
200 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

Transferable Presynthesis PPA Estimation for RTL
Designs With Data Augmentation Techniques
Wenji Fang , Graduate Student Member, IEEE, Yao Lu , Shang Liu , Qijun Zhang , Ceyu Xu,

Lisa Wu Wills, Hongce Zhang , Member, IEEE, and Zhiyao Xie , Member, IEEE

Abstract—In modern VLSI design flow, evaluating the quality
of register-transfer level (RTL) designs involves time-consuming
logic synthesis using electronic design automation tools, a process
that often slows down early optimization. While recent machine
learning (ML) solutions offer some advancements, they typically
struggle with maintaining high accuracy across any given RTL
design. In this work, we propose an innovative transferable
presynthesis power, performance, and area (PPA) estimation
framework named MasterRTL. It first converts the hardware
description language code to a new bit-level design representation
named the simple operator graph (SOG). By only adopting
single-bit simple operators, this SOG proves to be a general
representation that unifies different design types and styles. The
SOG is also more similar to the target gate-level netlist, reducing
the gap between the RTL representation and netlist. In addition
to the new SOG representation, MasterRTL proposes new ML
methods for the RTL-stage modeling of timing, power, and
area separately. Compared with the state-of-the-art solutions,
the experiment on a comprehensive dataset with 90 different
designs shows accuracy improvement by 0.33, 0.22, and 0.15
in correlation for total negative slack (TNS), worst negative
slack (WNS), and power, respectively. Besides the prediction
of the synthesis results, MasterRTL also excels in accurately
predicting layout-stage PPA based on the RTL designs and in
adapting across different technology nodes and process corners.
Furthermore, we investigate two effective data augmentation
techniques: 1) a graph generation method and 2) a large
language model (LLM)-based approach. Our results validate the
effectiveness of the generated RTL designs in mitigating the data
shortage challenges.

Index Terms—Data augmentation, power modeling, register-
transfer level (RTL), timing analysis.

Manuscript received 22 January 2024; revised 22 April 2024 and 16 June
2024; accepted 20 June 2024. Date of publication 1 July 2024; date of current
version 26 December 2024. This work was supported in part by the Hong
Kong Research Grants Council (RGC) ECS under Grant 26208723; in part
by the National Natural Science Foundation of China under Grant 92364102
and Grant 62304192; and in part by the Guangzhou Municipal Science and
Technology Project (Municipal Key Laboratory Construction Project) under
Grant 2023A03J0013. This article was recommended by Associate Editor
W. Qian. (Corresponding author: Zhiyao Xie.)

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie
are with the Department of Electronic and Computer Engineering,
Hong Kong University of Science and Technology, Hong Kong, SAR
(e-mail: wenjifang1@ust.hk; yludf@connect.ust.hk; sliudx@connect.ust.hk;
qzhangcs@connect.ust.hk; hongcezh@ust.hk; eezhiyao@ust.hk).

Ceyu Xu and Lisa Wu Wills are with the Department of Computer Science
and Electrical and Computer Engineering, Duke University, Durham, NC
27708 USA (e-mail: ceyu.xu@duke.edu; lisa@cs.duke.edu).

Hongce Zhang is with the Department of Electronic and Computer
Engineering, Hong Kong University of Science and Technology, Hong Kong,
SAR, and also with the Microelectronics Thrust, Function Hub, Hong Kong
University of Science and Technology (Guangzhou), Guangzhou 511458,
China.

Digital Object Identifier 10.1109/TCAD.2024.3420904

I. INTRODUCTION

IN MODERN VLSI design flows, the register-transfer level
(RTL) stage is a critical point, where designers devote sig-

nificant effort to crafting precise design behavior descriptions
using hardware description languages (HDLs), such as Verilog,
VHDL, and Chisel [1]. At this early stage, design engineers
face a vast design space with maximum flexibility, allowing
them to make virtually any fine-grained design decisions that
will affect the ultimate quality of the ASIC design in terms of
power, performance, and area (PPA). Ideally, designers should
optimize their RTL designs sufficiently at this stage, since it
is extremely challenging, if not impossible, to remedy low-
quality RTL in downstream synthesis stages.

Despite the critical importance of optimizing RTL designs, it
is very difficult to evaluate the RTL design quality, considering
an RTL design is still in the format of the HDL code. In a
standard VLSI design flow, designers have to go through the
time-consuming subsequent synthesis or even layout stages,
relying on the full-fledged commercial electronic design
automation (EDA) tools to evaluate the design quality based on
the netlists or layouts. For complex industrial designs, the logic
synthesis could take more than one day and the layout process
can easily further take several days. To make things worse,
designers often need to frequently invoke synthesis tools to
implement and evaluate their RTL designs, optimize the RTL
code based on the results, and then repeat the evaluation
process until optimization is complete. This iterative process
significantly prolongs the total turnaround time and hinders the
optimization of design quality, making the RTL design process
extremely inefficient.

In recent years, customized machine learning (ML) methods
have been increasingly proposed to provide early feedback
on the design quality [2]. While most ML approaches focus
on the gate-level netlists or layouts, the crucial RTL stage
often receives less attention [2]. In the existing ML-based
methods, gate-level netlists are usually modeled as graphs and
processed with graph neural networks (GNNs) and layouts
are treated as images (i.e., 2-D matrices) for analysis with
convolutional neural networks (CNNs). However, since the
RTL design is in the HDL code format rather than the
conventional data structures, there is no established consensus
on the best representation and processing method for them.
Some studies [3], [4], [5], [6] focus only on the design flow
tuning for specific designs to achieve better PPA outcomes,
but they require model retraining for every new design. This

1937-4151 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8380-9395
https://orcid.org/0009-0007-3230-7786
https://orcid.org/0009-0000-0057-7844
https://orcid.org/0009-0008-4749-2141
https://orcid.org/0000-0003-4001-264X
https://orcid.org/0000-0002-4442-592X

FANG et al.: TRANSFERABLE PRESYNTHESIS PPA ESTIMATION FOR RTL DESIGNS 201

limitation is also seen in most RTL-stage power models [7],
[8], [9], [10], [11], which do not generalize well to new
designs. Besides the RTL-stage PPA modeling, which is the
focus of this work, there are methods targeting the earlier
architectural stages [12], [13], [14], [15], [16], [17]. However,
these face even greater challenges in generalizing to unseen
designs due to the absence of the detailed RTL information.

Most recently, several general cross-design ML meth-
ods [18], [19], [20], [21], [22] are proposed to predict design
qualities at the RTL stage. They first convert design RTL to
intermediate representations, such as the bit-level and-inverter
graph (AIG) [18], [19], [20] or word-level abstract syntax tree
(AST) [21], [22], and then develop the ML models to evaluate
the design quality metrics. Works [18], [19] develop RTL-
stage timing models based on the neural networks, but these
models are limited to combinational circuits and rely on the
design variations generated by an RTL generator. Work [20]
classifies timing paths as critical or noncritical, and then
employs the predictions to optimize the logic synthesis results.
However, it does not provide concrete timing predictions [e.g.,
worst negative slack (WNS), total negative slack (TNS)], and
lacks the modeling for power and area metrics. Two recent
works [21], [22] utilize the AST representation for the RTL
code and then evaluate the design PPA either based on all the
register trees [21] or randomly sampled paths [22] extracted
from the AST-alike representations. However, the effectiveness
of these methods in predicting the qualities of new, unknown
RTL designs is still constrained by several factors. First, the
AST-alike representation used in these studies [21], [22] is
originally just the initial data format for the HDL code. It
is not an ideal data format to support ML solutions. Second,
these works [21], [22] process the representations with several
unreasonable operations. For instance, [21] exhibits unde-
sirable duplications in register trees during logic counting.
In [22], there is a noticeable discrepancy between the pseudo-
training paths and the actual paths extracted from the target
inference designs.

Furthermore, accurate presynthesis PPA modeling necessi-
tates high-quality RTL designs, which are valuable intellectual
properties (IPs) for the IC design companies. However, these
designs are often unavailable for model development, resulting
in a scarcity of diverse RTL designs for ML model training.
This shortage highlights the need for exploring effective RTL
data augmentation techniques. Recently, the use of gener-
ative AI, especially large language models (LLMs) in IC
design is gaining traction. Studies have explored LLMs for
generating Verilog code, employing either commercial LLMs
with strategic prompt engineering [23], [24], [25] or by fine
tuning open-source LLMs with the Verilog data [26], [27].
The performance of LLMs is typically assessed through the
benchmarks [28], [29] based on the functional correctness
of the generated RTL. However, meeting specific functional
requirements is not the primary goal for the data augmentation.
Our emphasis lies on generating data exhibits both diversity
and close similarity to real-world RTL designs.

In this work, we propose a new RTL-stage PPA modeling
framework named MasterRTL, which achieves significantly
higher accuracy over prior works [21], [22] when applied to

new RTL designs. The overall workflow of MasterRTL is
presented in Fig. 1. It is the first work that supports the
cross-design RTL evaluation on all the major PPA qualities,
including both TNS and WNS, both vector-less and vector-
based power analysis results, and the gate area.1 Furthermore,
MasterRTL’s PPA predictions are adaptable across different
design stages and technology libraries, offering broad appli-
cability. To address the RTL data availability challenges, we
have also developed data augmentation techniques. It primarily
answers the following key unsolved questions in the RTL-stage
PPA modeling problem.

1) Q1: What is the most appropriate data format of the
RTL design (i.e., RTL representation) that best supports
the ML modeling methods?

2) Q2: Based on the RTL representation, how to capture
the key patterns to estimate each design objective?

3) Q3: How to extend the postsynthesis PPA evaluation
across the later layout stage and distinct technology
libraries?

4) Q4: How to generate and evaluate high-quality aug-
mented RTL designs to enhance our ML model training
process?

For Q1, we aim to develop an ML method suitable for
any given RTL design. The representation for RTL must be
closely similar to the final gate-level netlist while also being
as general as possible. Such a general representation promotes
uniformity among various design types, enhancing the ML
model’s predictive performance on unseen new designs. To
this end, MasterRTL adopts a bit-level representation similar
to that used in [18], [19], and [20] for the ML-based RTL
analysis, named simple operator graph (SOG). It consists of
only fundamental single-bit logic operations. Compared with
the AST-alike representations in works [21], [22], it better
unifies different RTL design types and styles and thus enables
a higher cross-design model accuracy for almost all the design
objectives and ML methods.

In response to Q2, since the mechanisms behind ground
truth PPA measurements differ significantly, instead of
adopting similar input features for different tasks in prior
works [21], [22], we customize different estimation method-
ologies for timing, power, and area separately. Specifically,
among all the RTL-stage cross-design methods, our timing
model is the first to explicitly capture the critical path
and the corresponding delay between any pair of registers.
This is enabled by our SOG representation’s consistency in
register mapping with the netlist. Our power model is also
the first to integrate toggle rate information as features, thus
supporting unified predictions on both the vector-based and
vector-less power values. Furthermore, our cross-design power
model introduces module-level evaluation, a novel strategy that
substantially increases the volume of power labels for model
training.

For Q3, we enhance MasterRTL’s initial postsynthesis PPA
predictions by constructing transfer models that incorporate

1In comparison, [21] only evaluates TNS and vector-less power, [22] only
evaluates WNS, vector-less power, and area. Most other RTL-stage models [3],
[4], [7], [8], [9], [10], [11] are not cross-design, requiring retraining on new
designs.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

202 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

Fig. 1. MasterRTL overall workflow for RTL-stage design PPA prediction
with data augmentation techniques.

design scale information. This approach enables accurate PPA
modeling for the layout stage and improve transferability
across various technology nodes and process corners.

Regarding Q4, we first introduce criteria for the quality
evaluation of the generated RTL code, and then propose a
graph-based and an LLM-based data augmentation strategy,
which leverage a graph generative model and an LLM,
respectively. We demonstrate the utility of the generated data
in enhancing the model training process, particularly when the
training data are limited.

Our contributions in this work are summarized below.
1) We propose an open-sourced new framework named

MasterRTL to efficiently evaluate all the PPA values of
any given design RTL.2 Evaluated on our comprehensive
dataset with 90 different RTL designs, it achieves 0.33,
0.22, and 0.15 higher absolute values in correlation R
for TNS, WNS, and power estimations than the state-
of-the-art solutions.

2) Based on the bit-level RTL representation, we cus-
tomize algorithms for each design objective, capturing
their different mechanisms. Among the cross-design
RTL-stage methods, MasterRTL is the first to capture
detailed critical-path information in timing modeling,
and the first to integrate toggle rate and module-level
information in power modeling.

3) We extend the MasterRTL predictions to the layout stage
and across various technology libraries with significantly
reduced error compared with the original postsynthesis
netlist based on the source technology. We further
explore the influence of different logic synthesis options.

4) We pioneer in exploring two data augmentation
techniques to generate numerous new RTL designs.
Experiments demonstrate their capability in mitigating
the circuit data availability problem.

II. METHODOLOGY

This section delves into our MasterRTL framework. We first
denote the HDL-code format of an RTL design H, and the
postsynthesis gate-level netlist as G, with its timing, power,
and area as {TG, PG, AG}. The goal of our RTL modeling
framework F is to evaluate these qualities of any RTL design
after logic synthesis. MasterRTL begins by transforming the

2It has been open-sourced in https://github.com/hkust-zhiyao/MasterRTL.

Fig. 2. Comparison between different RTL representations and the target
gate-level netlist. (a) AST-alike (b) SOG. (c) Netlist.

HDL-code H to a representation R, facilitating the detailed
analysis of RTL. Subsequently, distinct timing, power, and area
models {ft, fp, fa} will be developed independently. The target
can be expressed as follows:

F(H) = {
ft(R), fp(R), fa(R)

} → {
TG, PG, AG

}
. (1)

Then, we further apply the transfer model Tr to the
predicted PPA data to evaluate the new metrics denoted as
{TG′ , PG′ , AG′ }, shown as the formula below

Tr(F(H)) → {
TG′ , PG′ , AG′

}
. (2)

In this section, we will first illustrate the novel RTL
representation R named SOG adopted by MasterRTL. Based
on this new representation R, we will delve into the new
timing, power, and area models proposed in MasterRTL. Then,
we will illustrate how the MasterRTL’s modeling approach
can be extended to the layout stage and adapted for various
technologies. Finally, we will outline our data augmentation
strategies.

A. SOG: Our Suggested Bit-Level RTL Representation

The RTL-stage PPA modeling begins with transforming the
raw HDL code, denoted as H, into a structured design format,
represented as R. This transformation is crucial for interpreting
the detailed RTL design data. The primary challenge lies
in linking the RTL-stage representation to the postsynthe-
sis gate-level netlist without relying on the time-consuming
logic synthesis process. Prior works [21], [22] have shown a
direct conversion of the HDL code into a word-level AST-
alike format, shown in Fig. 2(a). Fig. 2(c) demonstrates the
postsynthesis gate-level netlist of this RTL design.

Rather than the word-level AST, MasterRTL fol-
lows [18], [19], and [20] to employ the bit-level RTL
representation that bypasses the logic optimization and
technology mapping in standard synthesis procedures. As
illustrated in Fig. 2(b), this bit-level representation, R contains
only single-bit registers and five primary single-bit logic
operations: 1) two-input AND, 2) OR, 3) XOR, 4) NOT,
and 5) a two-to-one MUX, and we name it as SOG. The
process of creating the SOG involves breaking down each
multibit word into its logic bits and replacing complex word-
level operations with their Boolean equivalents, following a
preset mapping relationship. This SOG generation is achieved
through the open-source tools like Yosys [30], ensuring a
swift and efficient process.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

FANG et al.: TRANSFERABLE PRESYNTHESIS PPA ESTIMATION FOR RTL DESIGNS 203

Fig. 3. Timing evaluation flow in MasterRTL. The multistage timing model identifies critical paths at the RTL stage enabling accurate WNS and TNS
evaluations.

We summarize the key features and advantages of adopting
bit-level SOG, in comparison to the AST-alike representation
used in [21] and [22], reveals three key advantages.3

1) Similarity: SOG’s structure more closely mirrors that
of the target netlist after synthesis, effectively bridging
the gap between the presynthesis RTL and postsynthesis
gate-level netlist.

2) Generalization: SOG relies on only five fundamental
single-bit logic operations, offering broader general-
ization capabilities than the AST. This simplification
reduces variations across different RTL designs and
styles.

3) Consistency in Register Mapping: Each register cell in
the gate-level netlist G has a corresponding single-bit
register operator in SOG R. This direct mapping is
a significant improvement over the AST’s word-level
nodes, which fail to directly map to the netlists.

Benefiting from the consistent one-to-one register mapping
of the bit-level representation, we customize the ML models
based on the distinct PPA mechanisms for the accurate
RTL-stage PPA evaluation. Specifically, our timing modeling
identifies the critical paths in the SOG, which are then mapped
onto the netlist, aligning with the paths that have identical
starting and ending registers. Our power modeling method
propagates toggle rates from the registers to the logic gates, a
crucial factor for dynamic power modeling. Additionally, our
area model utilizes key features, such as calculated area from
the SOG, significantly enhancing the prediction accuracy. In
the subsequent sections, we will delve into the specifics of our
modeling methods and RTL data augmentation techniques.

B. RTL-Stage Timing Modeling

For the RTL-stage timing modeling, as depicted in Fig. 3,
we introduce a multistage ML framework to evaluate both
the TNS and WNS of any RTL design. The target ground
truth TNS and WNS are obtained from the postsynthesis
timing report. Notice that, detailed timing evaluation at such
an early stage is extremely challenging, since the logic
optimization and technology mapping have not been carried
out. Therefore, different from the timing modeling methods
applied at later stages (i.e., the netlist-stage or the layout-
stage) [32], [33], [34], our modeling method will primarily

3Refer to our previous published version [31] for more detailed evaluations.

focus on the key patterns and use some approximations.
Despite the approximations inherently introducing imperfec-
tions, we mitigate these by subsequent calibration exploiting
the ML models.

A primary challenge in RTL-stage timing modeling is that
the ground truth labels are derived from the timing analysis of
the gate-level netlist G. Such netlist-level timing values cannot
be directly mapped to the AST-alike RTL representation R.
As a result, state-of-the-art studies either overlook the RTL
details [21] or turn to use synthesized pseudo paths for
training [22], which often leads to significant inaccuracies.
In comparison, the MasterRTL framework employs the con-
sistency of registers between the SOG representation R and
the netlist G, offering a more accurate approach to timing
modeling at the RTL stage. Specifically, we will capture the
slowest critical paths in both the SOG representation R and
netlist G, and map these paths one by one according to their
starting and ending registers. This multistage timing modeling
process is introduced in detail below.

1 Node-Delay Modeling in R: To facilitate the assessment
of delays at each node of our RTL representation R in SOG,
we develop a simplified analytical (non-ML-based) model.
Not that the “node-delay” calculated for R does not represent
an actual delay value. Instead, its purpose is to assist in
path extraction on R for feature collection. This node-delay
model operates as a linear function of the fan-out number,
whose coefficients are based on the type of the driving node
operator. These coefficients for each node operator type are
approximated using the resistance-capacitance (RC) values of
the standard cells corresponding to the same type, as found in
the liberty files (e.g.,.lib/.db).

2 Critical Path Identification and Mapping in R and G:
Leveraging the estimated node delay in R, we then identify
the maximum-delay path PR

i→j between the two registers (i.e.,
the start register i and the end register j) in representation
R, where i, j ∈ [1, N] in a design with N registers. This is
implemented by efficiently propagating the node delay across
the SOG graph in a topological order.

Following the identification of the critical path PRi → j
in RTL representation R, our aim shifts to predict the actual
maximum path delay between the same register pair in the
gate-level netlist, G. This targeted path, PGi → j is between
the registers i and j. We collect its ground truth path delay
label using the postsynthesis timing analysis EDA tools.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

204 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

It is important to note that while the critical paths PRi → j
and PGi → j in representations R and G share the same start
and end registers i, j, the actual nodes comprising each path
differ significantly. As illustrated in Fig. 3, a node on PRi → j
corresponds to an RTL operator, whereas on PGi → j, it
represents a standard cell.

3 Path-Level Delay Model Training: We then develop a
path-level model, f path

t trained using features from the RTL-
stage path PRi → j, to predict the actual path delay of the
corresponding netlist path PGi → j. The model’s function can
be expressed as

f path
t

(
PR

i→j

)
→ The path delay of PG

i→j. (3)

For the training data, we focus on the register pairs i, j
that form the top 1% of maximum-delay paths in the netlist
PG

i→j, as identified in the postsynthesis timing reports for each
design.

For the proposed path-level model f path
t , we investigate

two ML approaches. First, we employ a transformer model,
adopted in LLMs, to process each path as a sequence of nodes.
This model is similar to the one adopted in [22]. However, to
address the limitations of [22], which lacks fan-out information
in its features, a key element for the accurate path delay
prediction, we incorporated the fan-out count of each node in
PR

i→j into our input features. Second, we explore a lightweight
tree-based model, such as random forest [35], with careful
feature engineering. The extracted features from PR

i→j include:
1) the total count of all nodes; 2) the quantity of each operation
type; and 3) the accumulated node delay on this path, as
defined in our earlier model in 1 .

4 Path-Level Delay Model Inference: Once the path-delay
model f path

t is trained, it is employed for TNS and WNS
prediction in new RTL designs. This process in representation
R mirrors the TNS and WNS calculation methods used in
the netlists. For each register, identified as the endpoint, we
capture its critical path. Employing the technique from 2 , we
propagate the estimated node delays through the SOG graph.
This approach results in the identification of N unique paths,
each denoted as PR∗→j for j ∈ [1, N]. In this context, ∗ signifies
the starting register that culminates in the maximum path delay
to each respective endpoint register j.

Following the identification of the N paths PR∗→j, the trained

path-level model f path
t is employed to predict the delay for

each of these paths. Based on these predictions, we calculate
the TNS and WNS estimations within the representation R as
follows:

TNSR =
N∑

j=1

(
clk − f path

t

(
PR∗→j

))

WNSR = min
j∈[1,N]

(
clk − f path

t

(
PR∗→j

))
.

5 Design-Level TNS/WNS Calibration: Given that the RTL-
stage timing modeling is highly challenging, the estimated
path delays, WNSR and TNSR predicted directly by the path-
level model in 4 are not sufficiently accurate. However, they
serve as valuable starting points for further refinement and

Fig. 4. Delay distribution of the worst 1% critical paths from synthesized
netlist (DC) and our path-level model. (a) Small designs. (b) Medium designs.
(c) Large designs.

calibration. In Fig. 4, we present a comparative analysis of the
slack distribution for the worst 1% of the N critical paths, as
predicted by our path-level model (clk − f path

t (PR∗→j)) versus
the actual slack obtained from the ground truth netlist timing
report. We observe several interesting patterns in Fig. 4.

1) The distribution of critical paths obtained from the
netlists is notably more concentrated compared to the
predictions made by the path-level model.

2) Despite the huge discrepancies between the ground
truth and the predictions made by the path-level model,
consistent patterns emerge when considering the size of
the designs. Specifically, predictions for the small-scale
designs tend to be overly pessimistic, large-scale ones
are over-optimistic, and medium-sized designs fall in the
middle.

The observed discrepancy patterns are expected and can
primarily be attributed to the optimization processes con-
ducted during the logic synthesis. These optimizations are
specifically directed toward the most critical paths. As a
result, in the netlist G, the slacks of the top 1% critical
paths become more concentrated and closely align with the
actual WNS. Furthermore, the influence of these optimization
efforts is more obvious in smaller designs with fewer paths.
Consequently, this leads to the path-level predictions based on
the representation R being relatively over-pessimistic and vice
versa.

Based on these valuable patterns, we introduce an additional
final-stage model aimed at calibrating the estimated TNSR

and WNSR values toward the actual TNS and WNS labels
from the gate-level netlist G. This model utilizes a tree-
based ML approach and incorporates the following features:
1) the SOG features (i.e., counts of node operators) reflecting
the design scale; 2) the estimated TNSR and WNSR from the
path-level model; and 3) the slack distribution of the worst 1%
of the N critical paths based on the path-level model prediction
clk− f path

t (PR∗→j). For each design, we extract the worst, 10%,
50%, and 90% percentiles of these predicted slacks as features.

C. RTL-Stage Power Modeling

For RTL-stage power modeling, we introduce a novel
toggle-rate-based and module-level method as shown in Fig. 5.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

FANG et al.: TRANSFERABLE PRESYNTHESIS PPA ESTIMATION FOR RTL DESIGNS 205

Fig. 5. Power evaluation flow in MasterRTL. The multistage power model
utilizes the toggle rate information propagated from each RTL module
facilitating precise power evaluation.

Distinct from the previous works [21], [22], this is the first
cross-design RTL-stage power model that incorporates toggle
rates as a primary input. In our methodology, each node within
the SOG representation R is annotated with a toggle rate, a
feature that is versatile enough to support both the vector-based
and vector-less power simulation scenarios. For the vector-
based power analysis, the RTL simulations are conducted
to gather precise toggle rate data. This approach effectively
captures the dynamic behavior of the design, leading to an
accurate estimation of the toggle rates, and consequently more
precise power analysis. For the vector-less power analysis,
the toggle rates are derived at the beginning of the logic
synthesis process using the synthesis tools. This strategy
provides essential insights into the design’s toggling behavior
without the need for explicit workload simulation.

Node Toggle Rate Propagation: The toggle rate for all
the register bits can be sourced from the switching activity
interchange format (SAIF) files generated by the EDA tools.
This method is applicable for both the vector-based and vector-
less analysis scenarios through the workload simulation and
logic synthesis, respectively. Then, the toggle rates are directly
mapped onto the register nodes within the SOG representation.
The key process involves efficiently propagating these toggle
rates to every node in the SOG graph R. This is achieved by
traversing the graph in topological order and calculating based
on the functionality [36] of each simple operator type within
SOG.

Module-Level Power Estimation: A primary obstacle in
design power prediction is the shortage of the training data,
as each design contributes only one data sample (i.e., its
total power). To address this, our approach does not aim to
predict the total power of an entire design directly. Instead, we
decompose the design into M parts, based on the RTL mod-
ule hierarchy of the HDL code.4 This module-level method
significantly enriches the total amount of the power data by
M times. We estimate the power of each individual module-
level partition, denoted as PowerG1, PowerG2,. . . , PowerGM .
The overall power of the design, PowerG, is then calculated by
summing the power of all the modules: PowerG = ∑M

i=1 ki ·

4In this work, we focus on the partitioning modules one level below the
top module.

PowerGi, where ki ∈ Z
+ represents the number of times the

ith module is instantiated.
In our module-level power prediction, two types of models

are explored: 1) a GNN model and 2) a lightweight tree-based
model. The estimation of total power incorporates both the
dynamic and static power components, in which the dynamic
power is particularly sensitive to the toggle rates. For the GNN
model, we utilize the sub-SOG converted from the modules
as the input of the model. The features for each node include:
1) number of fan-in and fan-out; 2) one-hot encoding of the six
operator type; and 3) propagated toggle rate. In the tree-based
approach, feature engineering is performed for each module,
primarily based on the toggle rate information. The features
include: 1) the sum of the toggle rate; 2) average toggle rates;
3) the sum of fan-out number multiples toggle rate on each
node; and 4) the total number of nodes. For static power, which
is independent of the toggle rate and typically forms a minor
part of the total power, only SOG-related features are utilized.

Design-Level Power Calibration: We further add a final-
stage tree-based ML model to refine power predictions,
similar to the calibration in timing. This model calibrates the
total power estimation, derived from the sum of the power
predictions across all the modules, and integrates SOG graph
features that represent the design scale. This step enhances the
accuracy of our power model.

D. RTL-Stage Area Modeling

Area modeling is more straightforward than timing and
power modeling, as evidenced by our experimental obser-
vations. By leveraging the SOG representation, a simple
one-stage tree-based model achieves accurate area predictions.
The total gate area is categorized into sequential and com-
binational components. The prediction of the sequential area
is streamlined by calculating the product of the total register
count in the SOG and the area of a standard D-flip-flop cell,
as defined in the liberty file. For the combinational area, initial
calculations are performed for all the operators within the SOG
based on the liberty file. These preliminary values, along with
the SOG-derived features are then processed by a lightweight
tree-based model to estimate the combinational area.

E. Transferring Across Design Stage and Technology

MasterRTL’s original predictions are based on the postsyn-
thesis PPA labels for a specific technology. However, in real
VLSI design scenarios, both the layout stage with the physical
information and varying technologies significantly impact the
final PPA outcomes. Here, we further propose transfer methods
to evaluate the PPA metrics at the layout stage and across
different technology libraries based on the original predictions.

Regarding extending to layout PPA modeling, we observe
that the disparities between the netlist-stage and layout-stage
primarily arise from the offsets, while maintaining a high
correlation. Moreover, the physical-design EDA tools signif-
icantly optimize the timing slacks but at an increased power
consumption cost with negligible area changes. The results
will be further elaborated in Section III-B.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

206 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

Fig. 6. Two Data augmentation strategies in MasterRTL. The graph-based method utilizes the structural information of RTL designs to generate new RTL
graphs. The LLM-based method generates hierarchical RTL codes with various functionalities.

Based on the observations, we developed a transfer model
to predict the postplacement PPA metrics at the RTL stage, a
notably challenging task. Instead of directly targeting the post-
placement PPA, our model evaluates the variations between
the postsynthesis and postplacement metrics. It utilizes both
the MasterRTL’s original predictions and design scale-related
features (e.g., numbers of different cells) as the model input.

In terms of the technology transfer, our approach encom-
passes not only different technology nodes but also distinct
process corners within each technology. Similar to the layout-
stage extension, we evaluate the differences between the
target technology libraries or process corners, relative to the
source technology. The selected features include: 1) initial PPA
predictions for the source technology; 2) scale calculations
between the target and source libraries from the library data;
3) scaled PPA metrics; and 4) design scale-related features.

F. Data Augmentation by Generating New RTL Designs

To mitigate the shortage of high-quality RTL designs, we
propose data augmentation methods to enhance the model
training with the synthetic RTL data. Ideally, the augmented
RTL data should be as similar to the real RTL designs as
possible. We first propose three criteria to comprehensively
evaluate the quality of the generated designs.

1) Synthesizability: The generated design should be fully
synthesizable to ensure the acquisition of corresponding
design PPA labels.

2) Diversity: To ensure a well-rounded training set, the
generated designs need to encompass a broad spectrum
of design categories and scales.

3) Hierarchical Structure: Reflecting the standard RTL
design process, it is advisable that the synthetic designs
include decomposed submodules that are separately
designed and then instantiated in a top module, facili-
tating the PPA optimization.

Following the established criteria, we introduce two novel
strategies to generate new RTL data: 1) a graph-based method
and 2) an LLM-based approach.

Graph-Based Data Augmentation: Our first strategy lever-
ages the structural characteristics of the RTL designs. It
employs a graph generative method coupled by a rule-based

fine-tuning algorithm, as illustrated in the graph-based part of
Fig. 6.

Specifically, we first convert a small number of available
training RTL designs to the RTL representation5 in the graph
format. In the RTL graph, nodes represent registers and
operators, while edges depict their connection relationships.
Then, we adopt the graph generative model in [37] to generate
undirected graphs learning similar structure in our training
RTL designs. This model utilizes a GNN with attention
mechanisms to establish connections between our existing
graph structure and the newly generated graph. It sequentially
constructs clusters of nodes and their corresponding edges.
Given that the generated edges are undirected, we further
incorporate a classification model to predict the direction of
these edges. This is achieved by using the pairwise embed-
dings of the two nodes connected by an edge as input features
for a binary classifier. The combination of these two models
enables us to accurately generate graph structures effectively
reflecting the real-world RTL designs.

After that, we establish specific RTL graph rules, which
are essential for ensuring the accurate conversion of the graph
back into the RTL code, guiding the generated graph to
align with the proposed criteria. This rule-based fine tuning
algorithm modifies the graph generated from the ML model to
more closely resemble the real-world RTL designs using the
following predefined rules as follows.

1) Operator Proportions: We adjust the proportions among
different types of operators. According to our observa-
tion, logic operators like AND, NOT, MUX dominate,
while complex arithmetic operators, such as adders and
multiplexers are less frequent.

2) Operator Width Calculation: We ensure the operator
widths are legal and similar to the real designs.

3) Redundant Cycle Elimination: We remove any self-loops
in the combinational logic to prevent cycles.

4) Fan-In/Fan-Out Reduction: We split nodes with high
degrees to reduce their in-degree and out-degree. Using

5For the RTL generation task, we employ the AST-alike graph to train the
graph generative model. As previously discussed, the SOG closely resembles
the gate-level netlist, whereas the AST-alike representation is more similar to
the original RTL.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

FANG et al.: TRANSFERABLE PRESYNTHESIS PPA ESTIMATION FOR RTL DESIGNS 207

these rules, we traverse the generated graph in topologi-
cal order and assign attributes to each node accordingly.
Under this process, we can generate unlimited RTL
codes by relying solely on a little training data. Finally,
the fine tuned graphs are converted back to the RTL
code to serve as augmented designs for model training.

LLM-Based Data Augmentation: Although the graph-based
solution can generate varying scales of synthesizable Verilog
code, its capacity to control the functionality and hierarchy of
the target RTL is still limited. Recently, the LLMs have gained
significant traction in the field of the RTL code generation.
However, the current RTL generation tasks are constrained by
specific design descriptions and tend to be suited only for the
small-scale designs. To address these limitations, we introduce
an innovative approach: instead of directly generating new
RTL code, we propose a technique named auto-decomposition.
This method is designed to enhance both the hierarchy and
scalability of the generated code. The workflow of our LLM-
based method is illustrated in Fig. 6.

In our LLM-based approach, the process begins with the
user specifying design categories. Based on these categories,
the LLM generates a set of specific design requirements.
Then, the LLM is prompted to decompose these requirements
into multiple submodules, each subsequently implemented in
the Verilog code. This decomposition is key to creating a
hierarchical structure in the RTL design, allowing for more
complex and scalable designs. The next phase involves the
LLM creating a top module that effectively instantiates and
interconnects all the submodules. We employ the logic synthe-
sis tool to check the synthesizability of the generated designs.
If any syntax errors are detected during synthesis, the specific
code lines and error report are fed back into the LLM. The
LLM then refines the generated design accordingly, iterating
until the design meets all the synthesizable requirements.

Currently, these two RTL data generation methods are
helpful in situations when actual RTL data is limited. The
experimental evaluation of the augmented data benchmarks is
detailed in Section III-E. With the ongoing trend of scaling
up ML models, the lack of sufficient data will become a
significant obstacle in RTL modeling. Therefore, we consider
this RTL generation approach to be exceptionally promising,
as it is capable of generating a nearly limitless number of new
RTL designs.

III. EXPERIMENTAL RESULT

A. Experimental Setup and MasterRTL Implementation

In this work, a comprehensive dataset is created by col-
lecting 90 different open-source RTL designs from various
benchmark sources. This extensive dataset facilitates a thor-
ough evaluation of the proposed methodology.

Table I outlines the diverse sources of the RTL designs used
in the dataset. These designs are coded in various mainstream
HDLs, including Verilog, VHDL, Chisel, and SpinalHDL. The
dataset covers a broad spectrum of functionality, including
CPU cores, vector arithmetic, ML accelerators, cryptographic
units, and other designs for logic synthesis studies.

TABLE I
RTL DESIGNS FOR DATASET PREPARATION

For each design, the RTL description is synthesized with
Synopsys Design Compiler 2021, and the physical design is
conducted with Cadence Innovus 2022. The NanGate 45 nm
technology library [44] with typical process corner is utilized
for the original result, while the other two process corners (i.e.,
maximum and minimum) and four TSMC technology libraries
(i.e., 22, 28, 40, and 65 nm) are used for transfer modeling.
The PPA values of the gate-level netlist are evaluated using
Synopsys Prime Time 2021, and are recorded as the ground
truth label. The generation of SOG first begins with the generic
synthesis process from the existing logic synthesis tools (i.e.,
Yosys [30]). It involves reading the original RTL designs
and performing technology-independent transformations that
convert the word-level RTL into a bit-level RTL representation.
Subsequently, the bit-level RTL is parsed using a Verilog
parser [45] and transformed into a graph data structure, follow-
ing a similar approach as in [21] and [22]. All the experiments
are conducted on a server equipped with a 2.9 GHz Intel Xeon
Platinum 8375C CPU and 256 GB RAM.

We implemented and evaluated the proposed ML models
using the constructed dataset. A ten-fold cross-validation
method was adopted to ensure accuracy in the model assess-
ments. Hyperparameter tuning for each ML model was
conducted using a separate validation set. The final configu-
rations and parameters of the models, after exploration and
tuning are detailed in Table II.

We use four metrics to evaluate the prediction accuracy
between the predicted value ŷ and ground truth y of n = 90
designs. They are: correlation coefficient (R), mean absolute
percentage error (MAPE), mean absolute error (MAE), and
root relative square error (RRSE) as defined below

MAPE = 1

n

n∑

i=1

∣∣yi − ŷi
∣∣

yi
× 100%6 (4)

MAE = 1

n

n∑

i=1

∣∣yi − ŷi
∣∣ (5)

RRSE =
√√√√

∑n
i=1

(
yi − ŷi

)2

∑n
i=1(yi − ȳ)2

. (6)

The ȳ represents the average of the measured values. These
metrics bring a comprehensive and fair evaluation of the ML
models from different aspects, where the higher correlation
and lower error indicate better accuracy. Specifically, R mea-
sures a linear correlation between the predicted values and the

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

208 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

TABLE II
DETAILED ML MODEL IMPLEMENTATION, INCLUDING ALL MODELING TARGETS WITH EACH INTERNAL LEVEL OR METHOD

Fig. 7. Evaluation of intermediate-stage ML models in MasterRTL. The
lightweight tree-based models outperform the deep learning methods (i.e.,
Transformer and GCN).

ground truth values, MAPE gives an intuitive percentage of
disparity, while MAE directly indicates the absolute difference.
RRSE can represent the accuracy ignoring the influence of
different RTL design scales. Here, the MAE is employed only
when the label values are exceedingly small or zero, such as
in the transfer model evaluations, and MAPE and RRSE are
utilized in other contexts.

In presenting our experimental results, we focus on com-
paring our approach with the originally introduced methods
in [21] and [22], which serve as our primary baselines.
Additionally, we have implemented a variety of baseline
variations to conduct thorough the ablation studies. We have
endeavored to optimize performance across all the configura-
tions and variations via a consistent model-tuning process.

B. PPA Estimation Accuracy Evaluation and Comparison

Since, our PPA modeling methods contain multiple levels
and include decomposed components for power and area, we
first evaluate the prediction accuracy at the internal levels and
individual components. Subsequently, we will delve into the
accuracy of the final PPA prediction of MasterRTL.

Fig. 7 compares the explored intermediate-stage ML models
in MasterRTL. At the path-level for timing models, the
random forest model, which utilizes manually extracted path
features, outperforms the Transformer model. A similar trend
is observed in module-level power models, where the XGBoost
regressor shows greater accuracy compared to the GCN model.
Consequently, the light-weight tree-based models are preferred
in the intermediate stages of MasterRTL, instead of the deep
learning-based models.

Fig. 8. Accuracy evaluation for individual components of power and area
modeling.

In addition, the breakdown components of total power and
total area are illustrated in Fig. 8. Total power comprises static
and dynamic power. Our predictions show that the static power
being independent of the toggle rates and a minor contributor
to total power, aligns closely with the ground truth. In
contrast, dynamic power, which is more challenging to assess
results in a less accurate total power prediction. Regarding
area prediction, the total area is the sum of the sequential
and combinational areas. Sequential area, corresponding to
registers in the SOG, can be accurately calculated based on
the number of the registers due to their one-to-one relationship
with the target netlist. The combinational area, represented
and modeled through our SOG approach, also correlates well
leading to an accurate estimation of the total area.

Table III and Fig. 9 compare MasterRTL with the
previous studies [21], [22], emphasizing the difference in their
approaches. As discussed, the previous works used AST-like
representations, while MasterRTL utilizes SOG. The study
by [21] focused on the TNS and power predictions, and [22]
centered on WNS, power, and area. The table specifically
highlights actual proposed methods in bold and colored cells,
with other entries for the ablation studies.

We have multiple interesting observations in Table III. It
reveals that the MasterRTL outperforms prior works in all the
estimations, showing higher correlation coefficients (R) and
lower MAPE and RRSE errors in WNS, TNS, power, and area
predictions. The result also indicates a general performance
improvement across the methods using SOG compared to
the AST-like representations, particularly evident compared
with [21]. These findings validate the effectiveness of the
SOG representation as an ML-friendly RTL representation,
suggesting its broader adoption in future studies.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

FANG et al.: TRANSFERABLE PRESYNTHESIS PPA ESTIMATION FOR RTL DESIGNS 209

TABLE III
COMPARISON OF EVALUATION RESULTS FOR WNS, TNS, TOTAL POWER, AND TOTAL AREA. ROWS HIGHLIGHTED IN COLOR INDICATE THE INITIALLY

PROPOSED METHODS. THE PRIOR WORK ICCAD’22 [21] FOCUSES SOLELY ON EVALUATING TNS AND POWER, AND ISCA’22 [22] PROPOSES TO

ASSESS WNS, POWER, AND AREA

Fig. 9. Comparison between prediction and ground truth for each PPA metric across all designs. MasterRTL markedly outperforms the SOTA
solutions [21], [22] in all PPA evaluations.

Fig. 10. Ablation study evaluating the contribution of various decomposed
factors to the PPA evaluation accuracy.

Furthermore, the comparison in Table III indicates that the
WNS and power estimations are generally more challenging
and less accurate compared to the TNS and area, which
correlate more with each design’s scale. The SOG’s superiority
over AST is more obvious in these two challenging tasks.

C. PPA Estimation Accuracy Ablation Study

To evaluate the performance of MasterRTL, a decomposed
analysis through the ablation studies is conducted by removing
key policies. These crucial policies include: 1) use of SOG
over AST-alike representation; 2) customized key features
(e.g., predicted path slack from the path-level model for
timing, module-level partition, and toggle rate propagation for
power); and 3) design-level calibration.

The result of the ablation study in Fig. 10 highlights the
importance of specific policies in MasterRTL. For the WNS
prediction, removing the path-level model, which offers critical
path information, results in the most significant accuracy
drop. In the TNS prediction, the largest accuracy decline is
observed when the graph features are excluded, underlining the
significance of the SOG features and design scale information.
The accuracy in predicting total power is notably dependent

on the toggle rate information. When all the key policies
are removed, MasterRTL’s accuracy aligns with the baseline
method [21], demonstrating the critical role these policies play
in enhancing performance.

D. MasterRTL Transfer Modeling Results

Extension to Layout Stage: In Fig. 11, we first depict the
correlation in PPA between the postsynthesis labels (green)
from the logic synthesis tool and the postplacement labels
(the X-axis) from the physical implementation tool. Due to
the lack of physical-aware optimization, the timing and power
metrics after synthesis show significant MAPE gaps compared
to those after placement. Our MasterRTL postsynthesis PPA
predictions (blue) exhibit a similar correlation and MAPE to
the postsynthesis labels (green). After extending MasterRTL
to the layout stage, the postplacement PPA predictions (red)
demonstrate that our framework can achieve satisfactory eval-
uations for the layout stage early in the RTL stage, even
outperforming the postsynthesis labels.

Notably, there is a perfect correlation between the post-
synthesis and postplacement area labels (R = 1.0 and
MAPE = 19%). Though the predictions made by MasterRTL
place from the RTL stage shows lesser correlation, it does
not require the time-consuming logic synthesis and placement
processes, meanwhile still delivering a satisfactory area esti-
mation (R = 0.96 and MAPE = 24%).

Technology Transfer: We transfer the postsynthesis design
PPA from the source technology, specifically the open-source
NanGate 45 nm typical process corner to various alternatives,
encompassing other process corners in NanGate and the com-
mercial TSMC typical corner across four different technology
nodes. The accuracy of this transfer is detailed in Table IV.
We further visualize the four PPA metrics across technologies
in Fig. 12. Our key observations are summarized below.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

210 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

Fig. 11. Extension of MasterRTL for postplacement PPA evaluation. MasterRTL can also provide satisfactory postplacement PPA predictions at the RTL
stage.

TABLE IV
EVALUATION OF THE TRANSFER MODEL ACCURACY. MAE IS UTILIZED AS THE EVALUATION METRIC. FOR EACH PPA PARAMETER, THE FIRST

COLUMN (I.E., “ORI”) INDICATES THE ERROR BETWEEN THE ORIGINAL SOURCE AND TARGET LIBRARIES. THE SECOND COLUMN PRESENTS THE

MAE BETWEEN OUR TRANSFERRED PPA PREDICTIONS AND THE TARGET VALUES. “IMP” SIGNIFIES THE IMPROVEMENT ACHIEVED BY OUR

METHOD OVER THE SOURCE TECHNOLOGY

1) For the technology node transfer, our transfer model
significantly reduces MAE of all the four PPA metrics,
highlighting its effectiveness. Notably, the most success-
ful transfer occurs for TSMC 40 nm (i.e., lowest MAE),
indicating that similarities between the technologies lead
to more successful outcomes.

2) Our transfer model also accurately predicts across dif-
ferent process corners, maintaining precision in all the
PPA metrics for corner-to-corner transfers.

3) Regarding the labels of various technology nodes, while
overall design metrics, including total power, total area,
and TNS exhibit strong correlations across different
technologies, the correlation for WNS is notably weaker.
This variance primarily arises from the differing timing
characteristics of standard cells in various libraries,
which significantly impact the critical path optimization
process during the logic synthesis.

4) Among different commercial technology nodes, those
with similar features, like TSMC 22 nm and TSMC 28
nm show a good correlation.

5) As for the corner labels, all the four metrics exhibit
perfect correlations (R = 1). However, timing metrics
exhibit smaller errors at MIN corners, while MAX
corners demonstrate reduced errors in power and area
metrics.

E. Augmented RTL Design Evaluation

Statistical Evaluation: We first apply the evaluation criteria
illustrated in Section II-F to assess the RTL designs generated
by our two augmentation methods as detailed in Table V.

Due to the rule-based fine tuning algorithm in the graph-
based method and the iteration syntax correction in the
LLM-based method, all the newly generated RTL designs are
fully synthesizable.

TABLE V
QUALITY EVALUATION OF THE GENERATED RTL DESIGNS

To evaluate the diversity of the augmented data, we measure
the scale of the design using two metrics: 1) design size and
2) lines of code. Additionally, we examine the types of func-
tionalities present in these designs. Our findings reveal that
the graph-based method produces designs with a significantly
broader range of scales compared to those generated by the
LLM-based method. However, since the graph-based approach
lacks control over the functionality of the designs, the LLM-
based method demonstrates superior capability in generating
a wider variety of functionalities.

Finally, in terms of hierarchical structure, the RTL designs
generated via the graph-based method result in flattened
structures. In contrast, the LLM-based method creates designs
with the varied hierarchical levels. Since, each method on
its own does not produce a perfect augmented dataset, we
combine them as complementary strategies. This integration
enables us to generate a more extensive and varied dataset,
resulting in a total of 45 new designs.

t-SNE Visualization: To assess the similarity between the
generated designs and real designs, we employed the t-SNE
plot for visualization, as shown in Fig. 13. Specifically, the
BERT language model is employed to convert both the real
and generated Verilog designs into embedding vectors. These

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

FANG et al.: TRANSFERABLE PRESYNTHESIS PPA ESTIMATION FOR RTL DESIGNS 211

Fig. 12. Visialization of all the target technology nodes and process corners compared with the source library.

Fig. 13. t-SNE plot visualization for the similarity and diversity between the
generated and real RTL designs.

embeddings are then visualized using a t-SNE plot for a
thorough comparison. The plot indicates that the embedding
distribution of the generated designs is similar to that of the
real designs.

Experimental Evaluation: To validate the effectiveness of
the generated designs, we employ them in two distinct
MasterRTL modeling tasks, each with a different level of
granularity. The first task involves design-level process corner
transfer modeling of TNS and the second focuses on the path-
level timing slack modeling. Based on the two tasks, we design
two experiments to comprehensively evaluate the utility of
the designs in diverse modeling scenarios within MasterRTL.
The first experiment reduces the real design training data
and includes all the generated designs for augmentation. The
second experiment maintains the number of total training data
as a constant and varies the proportions of real and generated
designs. The detailed experiments are demonstrated as follows.

1) In our first experiment, we decrease the amount of
real design training data from its full volume to nearly
none, augmenting with all 45 generated designs for
augmentation, 30 from the graph-based method, and
15 from the LLM-based method. Fig. 14 demonstrates
the impact of varying the amount of training data,
including both the design-level and timing path-level
data from real designs on model accuracy. As indicated
by the dashed lines, as the number of the training
data from real designs diminishes, the accuracy of the
model decreases sharply. Conversely, incorporating new
RTL designs generated via our augmentation methods
enhances the model’s accuracy as shown by the solid
lines. Specifically, augmentations from each source show
accuracy improvements while reducing the need for the
training data from real designs across all the tasks.

TABLE VI
ACCURACY OF MASTERRTL MODELING AS THE PROPORTION OF REAL

DESIGNS VARIES WITH THE TOTAL NUMBER OF TRAINING DATA

MAINTAINED AT A CONSTANT 45

TABLE VII
COMPARISON BETWEEN OPEN-SOURCE LOGIC SYNTHESIS

TOOLS AND MASTERRTL

The graph-based method is more effective than the
LLM-based method, as it includes a wider range of
design scales and closely resembles real design bench-
marks. Additionally, combining both the augmentation
sources further enhances the accuracy improvements.
The improvement becomes more obvious as the amount
of real design data further decreases.

2) Furthermore, we conduct the second experiment by
keeping the total training data constant at 45. This
experiment aims to evaluate the impact of varying the
proportions of generated designs from 0% to 100%.
The results are shown in Table VI, while reducing the
proportion of real designs leads to a decline in accuracy
improvement, the absence of any augmented RTL designs
results in a much more significant drop in accuracy.

IV. DISCUSSION

A. Comparison With Open-Source Synthesis Tools

In addition to the ML-based PPA prediction methods for
the RTL designs, open-source synthesis solutions offer fast
execution and the synthesized netlist can also provide the
PPA estimation. Here, we compare our MasterRTL with these
open-source synthesis tools. Specifically, we employed Yosys
and ABC to synthesize the RTL designs and used prime time

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

212 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

(a) (b) (c)

Fig. 14. Impact of reducing real design training data and introducing augmented RTL designs on model accuracy. Each source of augmentation improves
accuracy across tasks with the graph-based approach outperforming the LLM-based method. Combining augmentations from both sources further boosts the
accuracy. (a) TNS transfer (TYP-MIN). (b) TNS transfer (TYP-MAX). (c) Path slack prediction.

for a fair evaluation of the PPA values of the netlist, with
results shown in Table VII.

The results indicate that the MasterRTL significantly out-
performs open-source synthesis tools in terms of both speed
and prediction accuracy for all the PPA metrics. While
open-source synthesis tools are fast, MasterRTL is still 60%
faster as it only performs generic synthesis, bypassing the
time-consuming logic optimization and technology mapping
processes. Moreover, due to significant PPA optimization by
commercial tools, open-source tools struggle to correlate well
with them, particularly in timing and power metrics. Area
correlation is the exception, as it is determined solely by the
number and types of the gate cells. However, MasterRTL still
significantly outperforms in terms of area prediction accuracy.

Besides the speed and accuracy benefits, our ML-based
solution also demonstrates the capability to transfer the post-
synthesis results to the layout stage and across different
technology libraries, a feature not available in the open-source
synthesis tools.

V. CONCLUSION

In this article, we present MasterRTL, a presynthesis PPA
estimation framework for RTL designs, integrated with inno-
vative data augmentation techniques. Our method incorporates
a general RTL representation named SOG and customizes
the multistage ML models for WNS, TNS, power, and area
separately. MasterRTL not only provides precise postsynthesis
PPA evaluations but also extends to layout-stage estimations
and adapts to various technology libraries. Additionally, we
demonstrate two data augmentation methods to generate
RTL designs resembling real-world data, thereby effectively
addressing the data shortage issues.

REFERENCES

[1] J. Bachrach et al., “Chisel: Constructing hardware in a scala embedded
language,” in Proc. Design Autom. Conf. (DAC), 2012, pp. 1212–1221.

[2] M. Rapp et al., “MLCAD: A survey of research in machine learning
for CAD keynote paper,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 41, no. 10, pp. 3162–3181, Oct. 2022.

[3] Z. Xie et al., “FIST: A feature-importance sampling and tree-based
method for automatic design flow parameter tuning,” in Proc. Asia South
Pac. Design Autom. Conf. (ASP-DAC), 2020, pp. 19–25.

[4] R. Liang et al., “FlowTuner: A multi-stage EDA flow tuner exploiting
parameter knowledge transfer,” in Proc. IEEE/ACM Int. Conf. Comput.
Aided Design (ICCAD), 2021, pp. 1–9.

[5] C. Yu and W. Zhou, “Decision making in synthesis cross technologies
using LSTMs and transfer learning,” in Proc. ACM/IEEE Workshop
Mach. Learn. CAD, 2020, pp. 55–60.

[6] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows without
human knowledge,” in Proc. 55th DAC, 2018, pp. 1–6.

[7] Z. Xie et al., “APOLLO: An automated power modeling framework
for runtime power introspection in high-volume commercial micropro-
cessors,” in Proc. 54th Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), 2021, pp. 1–14.

[8] Y. Zhou, H. Ren, Y. Zhang, B. Keller, B. Khailany, and Z. Zhang,
“PRIMAL: Power inference using machine learning,” in Proc. 56th
Annu. Design Autom. Conf. (DAC), 2019, pp. 1–6.

[9] D. Kim, J. Zhao, J. Bachrach, and K. Asanović, “Simmani: Runtime
power modeling for arbitrary RTL with automatic signal selection,” in
Proc. Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2019,
pp. 1050–1062.

[10] Z. Xie et al., “DEEP: Developing extremely efficient runtime on-chip
power meters,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), 2022, pp. 1–9.

[11] J. Yang, L. Ma, K. Zhao, Y. Cai, and T.-F. Ngai, “Early stage real-time
SoC power estimation using RTL instrumentation,” in Proc. Asia South
Pac. Design Autom. Conf. (ASPDAC), 2015, pp. 779–784.

[12] W. R. Davis, P. Franzon, L. Francisco, B. Huggins, and R. Jain, “Fast
and accurate PPA modeling with transfer learning,” in Proc. IEEE/ACM
Int. Conf. Comput. Aided Design (ICCAD), 2021, pp. 1–8.

[13] J. Zhai, C. Bai, B. Zhu, Y. Cai, Q. Zhou, and B. Yu, “McPAT-Calib:
A microarchitecture power modeling framework for modern CPUs,” in
Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 2021,
pp. 1–9.

[14] N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, “High-level synthesis
performance prediction using GNNs: Benchmarking, modeling, and
advancing,” in Proc. ACM/IEEE Design Autom. Conf. (DAC), 2022,
pp. 49–54.

[15] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation
delay prediction for FPGA HLS using graph neural networks,” in Proc.
Int. Conf. Comput.-Aided Design (ICCAD), 2020, pp. 1–9.

[16] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-
RTL, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” ACM SIGARCH Comput.
Archit. News, vol. 42, no. 3, pp. 97–108, 2014.

[17] Q. Zhang et al., “PANDA: Architecture-level power evaluation by
unifying analytical and machine learning solutions,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), 2023, pp. 1–9.

[18] D. S. Lopera, L. Servadei, V. P. Kasi, S. Prebeck, and W. Ecker, “RTL
delay prediction using neural networks,” in Proc. IEEE Nordic Circuits
Syst. Conf. (NorCAS), 2021, pp. 1–7.

[19] D. S. Lopera and W. Ecker, “Applying GNNs to timing estima-
tion at RTL: (Invited paper),” in Proc. 41st IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), 2022, pp. 1–8.

[20] W. L. Neto, M. T. Moreira, L. Amaru, C. Yu, and P.-E. Gaillardon, “Read
your circuit: Leveraging word embedding to guide logic optimization,” in
Proc. 26th Asia South Pac. Design Autom. Conf., 2021, pp. 530–535.

[21] P. Sengupta, A. Tyagi, Y. Chen, and J. Hu, “How good is your Verilog
RTL code? A quick answer from machine learning,” in Proc. 41st
IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), 2022, pp. 1–9.

[22] C. Xu, C. Kjellqvist, and L. W. Wills, “SNS‘s not a synthesizer: A
deep-learning-based synthesis predictor,” in Proc. 49th Annu. Int. Symp.
Comput. Archit. (ISCA), 2022, pp. 847–859.

[23] K. Chang et al., “ChipGPT: How far are we from natural language
hardware design,” 2023, arXiv:2305.14019.

[24] S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri,
“AutoChip: Automating HDL generation using LLM feedback,” 2024,
arXiv:2311.04887.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

FANG et al.: TRANSFERABLE PRESYNTHESIS PPA ESTIMATION FOR RTL DESIGNS 213

[25] J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-chat:
Challenges and opportunities in conversational hardware design,” in
Proc. ACM/IEEE 5th Workshop Mach. Learn. CAD (MLCAD), 2023,
pp. 1–6. [Online]. Available: http://dx.doi.org/10.1109/MLCAD58807.
2023.10299874

[26] M. Liu et al., “ChipNeMo: Domain-adapted LLMs for chip
design,” 2024, arXiv:2311.00176.

[27] S. Liu, W. Fang, Y. Lu, Q. Zhang, H. Zhang, and Z. Xie, “RTLCoder:
Outperforming GPT-3.5 in design RTL generation with our open-source
dataset and lightweight solution,” 2024, arXiv:2312.08617.

[28] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “RTLLM: An open-source
benchmark for design RTL generation with large language model,” 2023,
arXiv:2308.05345.

[29] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Invited Paper:
VerilogEval: Evaluating large language models for Verilog code gener-
ation,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD),
2023, pp. 1–8.

[30] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free Verilog synthesis
suite,” in Proc. 21st Austrian Workshop Microelectron. (Austrochip),
2013, p. 97.

[31] W. Fang et al., “MasterRTL: A pre-synthesis PPA estimation framework
for any RTL design,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), 2023, pp. 1–9.

[32] Z. Xie et al., “Pre-placement net length and timing estimation by
Customized graph neural network,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 41, no. 11, pp. 4667–4680, Nov. 2022.

[33] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. 56th
ACM/IEEE Design Autom. Conf. (DAC), 2019, pp. 1–6.

[34] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing
engine inspired graph neural network model for pre-routing slack
prediction,” in Proc. 59th ACM/IEEE Design Autom. Conf. (DAC), 2022,
pp. 1207–1212.

[35] L. Breiman, “Random forests,” Mach. Learn., vol. 45, pp. 5–32,
Oct. 2001.

[36] N. H. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective. Noida, India, Pearson Educ., 2015.

[37] R. Liao et al., “Efficient graph generation with graph recurrent attention
networks,” in Proc. 33rd Adv. Neural Inf. Process. Syst. (NeurIPS), 2019,
pp. 1–11.

[38] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), 1989, pp. 1929–1934.

[39] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” Design Test Comput., vol. 17, no. 3, pp. 44–53,
Jul.–Sep. 2000.

[40] C. Albrecht, “IWLS 2005 benchmarks,” in Proc. Int. Workshop Logic
Synthesis (IWLS), 2005, pp. 1–18. [Online]. Available: http://www.iwls.
org

[41] “VexRiscv: A FPGA friendly 32 bit RISC-V CPU implemen-
tation,” VexRiscv. 2022. [Online]. Available: https://github.com/
SpinalHDL/VexRiscv

[42] (Nvidia Softw. Co., Santa Clara, CA, USA). NVIDIA Deep Learning
Accelerator. (2018). [Online]. Available: http://nvdla.org/primer.html

[43] A. Amid et al., “Chipyard: Integrated design, simulation, and imple-
mentation framework for custom SoCs,” IEEE Micro, vol. 40, no. 4,
pp. 10–21, Jul./Aug. 2020.

[44] “NanGate 45nm open cell library.” Accessed: Apr. 7, 2011. [Online].
Available: https://si2.org/open-cell-library/

[45] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design
processing toolkit for Verilog HDL,” in Proc. 11th Int. Symp., Appl.
Reconfig. Comput., 2015, pp. 451–460. [Online]. Available: http://dx.
doi.org/10.1007/978-3-319-16214-0_42

Wenji Fang (Graduate Student Member, IEEE)
received the B.Eng. degree from the Nanjing
University of Aeronautics and Astronautics,
Nanjing, China, in 2021, and the M.Phil. degree in
microelectronics from the Hong Kong University of
Science and Technology (Guangzhou), Guangzhou,
China, in 2024, where he is currently pursuing the
Ph.D. degree with the Department of Electronic and
Computer Engineering.

His research interests include timing analysis,
power modeling, and VLSI design verification.

Yao Lu received the B.E. degree from the School
of Electronic Science and Engineering, Southeast
University, Nanjing, China, in 2020, and the mas-
ter’s degree from the School of Microelectronics,
Fudan University, Shanghai, China, in 2023. She
is currently pursuing the Ph.D. degree with
the Department of Electronic and Computer
Engineering, Hong Kong University of Science and
Technology, Hong Kong.

Her current research interests focus on machine
learning applications in EDA.

Shang Liu received the B.E. degree in automation
science and electrical engineering from Beihang
University, Beijing, China, in 2023. He is currently
pursuing the Ph.D. degree with the Department of
Electronic and Computer Engineering, Hong Kong
University of Science and Technology, Hong Kong.

His research interests include agile VLSI design
methodologies and artificial intelligence.

Qijun Zhang received the B.Eng. degree from
Tongji University, Shanghai, China, in 2022. He
is currently pursuing the Ph.D. degree with
the Department of Electronic and Computer
Engineering, Hong Kong University of Science and
Technology, Hong Kong.

His research interests include computer architec-
ture and electronics design automation.

Ceyu Xu received the B.S. degree in computer
engineering from the University of California at
Irvine, Irvine, CA, USA, in 2020. He is currently
pursuing the Ph.D. degree with the Department of
Computer Science, Duke University, Durham, NC,
USA.

His research interests include AI-enabled hard-
ware design methodologies and architecture for
accelerating generative models.

Lisa Wu Wills received the Ph.D. degree in com-
puter science from Columbia University, New York,
NY, USA.

She is an Assistant Professor with the Department
of Computer Science and Electrical and Computer
Engineering, Duke University, Durham, NC, USA.
Her research interests include computer architecture,
accelerators, energy-efficient computing on high-
performance computing, and emerging applications
related to big data, machine learning, and computa-
tional biology.
Hongce Zhang (Member, IEEE) received the B.S.
degree in microelectronics from Shanghai Jiao Tong
University, Shanghai, China, in 2015, and the
Ph.D. degree from the Department of Electrical
and Computer Engineering, Princeton University,
Princeton, NJ, USA, in 2021.

He is currently an Assistant Professor with
Microelectronics Thrust, Function Hub of Hong
Kong University of Science and Technology
(Guangzhou), Guangzhou, China, and is also affil-
iated with the Department of Electronic and

Computer Engineering, Hong Kong University of Science and Technology,
Hong Kong. His research interests include formal verification and hardware
model checking.

Zhiyao Xie (Member, IEEE) received the B.Eng.
degree from the City University of Hong Kong,
Hong Kong, in 2017, and the Ph.D. degree from
Duke University, Durham, NC, USA, in 2022.

He is an Assistant Professor with the Department
of Electronic and Computer Engineering, Hong
Kong University of Science and Technology,
Hong Kong. His research interests include machine
learning algorithms for EDA and VLSI design.

Dr. Xie has received multiple prestigious awards,
including the IEEE/ACM MICRO 2021 Best Paper

Award, the ACM SIGDA SRF Best Research Poster Award in 2022, the ASP-
DAC 2023 Best Paper Award, the ACM Outstanding Dissertation Award in
EDA 2023, the EDAA Outstanding Dissertation Award in 2023, and the 2023
Early Career Award from Hong Kong Research Grants Council.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:30:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

