Z Pan, and Haoxing Ren. Tag: Learning
circuit spatial embedding from layouts. In International Conference on Computer-Aided Design (ICCAD), 2022.

[117] Yuyang Chen, Yiwen Wu, Jingya Wang, Tao Wu, Xuming He, Jingyi Yu, and Hao Geng. Llm-hd: Layout language
model for hotspot detection with gds semantic encoding. In Design Automation Conference (DAC), 2024.

[118] Yunsheng Bai, Atefeh Sohrabizadeh, Zongyue Qin, Ziniu Hu, Yizhou Sun, and Jason Cong. Towards a comprehensive
benchmark for high-level synthesis targeted to fpgas. In Advances in Neural Information Processing Systems (NeurIPS),
2023.

[119] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. RT-level ITC’99 benchmarks and first ATPG results.
IEEE Design and Test of Computers, 2000.

[120] OpenCores: The reference community for Free and Open Source gateware IP cores.
[121] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar, Harrison Liew, Albert Magyar,

Howard Mao, Albert Ou, Nathan Pemberton, et al. Chipyard: Integrated design, simulation, and implementation
framework for custom SoCs. IEEE Micro, 2020.

[122] VexRiscv. VexRiscv: A FPGA friendly 32 bit RISC-V CPU implementation, 2022.
[123] Yinan Xu, Zihao Yu, Dan Tang, Guokai Chen, Lu Chen, Lingrui Gou, Yue Jin, Qianruo Li, Xin Li, Zuojun Li, et al.

Towards developing high performance risc-v processors using agile methodology. In International Symposium on
Microarchitecture (MICRO), 2022.

[124] Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d: A large-scale dataset for
machine learning guided integrated circuit synthesis. arXiv preprint arXiv:2110.11292, 2021.

[125] Christoph Albrecht. IWLS 2005 benchmarks. In International Workshop on Logic and Synthesis (IWLS), 2005.
[126] Luca Amarú, Pierre-Emmanuel Gaillardon, and Giovanni De Micheli. The epfl combinational benchmark suite. In

International Workshop on Logic and Synthesis (IWLS), 2015.
[127] Ken McElvain. Lgsynth93 benchmark set: Version 4.0. Mentor Graphics, May, 1993.
[128] Natarajan Viswanathan, Charles J Alpert, Cliff Sze, Zhuo Li, Gi-Joon Nam, and Jarrod A Roy. The ispd-2011

routability-driven placement contest and benchmark suite. In International Symposium on Physical Design (ISPD),

58 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

2011.
[129] Natarajan Viswanathan, Charles Alpert, Cliff Sze, Zhuo Li, and Yaoguang Wei. The dac 2012 routability-driven

placement contest and benchmark suite. In Design Automation Conference (DAC), 2012.
[130] J Andres Torres. Iccad-2012 cad contest in fuzzy pattern matching for physical verification and benchmark suite. In

International Conference on Computer-Aided Design (ICCAD), 2012.
[131] Kai-Shun Hu, Ming-Jen Yang, Tao-Chun Yu, and Guan-Chuen Chen. Iccad-2020 cad contest in routing with cell

movement. In International Conference on Computer-Aided Design (ICCAD), 2020.
[132] Hammond Pearce, Benjamin Tan, and Ramesh Karri. Dave: Deriving automatically verilog from english. InWorkshop

on Machine Learning for CAD (MLCAD), 2020.
[133] Kaiyan Chang, Ying Wang, Haimeng Ren, Mengdi Wang, Shengwen Liang, Yinhe Han, Huawei Li, and Xiaowei Li.

Chipgpt: How far are we from natural language hardware design. arXiv preprint arXiv:2305.14019, 2023.
[134] Yonggan Fu, Yongan Zhang, Zhongzhi Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan, and Yingyan Celine Lin.

GPT4AIGChip: Towards next-generation AI accelerator design automation via large language models. In International
Conference on Computer-Aided Design (ICCAD), 2023.

[135] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Chip-chat: Challenges and opportunities in
conversational hardware design. arXiv preprint arXiv:2305.13243, 2023.

[136] Shailja Thakur, Jason Blocklove, Hammond Pearce, Benjamin Tan, Siddharth Garg, and Ramesh Karri. Autochip:
Automating hdl generation using llm feedback. arXiv preprint arXiv:2311.04887, 2023.

[137] Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh Karri, and Siddharth
Garg. Verigen: A large language model for verilog code generation. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 2024.

[138] Mubashir ul Islam, Humza Sami, Pierre-Emmanuel Gaillardon, and Valerio Tenace. Eda-aware rtl generation with
large language models. arXiv preprint arXiv:2412.04485, 2024.

[139] Yang Zhao, Di Huang, Chongxiao Li, Pengwei Jin, Ziyuan Nan, Tianyun Ma, Lei Qi, Yansong Pan, Zhenxing Zhang,
Rui Zhang, et al. Codev: Empowering llms for verilog generation through multi-level summarization. arXiv preprint
arXiv:2407.10424, 2024.

[140] Mingzhe Gao, Jieru Zhao, Zhe Lin, Wenchao Ding, Xiaofeng Hou, Yu Feng, Chao Li, and Minyi Guo. Autovcoder: A
systematic framework for automated verilog code generation using llms. In International Conference on Computer
Design (ICCD), 2024.

[141] Zehua Pei, Hui-Ling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. Betterv: Controlled verilog generation with
discriminative guidance. arXiv preprint arXiv:2402.03375, 2024.

[142] Kaiyan Chang, Kun Wang, Nan Yang, Ying Wang, Dantong Jin, Wenlong Zhu, Zhirong Chen, Cangyuan Li, Hao Yan,
Yunhao Zhou, et al. Data is all you need: Finetuning llms for chip design via an automated design-data augmentation
framework. arXiv preprint arXiv:2403.11202, 2024.

[143] Fan Cui, Chenyang Yin, Kexing Zhou, Youwei Xiao, Guangyu Sun, Qiang Xu, Qipeng Guo, Demin Song, Dahua Lin,
Xingcheng Zhang, et al. Origen: Enhancing rtl code generation with code-to-code augmentation and self-reflection.
arXiv preprint arXiv:2407.16237, 2024.

[144] Chia-Tung Ho, Haoxing Ren, and Brucek Khailany. Verilogcoder: Autonomous verilog coding agents with graph-based
planning and abstract syntax tree (ast)-based waveform tracing tool. arXiv preprint arXiv:2408.08927, 2024.

[145] Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. Rtlcoder: Fully open-source and
efficient llm-assisted rtl code generation technique. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 2024.

[146] Yongan Zhang, Zhongzhi Yu, Yonggan Fu, Cheng Wan, and Yingyan Celine Lin. Mg-verilog: Multi-grained dataset
towards enhanced llm-assisted verilog generation. arXiv preprint arXiv:2407.01910, 2024.

[147] Matthew DeLorenzo, Vasudev Gohil, and Jeyavijayan Rajendran. Creativeval: Evaluating creativity of llm-based
hardware code generation. arXiv preprint arXiv:2404.08806, 2024.

[148] Prashanth Vijayaraghavan, Luyao Shi, Stefano Ambrogio, Charles Mackin, Apoorva Nitsure, David Beymer, and
Ehsan Degan. Vhdl-eval: A framework for evaluating large language models in vhdl code generation. In LLM Aided
Design Workshop (LAD), 2024.

[149] Kaiyan Chang, Zhirong Chen, Yunhao Zhou, Wenlong Zhu, Haobo Xu, Cangyuan Li, Mengdi Wang, Shengwen Liang,
Huawei Li, Yinhe Han, et al. Natural language is not enough: Benchmarking multi-modal generative ai for verilog
generation. arXiv preprint arXiv:2407.08473, 2024.

[150] Kimia Tasnia and Sazadur Rahman. Opl4gpt: An application space exploration of optimal programming language for
hardware design by llm. In Asia and South Pacific Design Automation Conference (ASP-DAC), 2025.

[151] Bowei Wang, Qi Xiong, Zeqing Xiang, Lei Wang, and Renzhi Chen. Rtlsquad: Multi-agent based interpretable rtl
design. arXiv preprint arXiv:2501.05470, 2025.

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 59

[152] Yujie Zhao, Hejia Zhang, Hanxian Huang, Zhongming Yu, and Jishen Zhao. Mage: Amulti-agent engine for automated
rtl code generation. arXiv preprint arXiv:2412.07822, 2024.

[153] Ahmed Allam and Mohamed Shalan. Rtl-repo: A benchmark for evaluating llms on large-scale rtl design projects.
arXiv preprint arXiv:2405.17378, 2024.

[154] Shang Liu, Yao Lu, Wenji Fang, Mengming Li, and Zhiyao Xie. Openllm-rtl: Open dataset and benchmark for llm-aided
design rtl generation. In International Conference on Computer-Aided Design (ICCAD), 2024.

[155] Wenhao Sun, Bing Li, Grace Li Zhang, Xunzhao Yin, Cheng Zhuo, and Ulf Schlichtmann. Classification-based
automatic hdl code generation using llms. arXiv preprint arXiv:2407.18326, 2024.

[156] Yi Liu, Changran Xu, Yunhao Zhou, Zeju Li, and Qiang Xu. Deeprtl: Bridging verilog understanding and generation
with a unified representation model. arXiv preprint arXiv:2502.15832, 2025.

[157] Mingjie Liu, Yun-Da Tsai, Wenfei Zhou, and Haoxing Ren. Craftrtl: High-quality synthetic data generation for
verilog code models with correct-by-construction non-textual representations and targeted code repair. arXiv preprint
arXiv:2409.12993, 2024.

[158] Madhav Nair, Rajat Sadhukhan, and Debdeep Mukhopadhyay. Generating secure hardware using chatgpt resistant
to cwes. Cryptology ePrint Archive, 2023.

[159] Andre Nakkab, Sai Qian Zhang, Ramesh Karri, and Siddharth Garg. Rome was not built in a single step: Hierarchical
prompting for llm-based chip design. arXiv preprint arXiv:2407.18276, 2024.

[160] Prashanth Vijayaraghavan, Apoorva Nitsure, Charles Mackin, Luyao Shi, Stefano Ambrogio, Arvind Haran, Viresh
Paruthi, Ali Elzein, Dan Coops, David Beymer, et al. Chain-of-descriptions: Improving code llms for vhdl code
generation and summarization. In International Symposium on Machine Learning for CAD (MLCAD), 2024.

[161] Selim Sandal and Ismail Akturk. Zero-shot rtl code generation with attention sink augmented large language models.
arXiv preprint arXiv:2401.08683, 2024.

[162] Matthew DeLorenzo, Animesh Basak Chowdhury, Vasudev Gohil, Shailja Thakur, Ramesh Karri, Siddharth Garg,
and Jeyavijayan Rajendran. Make every move count: Llm-based high-quality rtl code generation using mcts. arXiv
preprint arXiv:2402.03289, 2024.

[163] Ning Wang, Bingkun Yao, Jie Zhou, Xi Wang, Zhe Jiang, and Nan Guan. Large language model for verilog generation
with golden code feedback. arXiv preprint arXiv:2407.18271, 2024.

[164] Emil Goh, Maoyang Xiang, I Wey, and T Hui Teo. From english to asic: Hardware implementation with large language
model. arXiv preprint arXiv:2403.07039, 2024.

[165] Nathaniel Pinckney, Christopher Batten, Mingjie Liu, Haoxing Ren, and Brucek Khailany. Revisiting verilogeval:
Newer llms, in-context learning, and specification-to-rtl tasks. arXiv preprint arXiv:2408.11053, 2024.

[166] Zhigang Fang, Renzhi Chen, Zhijie Yang, Yang Guo, Huadong Dai, and Lei Wang. Lintllm: An open-source verilog
linting framework based on large language models. arXiv preprint arXiv:2502.10815, 2025.

[167] Chenwei Xiong, Cheng Liu, Huawei Li, and Xiaowei Li. Hlspilot: Llm-based high-level synthesis. arXiv preprint
arXiv:2408.06810, 2024.

[168] Luca Collini, Siddharth Garg, and Ramesh Karri. C2hlsc: Leveraging large language models to bridge the software-to-
hardware design gap. arXiv preprint arXiv:2412.00214, 2024.

[169] Seyed Arash Sheikholeslam and Andre Ivanov. Synthai: A multi agent generative ai framework for automated
modular hls design generation. arXiv preprint arXiv:2405.16072, 2024.

[170] Yuchao Liao, Tosiron Adegbija, and Roman Lysecky. Are llms any good for high-level synthesis? arXiv preprint
arXiv:2408.10428, 2024.

[171] Jiahao Gai, Hao Chen, Zhican Wang, Hongyu Zhou, Wanru Zhao, Nicholas Lane, and Hongxiang Fan. Exploring
code language models for automated hls-based hardware generation: Benchmark, infrastructure and analysis. In
Asia and South Pacific Design Automation Conference (ASP-DAC), 2025.

[172] Xufeng Yao, Yiwen Wang, Xing Li, Yingzhao Lian, Ran Chen, Lei Chen, Mingxuan Yuan, Hong Xu, and Bei Yu.
Rtlrewriter: Methodologies for large models aided rtl code optimization. arXiv preprint arXiv:2409.11414, 2024.

[173] Pablo Antonio Martínez, Gregorio Bernabé, and José Manuel García. Code detection for hardware acceleration using
large language models. IEEE Access, 2024.

[174] Haocheng Xu, Haotian Hu, and Sitao Huang. Optimizing high-level synthesis designs with retrieval-augmented
large language models. In LLM Aided Design Workshop (LAD), 2024.

[175] Kiran Thorat, Jiahui Zhao, Yaotian Liu, Hongwu Peng, Xi Xie, Bin Lei, Jeff Zhang, and Caiwen Ding. Advanced large
language model (llm)-driven verilog development: Enhancing power, performance, and area optimization in code
synthesis. arXiv preprint arXiv:2312.01022, 2023.

[176] YunDa Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing rtl syntax errors with large language
models. arXiv preprint arXiv:2311.16543, 2023.

[177] Marcelo Orenes-Vera, Margaret Martonosi, and David Wentzlaff. Using LLMs to facilitate formal verification of RTL.
arXiv preprint arXiv:2309.09437, 2023.

60 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

[178] XingyuMeng, Amisha Srivastava, Ayush Arunachalam, Avik Ray, Pedro Henrique Silva, Rafail Psiakis, Yiorgos Makris,
and Kanad Basu. Unlocking hardware security assurance: The potential of llms. arXiv preprint arXiv:2308.11042, 2023.

[179] Sudipta Paria, Aritra Dasgupta, and Swarup Bhunia. Divas: An llm-based end-to-end framework for soc security
analysis and policy-based protection. arXiv preprint arXiv:2308.06932, 2023.

[180] Mohammad Akyash and Hadi Mardani Kamali. Simeval: Investigating the similarity obstacle in llm-based hardware
code generation. In Asia and South Pacific Design Automation Conference (ASP-DAC), 2025.

[181] Zhiyuan Yan, Wenji Fang, Mengming Li, Min Li, Zhiyuan Yan, Shang Liu, Zhiyao Xie, and Hongce Zhang. AssertLLM:
Generating and evaluating hardware verification assertions from design specifications via multi-LLMs. In Asia and
South Pacific Design Automation Conference (ASP-DAC), 2025.

[182] Bhabesh Mali, Karthik Maddala, Sweeya Reddy, Vatsal Gupta, Chandan Karfa, and Ramesh Karri. Chiraag: Chatgpt
informed rapid and automated assertion generation. arXiv preprint arXiv:2402.00093, 2024.

[183] Yuchen Hu, Junhao Ye, Ke Xu, Jialin Sun, Shiyue Zhang, Xinyao Jiao, Dingrong Pan, Jie Zhou, Ning Wang, Weiwei
Shan, et al. Uvllm: An automated universal rtl verification framework using llms. arXiv preprint arXiv:2411.16238,
2024.

[184] Zixi Zhang, Greg Chadwick, Hugo McNally, Yiren Zhao, and Robert Mullins. Llm4dv: Using large language models
for hardware test stimuli generation. arXiv preprint arXiv:2310.04535, 2023.

[185] Ruiyang Ma, Yuxin Yang, Ziqian Liu, Jiaxi Zhang, Min Li, Junhua Huang, and Guojie Luo. Verilogreader: Llm-aided
hardware test generation. arXiv preprint arXiv:2406.04373, 2024.

[186] Minwoo Kang, Mingjie Liu, Ghaith Bany Hamad, Syed Suhaib, and Haoxing Ren. Fveval: Understanding language
model capabilities in formal verification of digital hardware. arXiv preprint arXiv:2410.23299, 2024.

[187] Vaishnavi Pulavarthi, Deeksha Nandal, Soham Dan, and Debjit Pal. Assertionbench: A benchmark to evaluate
large-language models for assertion generation. arXiv preprint arXiv:2406.18627, 2024.

[188] Rahul Kande, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Shailja Thakur, Ramesh Karri, and Jeyavijayan
Rajendran. (security) assertions by large language models. IEEE Transactions on Information Forensics and Security
(TIFS), 2024.

[189] Chuyue Sun, Christopher Hahn, and Caroline Trippel. Towards improving verification productivity with circuit-
aware translation of natural language to systemverilog assertions. In International Workshop on Deep Learning-aided
Verification (DAV), 2023.

[190] Mingjie Liu, Minwoo Kang, Ghaith Bany Hamad, Syed Suhaib, and Haoxing Ren. Domain-adapted llms for vlsi
design and verification: A case study on formal verification. In VLSI Test Symposium (VTS), 2024.

[191] Hanxian Huang, Zhenghan Lin, Zixuan Wang, Xin Chen, Ke Ding, and Jishen Zhao. Towards llm-powered verilog rtl
assistant: Self-verification and self-correction. arXiv preprint arXiv:2406.00115, 2024.

[192] Rahul Kande, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Shailja Thakur, Ramesh Karri, and Jeyavijayan
Rajendran. Llm-assisted generation of hardware assertions. arXiv preprint arXiv:2306.14027, 2023.

[193] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond Pearce. Fixing hardware security bugs
with large language models. arXiv preprint arXiv:2302.01215, 2023.

[194] Chao Xiao, Yifei Deng, Zhijie Yang, Renzhi Chen, Hong Wang, Jingyue Zhao, Huadong Dai, Lei Wang, Yuhua Tang,
and Weixia Xu. Llm-based processor verification: A case study for neuronnorphic processor. In Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2024.

[195] Jitendra Bhandari, Johann Knechtel, Ramesh Narayanaswamy, Siddharth Garg, and Ramesh Karri. Llm-aided testbench
generation and bug detection for finite-state machines. arXiv preprint arXiv:2406.17132, 2024.

[196] Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce. Evaluating llms for hardware design and test.
arXiv preprint arXiv:2405.02326, 2024.

[197] Jie Zhou, Youshu Ji, Ning Wang, Yuchen Hu, Xinyao Jiao, Bingkun Yao, Xinwei Fang, Shuai Zhao, Nan Guan, and
Zhe Jiang. Insights from rights and wrongs: A large language model for solving assertion failures in rtl design. arXiv
preprint arXiv:2503.04057, 2025.

[198] Vaishnavi Pulavarthi, Deeksha Nandal, Soham Dan, and Debjit Pal. Are llms ready for practical adoption for assertion
generation? arXiv preprint arXiv:2502.20633, 2025.

[199] Ke Xu, Jialin Sun, Yuchen Hu, Xinwei Fang, Weiwei Shan, Xi Wang, and Zhe Jiang. Meic: Re-thinking rtl debug
automation using llms. arXiv preprint arXiv:2405.06840, 2024.

[200] Xufeng Yao, Haoyang Li, Tsz Ho Chan, Wenyi Xiao, Mingxuan Yuan, Yu Huang, Lei Chen, and Bei Yu. Hdldebugger:
Streamlining hdl debugging with large language models. arXiv preprint arXiv:2403.11671, 2024.

[201] Lily Jiaxin Wan, Yingbing Huang, Yuhong Li, Hanchen Ye, Jinghua Wang, Xiaofan Zhang, and Deming Chen. Invited
paper: Software/hardware co-design for llm and its application for design verification. In Asia and South Pacific
Design Automation Conference (ASP-DAC), 2024.

[202] Weimin Fu, Kaichen Yang, Raj Gautam Dutta, Xiaolong Guo, and Gang Qu. Llm4sechw: Leveraging domain-specific
large languagemodel for hardware debugging. InAsian Hardware Oriented Security and Trust Symposium (AsianHOST),

A Survey of Circuit Foundation Model:
Foundation AI Models for VLSI Circuit Design and EDA 61

2023.
[203] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond Pearce. On hardware security bug

code fixes by prompting large language models. IEEE Transactions on Information Forensics and Security (TIFS), 2024.
[204] Khushboo Qayyum, Muhammad Hassan, Sallar Ahmadi-Pour, Chandan Kumar Jha, and Rolf Drechsler. From bugs to

fixes: Hdl bug identification and patching using llms and rag. In LLM Aided Design Workshop (LAD), 2024.
[205] Dipayan Saha, Katayoon Yahyaei, Sujan Kumar Saha, Mark Tehranipoor, and Farimah Farahmandi. Empowering

hardware security with llm: The development of a vulnerable hardware database. In International Symposium on
Hardware Oriented Security and Trust (HOST), 2024.

[206] Mohammad Akyash and Hadi Mardani Kamali. Self-hwdebug: Automation of llm self-instructing for hardware
security verification. arXiv preprint arXiv:2405.12347, 2024.

[207] Baleegh Ahmad, Shailja Thakur, Benjamin Tan, Ramesh Karri, and Hammond Pearce. On hardware security bug
code fixes by prompting large language models. IEEE Transactions on Information Forensics and Security (TIFS), 2024.

[208] Marcelo Orenes-Vera, Margaret Martonosi, and David Wentzlaff. From rtl to sva: Llm-assisted generation of formal
verification testbenches. arXiv preprint arXiv:2309.09437, 2023.

[209] Banafsheh Saber Latibari, Sujan Ghimire, Muhtasim Alam Chowdhury, Najmeh Nazari, Kevin Immanuel Gubbi,
Houman Homayoun, Avesta Sasan, and Soheil Salehi. Automated hardware logic obfuscation framework using gpt.
In Dallas Circuits and Systems Conference (DCAS), 2024.

[210] Madhav Nair, Rajat Sadhukhan, Hammond Pearce, Debdeep Mukhopadhyay, and Ramesh Karri. Netlist whisperer:
Ai and nlp fight circuit leakage! InWorkshop on Attacks and Solutions in Hardware Security (ASHES), 2023.

[211] Amisha Srivastava, Sanjay Das, Navnil Choudhury, Rafail Psiakis, Pedro Henrique Silva, Debjit Pal, and Kanad Basu.
Scar: Power side-channel analysis at rtl level. IEEE Transactions on Very Large Scale Integration Systems (TVLSI), 2024.

[212] Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-Gavitt. Examining zero-shot
vulnerability repair with large language models. In 2023 IEEE Symposium on Security and Privacy (SP), pages 2339–2356.
IEEE, 2023.

[213] Georgios Kokolakis, Athanasios Moschos, and Angelos D Keromytis. Harnessing the power of general-purpose llms
in hardware trojan design. In International Conference on Applied Cryptography and Network Security (ACNS), 2024.

[214] Shams Tarek, Dipayan Saha, Sujan Kumar Saha, Mark Tehranipoor, and Farimah Farahmandi. Socurellm: An llm-
driven approach for large-scale system-on-chip security verification and policy generation. Cryptology ePrint Archive,
2024.

[215] Yu-Zheng Lin, Muntasir Mamun, Muhtasim Alam Chowdhury, Shuyu Cai, Mingyu Zhu, Banafsheh Saber Latibari,
Kevin Immanuel Gubbi, Najmeh Nazari Bavarsad, Arjun Caputo, Avesta Sasan, et al. Hw-v2w-map: Hardware
vulnerability to weakness mapping framework for root cause analysis with gpt-assisted mitigation suggestion. arXiv
preprint arXiv:2312.13530, 2023.

[216] Zhuolun He, Haoyuan Wu, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu. Chateda: A large
language model powered autonomous agent for eda. In International Symposium on Machine Learning for CAD
(MLCAD), 2023.

[217] Boyu Han, Xinyu Wang, Yifan Wang, Junyu Yan, and Yidong Tian. New interaction paradigm for complex eda
software leveraging gpt. arXiv preprint arXiv:2307.14740, 2023.

[218] Shan Huang, Jinhao Li, Zhen Yu, Jiancai Ye, Jiaming Xu, Ningyi Xu, and Guohao Dai. Llsm: Llm-enhanced logic
synthesis model with eda-guided cot prompting, hybrid embedding and aig-tailored acceleration. In Asia and South
Pacific Design Automation Conference (ASP-DAC), 2025.

[219] Manar Abdelatty, Jingxiao Ma, and Sherief Reda. Metrex: A benchmark for verilog code metric reasoning using llms.
In Asia and South Pacific Design Automation Conference (ASP-DAC), 2025.

[220] Chen-Chia Chang, Chia-Tung Ho, Yaguang Li, Yiran Chen, and Haoxing Ren. Drc-coder: Automated drc checker
code generation using llm autonomous agent. arXiv preprint arXiv:2412.05311, 2024.

[221] Chenhui Deng, Yunsheng Bai, and Haoxing Ren. Chipalign: Instruction alignment in large language models for chip
design via geodesic interpolation. arXiv preprint arXiv:2412.19819, 2024.

[222] Yuqi Jiang, Xudong Lu, Qian Jin, Qi Sun, Hanming Wu, and Cheng Zhuo. Fabgpt: An efficient large multimodal
model for complex wafer defect knowledge queries. arXiv preprint arXiv:2407.10810, 2024.

[223] Guojin Chen, Haoyu Yang, Yu Bei, and Haoxing Ren. Intelligent opc engineer assistant for semiconductor manufac-
turing. In AAAI Conference on Artificial Intelligence (AAAI), 2024.

[224] Chia-Tung Ho and Haoxing Ren. Large language model (llm) for standard cell layout design optimization. In LLM
Aided Design Workshop (LAD), 2024.

[225] Mengming Li, Wenji Fang, Qijun Zhang, and Zhiyao Xie. SpecLLM: Exploring generation and review of vlsi design
specification with large language model. arXiv preprint arXiv:2401.13266, 2024.

[226] Zheyu Yan, Yifan Qin, Xiaobo Sharon Hu, and Yiyu Shi. On the viability of using LLMs for SW/HW co-design: An
example in designing CiM DNN accelerators. arXiv preprint arXiv:2306.06923, 2023.

62 Wenji Fang, Jing Wang, Yao Lu, Shang Liu, Yuchao Wu, Yuzhe Ma, and Zhiyao Xie

[227] Zhiding Liang, Jinglei Cheng, Rui Yang, Hang Ren, Zhixin Song, Di Wu, Xuehai Qian, Tongyang Li, and Yiyu Shi.
Unleashing the potential of LLMs for quantum computing: A study in quantum architecture design. arXiv preprint
arXiv:2307.08191, 2023.

[228] Yuan Pu, Zhuolun He, Tairu Qiu, Haoyuan Wu, and Bei Yu. Customized retrieval augmented generation and
benchmarking for eda tool documentation qa. arXiv preprint arXiv:2407.15353, 2024.

[229] Chengjie Liu, Yijiang Liu, Yuan Du, and Li Du. Ladac: Large language model-driven auto-designer for analog circuits.
Authorea Preprints, 2024.

[230] Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping Luo. Analogcoder:
Analog circuit design via training-free code generation. arXiv preprint arXiv:2405.14918, 2024.

[231] Yunwei Mao, You You, Xiaosi Tan, Yongming Huang, Xiaohu You, and Chuan Zhang. Flag: Formula-llm-based
auto-generator for baseband hardware. In International Symposium on Circuits and Systems (ISCAS), 2024.

[232] Yuxuan Yin, Yu Wang, Boxun Xu, and Peng Li. Ado-llm: Analog design bayesian optimization with in-context
learning of large language models. arXiv preprint arXiv:2406.18770, 2024.

[233] Chen-Chia Chang, Yikang Shen, Shaoze Fan, Jing Li, Shun Zhang, Ningyuan Cao, Yiran Chen, and Xin Zhang.
Lamagic: Language-model-based topology generation for analog integrated circuits. arXiv preprint arXiv:2407.18269,
2024.

[234] Zihao Chen, Jiangli Huang, Yiting Liu, Fan Yang, Li Shang, Dian Zhou, and Xuan Zeng. Artisan: Automated operational
amplifier design via domain-specific large language model. In Design Automation Conference (DAC), 2024.

[235] Dimple Vijay Kochar, Hanrui Wang, Anantha Chandrakasan, and Xin Zhang. Ledro: Llm-enhanced design space
reduction and optimization for analog circuits. arXiv preprint arXiv:2411.12930, 2024.

[236] Haoyi Zhang, Shizhao Sun, Yibo Lin, Runsheng Wang, and Jiang Bian. Analogxpert: Automating analog topology
synthesis by incorporating circuit design expertise into large language models. arXiv preprint arXiv:2412.19824, 2024.

[237] Jian Gao, Weidong Cao, Junyi Yang, and Xuan Zhang. Analoggenie: A generative engine for automatic discovery of
analog circuit topologies. In International Conference on Learning Representations (ICLR), 2025.

[238] Enrique Dehaerne, Bappaditya Dey, Sandip Halder, and Stefan De Gendt. A deep learning framework for verilog
autocompletion towards design and verification automation. arXiv preprint arXiv:2304.13840, 2023.

[239] Zhuorui Zhao, Ruidi Qiu, Ing-Chao Lin, Grace Li Zhang, Bing Li, and Ulf Schlichtmann. Vrank: Enhancing verilog
code generation from large language models via self-consistency. arXiv preprint arXiv:2502.00028, 2025.

[240] Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the few-shot paradigm.
In Extended Abstracts of the Conference on Human Factors in Computing Systems (CHI EA), 2021.

[241] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing
reasoning and acting in language models. In International Conference on Learning Representations (ICLR), 2023.

[242] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and
Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

[243] Shobha Vasudevan, David Sheridan, Sanjay Patel, David Tcheng, Bill Tuohy, and Daniel Johnson. Goldmine: Automatic
assertion generation using data mining and static analysis. In Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2010.

[244] Samuele Germiniani and Graziano Pravadelli. Harm: a hint-based assertion miner. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2022.

[245] Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet: An open-source dataset
for machine learning in vlsi cad applications with improved domain-specific evaluation metric and learning strategies.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2023.

[246] Zeju Li, Changran Xu, Zhengyuan Shi, Zedong Peng, Yi Liu, Yunhao Zhou, Lingfeng Zhou, Chengyu Ma, Jianyuan
Zhong, Xi Wang, et al. Deepcircuitx: A comprehensive repository-level dataset for rtl code understanding, generation,
and ppa analysis. arXiv preprint arXiv:2502.18297, 2025.

[247] Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, and Zhiyao Xie. Towards big data in ai for eda research: Generation of
new pseudo-circuits at rtl stage. In Asia and South Pacific Design Automation Conference (ASP-DAC), 2025.

[248] Shang Liu, Jing Wang, Wenji Fang, and Zhiyao Xie. Syncircuit: Automated generation of new synthetic rtl circuits
can enable big data in circuits. In Design Automation Conference (DAC), 2025.

[249] Samuel Coward, Theo Drane, Emiliano Morini, and George A Constantinides. Combining power and arithmetic
optimization via datapath rewriting. In Symposium on Computer Arithmetic (ARITH), 2024.

[250] Chen Chen, Guangyu Hu, Dongsheng Zuo, Cunxi Yu, Yuzhe Ma, and Hongce Zhang. E-syn: E-graph rewriting with
technology-aware cost functions for logic synthesis. In Design Automation Conference (DAC), 2024.

	Abstract
	1 Introduction
	1.1 Our Taxonomy of AI for EDA Techniques: Two Different Types
	1.2 Type I: Supervised Predictive AI Techniques for EDA (covered in prior surveys)
	1.3 Type II: Foundation AI Techniques for EDA (the focus of this paper)
	1.4 Comparison of Existing Relevant Surveys and This Paper.
	1.5 Overall Structure of This Survey Paper

	2 Preliminary
	2.1 Standard VLSI Design Stage and Flow
	2.2 LLM Techniques in AI Foundation Models
	2.3 Self-Supervised Learning Techniques in AI Foundation Model
	2.4 Multimodal Learning Techniques in AI Foundation Model

	3 Unique Circuit Data Properties
	4 Foundation Model as a Circuit Encoder
	4.1 Circuit Encoder for HLS
	4.2 Circuit Encoder for RTL Stage
	4.3 Circuit Encoder for Netlist Stage
	4.4 Circuit Encoder for Layout Stage
	4.5 Summary of Trending Techniques for Advancing Circuit Encoders

	5 Foundation Model as a Circuit Decoder
	5.1 LLM for RTL Code Generation
	5.2 LLMs for HLS Code Generation
	5.3 LLMs for Design Optimizations
	5.4 LLM for Hardware Code Verification
	5.5 LLM for Hardware Code Debugging
	5.6 LLMs for Hardware Security
	5.7 LLM for Design Flow Automation and Layout Design
	5.8 LLMs for Hardware Architecture Design
	5.9 LLMs for Analog Circuit Design.

	6 Challenges, Discussion, and Potential Directions
	6.1 Challenge 1: Circuit Foundation Model Generalization and Scalability
	6.2 Challenge 2: Circuit Data Avaliability
	6.3 Challenge 3: Bridging the Gap Between Circuit Encoder and Decoder

	7 Conclusion
	8 Acknowledgments
	References

