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Abstract—Advanced power management techniques, such as
voltage drop mitigation and fast power management, can greatly
enhance energy efficiency in contemporary hardware design.
Nevertheless, the implementation of these innovative techniques
necessitates accurate and fine-grained power modeling, as well
as timely responses for effective coordination with the power
management unit. Additionally, existing performance-counter-
based and RTL-based on-chip power meters have difficulty
in providing sufficient response time for fast power and
voltage management scenarios. In this article, we propose
PROPHET, a data-pattern-based power modeling method for
multiply-accumulate-based (MACC) deep neural network (DNN)
accelerators. Our proposed power model extracts the predefined
data patterns during memory access and then a pretrained
power model can predict the dynamic power of the DNN
accelerators. Thus, PROPHET can predict dynamic power and
provide sufficient responding time for power management units.
In the experiments, we evaluate our predictive power model in
four DNN accelerators with different dataflows and data types.
In power model training and verification, our proposed data-
patterns-based power model can realize the 2-cycle temporal
resolution with R2 > 0.9, normalized mean absolute error < 7%,
and the area and power overhead lower than 4.5%.

Index Terms—Data patterns, deep neural network (DNN)
accelerator, on-chip power meter (OPM), power modeling, power
prediction.

I. INTRODUCTION

DEEP neural network (DNN) accelerator is a specialized
architecture designed for DNN algorithms. With the

tremendous success of machine learning and neural networks
in various domains, such as computer vision, numerical statis-
tics, and design automation, DNN accelerators have gained
significant attention in recent years due to their high-energy
efficiency and throughput. As DNN algorithms continue to
evolve, the performance demand for DNN accelerators are

Manuscript received 27 November 2023; revised 9 April 2024; accepted
31 May 2024. Date of publication 11 June 2024; date of current version
22 November 2024. This work was supported in part by the Hong Kong
RGC GRF under Grant 16213521, and in part by the Huawei Hong Kong
Research Center. This article was recommended by Associate Editor X. Lin.
(Corresponding author: Wei Zhang.)

Jian Peng, Tingyuan Liang, Jingbo Jiang, Yipu Zhang, Zhiyao Xie, and
Wei Zhang are with the Department of Electronic and Computer Engineering,
Hong Kong University of Science and Technology, Hong Kong (e-mail:
jpengai@connect.ust.hk; tliang@connect.ust.hk; jjiangan@connect.ust.hk;
yzhangqg@connect.ust.hk; eezhiyao@ust.hk; wei.zhang@ust.hk).

Zhe Lin is with the School of Integrated Circuit, Sun Yat-sen University,
Guangzhou 510275, China (e-mail: linzh235@mail.sysu.edu.cn).

Digital Object Identifier 10.1109/TCAD.2024.3412978

increasing. Therefore, there is a need to integrate more
processing elements and complex architectures into DNN
accelerators.

For example, Diannao [1], one of the earliest DNN accelera-
tors proposed in 2014, had limited processing capabilities with
64 integer multipliers and adders and did not support floating-
point data types. In 2015, Pudiannao [2] was introduced, which
had 276 multipliers and 784 adders, supporting both integer
and floating-point data types for machine learning acceleration.
Similarly, Google developed its TPU series, with the first gen-
eration TPUv1 launched in 2017 featuring 65 536 8-bit integer
multipliers and adders [3]. Subsequent generations, TPUv2
and TPUv3, became more complex, incorporating multiple
cores and supporting multiple data types for DNN inference
and training tasks [4]. Additionally, Huawei’s Davinci [5],
introduced in 2019, offers higher throughput and complexity
compared to TPUv3.

However, as the complexity and parallelism of DNN
accelerators increase, power consumption becomes a critical
concern in their design. Power management for DNN accel-
erators faces two challenges. The first challenge is allocating
power consumption among different cores within a limited
power budget. The second challenge is maintaining power
intensity while ensuring high-energy efficiency. The large
parallelism in DNN accelerators leads to significant power
fluctuations and voltage drops during operation. These voltage
drops will degrade energy efficiency and system reliability.
For instance, NVDLA [6], an open-source DNN accelerator
developed by NVIDIA, can exhibit peak power levels that
are more than five times higher than its average power
consumption. Consequently, it becomes imperative to allocate
an adequate voltage margin to mitigate voltage drops and their
adverse impact on energy efficiency.

In power management, on-chip power meters (OPMs) play a
crucial role in providing precise and timely power traces. The
specific requirements for OPMs may vary depending on the
application. To address the first challenge, dedicated dataflow
scheduling and dynamic voltage and frequency scaling (DVFS)
techniques can be employed. Previous researches [7], [8], [9],
[10], [11], [12], [13] have demonstrated substantial energy
savings achieved through the implementation of energy-
oriented scheduling and fine-grained DVFS techniques in
DNN accelerators. These techniques, typically managed by
system firmware and/or operating systems (OSs), often neces-
sitate coarse-grained temporal resolution in power tracing.
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Addressing the second challenge involves mitigating the
voltage noise effects caused by parasitic parameters in the
power delivery network (PDN). The voltage noise effects can
span from 10 to 200 clock cycles [14]. For instance, the par-
asitic inductor in the package can induce voltage noise within
the dynamic range of 1–10 MHz [15]. Moreover, the LdI/dt
voltage noise effects caused by on-chip parasitic inductors can
occur within 10 clock cycles in modern computing architec-
tures [16]. To tackle these issues and enhance reliability and
energy efficiency, advanced power management techniques
have been proposed in recent years. Previous studies conducted
on CPU and GPU platforms [14], [17], [18], [19] have shown
that implementing appropriate voltage drop techniques can
reduce the required voltage margin by up to 20%. However,
these advanced techniques impose stringent requirements on
OPMs. They must be capable of providing power traces with
fine-grained temporal resolution and sufficient response time
for the power management unit.

Researchers have made efforts to develop fine-grained and
lightweight OPMs. Some automatic frameworks have been
proposed to construct RTL-based OPMs with low overhead
and fine-grained temporal resolution. These frameworks typ-
ically select representative signals as proxies and monitor
their switch activities to estimate power consumption. For
example, PowerProbe [20] achieves an average error lower
than 10% and a temporal resolution at the level of tens of
cycles within area overhead of 7%. Simmani [21] achieves
per-cycle temporal resolution but is computationally expensive
due to quadratic regression in model training. State-of-the-art
works, APOLLO [16] and DEEP [22], can achieve per-cycle
resolution for microprocessors with less than 1% overhead.
However, we argue that these RTL-based OPMs may not be
the optimal solution for DNN accelerators. First, as data-
stream accelerators, DNN accelerators have limited event
signals, and their power consumption is heavily influenced by
input data. Second, due to their monitoring principle, RTL-
based OPMs must track switch activities of proxies leading to
insufficient response time for downstream power management
units.

The previous study by Liu et al. [8] leveraged the sparsity of
feature data to predict the workload of DNN accelerators and
optimize energy consumption through proper DVFS settings.
However, this approach is limited to predicting the workload
within several milliseconds, and it becomes less accurate
when both weight data and feature data are sparse. The
main challenge for data-pattern-based predictive OPMs lies in
identifying precise and fine-grained data patterns that can be
easily sampled during memory access without imposing sig-
nificant overhead. To address these challenges, we propose a
novel data-pattern-based OPM called PROPHET, as illustrated
in Fig. 1. The core concept of PROPHET is to define and
analyze specific patterns that accurately reflect the dynamic
power of DNN accelerators and can be efficiently extracted
during memory access with minimal overhead. By sampling
these patterns during memory access, we achieve advanced
prediction of forthcoming power consumption several clock
cycles in advance. Moreover, compared to existing approaches
that rely on proxies derived from RTL signals or performance

Fig. 1. We analyze and define some lightweight, accurate, and fine-
grained data patterns. PROPHET can extract them from input data of DNN
accelerators and then predict runtime power based on sampling data patterns.

counters, our proposed power model enables accurate power
prediction with low overhead.

A preliminary version of this work appears in [23]. The
previous version only explored and evaluated data patterns
from input feature data. The OPM was designed to sample data
patterns from feature data ports. Additionally, the hardware
platform for data patterns evaluation was limited to the output-
stationary systolic array (SA). However, PE arrays in different
DNN accelerators may consist of various data flows in real-
world applications. Meanwhile, weight data is also sparse
leading to more difficulties in data pattern sampling. In this
article, PROPHET will take both feature and weight data
into consideration. Then we proposed a 2-D sampler array to
extract data patterns from weight and feature data simultane-
ously. The data flow of the sampler array should be the same
as the PE array for fine-grained power prediction. Since the
sampler array can recover the dataflow of PE array instead of
using a large sliding window to record, our PROPHET can
realize higher accuracy and fine-grained temporal resolutions.
In the experiment, we make a comprehensive exploration
and evaluation of PROPHET in four hardware platforms
which consist of different dataflows and data types. Compared
with previous works that select proxies from RTL signals or
performance counters, our proposed power model can achieve
accurate power prediction with low overhead. Our experiments
have demonstrated PROPHET’s accuracy and fine-grained
prediction capabilities. Our new contributions are summarized
below.

1) We propose PROPHET, a fine-grained predictive power
model for DNN accelerators that enables improved
power management and increased energy efficiency. To
our best knowledge, PROPHET is the first predictive
power model for DNN accelerators. PROPHET achieves
power prediction in advance by sampling target data
patterns during memory access.

2) We make a comprehensive evaluation for our proposed
PROPHET with PE arrays with different data flows
and data types. Furthermore, we explain and analyze
our proposed data patterns by comparing the selected
proxies in RTL-based OPM constructions.

3) We proposed a 2-D sampler array to sample data
patterns from both weight and feature data ports. The
sampler consists of several logic gates resulting in a low-
overhead implementation.

4) PROPHET can achieve low overhead and high
performance at the same time. The area and power
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overhead of PROPHET are 2%–4.5% in our experi-
ments, and the temporal resolution can achieve 2 clock
cycles with R2 > 0.9 and normalized mean absolute
error (NMAE) < 7%.

II. RELATED WORKS

A. On-Chip Power Meters

Accuracy and overhead are two crucial factors when con-
sidering OPMs. An effective OPM should not only provide
accurate measurements but also have low overhead. Previous
research has explored the use of performance counters to
estimate power consumption during runtime for both CPU
and GPU architectures [9], [10], [11], [13]. In these studies,
micro-architecture events, such as cache misses and retired
instructions, are counted within each power measurement
window, which typically spans several thousand cycles. A
regression model is then trained to estimate the average power
consumption within each measurement window based on the
event count. For example, Zhang et al. [13] constructed a
runtime power model based on performance counters of impor-
tant architectural registers to adjust hardware performance in
image rendering, resulting in energy savings and high-image
quality. However, these models are typically used in coarse-
grained management scenarios due to the long access time
of event registers at the OS level. Furthermore, they lack
flexibility because users cannot access part of architectural
event registers.

In addition, several RTL-based runtime power models have
been proposed for advanced power management techniques,
with the aim of achieving higher-temporal resolution and lower
overhead [16], [20], [21], [22], [24], [25]. These models select
the most power-correlated RTL signals, known as power prox-
ies, as inputs to the power model. The works of [24] and [25]
consider all the selection registers and employ lasso regression
as proxy selection and model training methods, achieving
approximately 1K temporal resolution and 10% overhead. In
particular, PowerProbe [20] is an automated framework that
hierarchically selects the ports of each module. It can construct
OPMs with a temporal resolution of 100-1K clock cycles
while maintaining a resource overhead of less than 8%. To
achieve higher-temporal resolution and lower overhead, some
nonlinear methods have been proposed. Lin et al. [26] applied
decision tree regression to construct the OPM in FPGA,
which can achieve 2.4-6 times lower overhead compared to
the commonly used linear model. Furthermore, Simmani [21]
introduces polynomial regression in model training, achieving
per-cycle temporal resolution for the Rocket RISC-V micro-
processor. However, due to the complexity of polynomial
regressions, the overhead of OPM in Simmani is extremely
large. It demonstrated that this RTL-based power model has
the potential to achieve the temporal resolution of 1 clock
cycle. Unfortunately, previous works are limited by the extra
area overhead to improve resolution, significantly reducing
the freedom of proxy selection and the underlying power
model [16]. The state-of-the-art solutions, APOLLO [16] and
DEEP [22], have made significant advances in constructing
OPMs with a per cycle temporal resolution and less than 1%

overhead. These solutions achieve this by employing intelli-
gent proxy selection methods. However, it is worth noting that
these methods are primarily designed for architectures with
intricate control flow and may not be directly applicable to
data-streaming-based DNN accelerators. Additionally, while
the RTL-based OPMs in these solutions monitor the switch
activities of selected proxies, their response time may still be
insufficient for advanced power management techniques.

B. Voltage Management

In recent years, some techniques that improved the energy
efficiency of DNN accelerators by reducing the supply
voltage have been proposed. This type of method shows
a large potential for energy efficiency enhancement [27].
In CPU architecture, proper mitigation of voltage emer-
gency [14], [28], [29] can reduce the voltage margin over
20% with little delay overhead. The works of [19] and [30]
demonstrate that the worst-case voltage drop can be degraded
up to 29% in GPU architecture. The basic concept to suppress
voltage noise is to construct a power meter to obtain an
accurate and fine-grained power trace, and then an actuator
will detect the dangerous voltage drop and take actions like
throttling or proactive clock gating. There is a feedback
loop from the hardware system, OPM, actuator, and then
back hardware system. [28] has demonstrated the unsup-
pressed voltage emergency will increase up to 50% when
the feedback loop delay is over 2 clock cycles. Hence, the
OPM should not only be accurate and fine-grained but also
provide sufficient responding time for the downstream mod-
ules in modern voltage management techniques. The works
of [28] and [29] proposed to predict the voltage emergency
based on the micro-architecture events and take actions proac-
tively. Meanwhile, [19], [31] applied a fine-grained OPM to
monitor the power fluctuation to smooth the voltage noise.
However, due to the processing delay of OPM and feedback
loop delay from OPM to the power management unit, the
insufficient responding time left for the voltage management
is still the bottleneck to be addressed.

C. Energy-Efficient DNN Accelerators

Numerous techniques have been proposed to improve the
energy efficiency of DNN accelerators from various perspec-
tives. Sparse DNN accelerators, such as SCNN [32] and
Cambricon-X [33], optimize power consumption for sparse
DNN models and data. However, these sparse DNN accelera-
tors are mainly effective for sparse models and are commonly
used in embedded systems. In most scenarios, general DNN
accelerators that support both dense and sparse models are
more popular. For FPGA-based DNN accelerators, offline
dataflow analysis and scheduling techniques, as demonstrated
in [7], can achieve energy savings of 10%–30%. DVFS at the
level of per PE, as shown in [8], can reduce the dynamic power
consumption by more than 50% in DNN accelerators. In terms
of supply voltage reduction, error-tolerant DNN accelerators
have been developed to tolerate timing errors caused by low-
supply voltage, resulting in higher-energy efficiency in specific
applications [34], [35], [36]. However, due to limitations in

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 25,2025 at 05:34:40 UTC from IEEE Xplore.  Restrictions apply. 



4756 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 12, DECEMBER 2024

error checking and recovery, timing errors can still occur
and affect precision, making this approach suitable only for
low-precision scenarios. Another approach to reduce supply
voltage is the design of adaptive elastic clocks for low-supply–
voltage DNN accelerators [37]. These elastic clocks can adjust
the clock frequency adaptively when timing errors occur.
However, this technology requires sophisticated clock circuit
design, which can lead to long design periods, especially
for large DNN accelerator designs. Therefore, we believe
that predictive OPMs, which can predict accurate and fine-
grained power traces dozens of clock cycles in advance,
have significant potential for future fast power management
techniques. Unfortunately, there is limited research exploring
power prediction specifically for DNN accelerators.

To address the need for accurate and timely power traces
in fast power management, we propose PROPHET, the first
predictive and fine-grained OPM for DNN accelerators. Fig. 2
illustrates how PROPHET can be implemented between the
weight buffer (wbuf ), input feature buffer (ifbuf ), and PE
array. The sampling logic trees, consisting of comparators
and logic gates, can extract predefined data patterns during
memory access. These patterns are accumulated using a
small sliding power measurement window to construct the
input vector, enabling high-temporal resolution. Finally, the
power consumption value is calculated using offline trained
parameters and the sampled input vector. PROPHET includes
FIFOs that generate time intervals between buffers and the
PE array, allowing PROPHET to sample and predict power
in advance. The number of clock cycles that PROPHET can
predict inadvance is determined by the time interval generated
by the FIFOs. Table I provides a comparison of recent power
modeling methods to highlight the contributions of PROPHET.
Compared to previous methods, PROPHET can accurately and
finely predict the power waveform several dozen clock cycles
in advance with low overhead.

III. BACKGROUND

A. Power Consumption of Hardware Design

In general, the power consumption of the hardware design
can be decomposed into static power [43] and dynamic
power [44], which can be expressed by the following equa-
tions:

Ptotal = Pstatic + Pdyn = VddIleakage +
∑

i∈I

αiV
2
ddCif . (1)

From (1), we can see that the power is the sum of products of
signal switching activity αi, capacitance Ci on the net i ∈ I,
supply voltage Vdd and operating frequency f . The static power
consumption is caused by reverse-bias leakage current Ileakage
between diffused regions and the substrates of transistors,
irrespective of the workloads. In addition, the changes in
process, voltage, and temperature (PVT) also affect the static
power consumption. In contrast, dynamic power consumption
is introduced by signal transitions which dissipate power by
repeatedly charging and discharging the load capacitors. For
DNN accelerators, the dynamic power will be much greater
than its static power and its fluctuation can affect the system’s

Fig. 2. PROPHET predicts the runtime power in DNN accelerators. FIFOs
generate the time interval between wbuf, ifbuf, and PE array, which makes
PROPHET samples and then obtains runtime power in advance.

TABLE I
COMPARISON AMONG VARIOUS POWER MODELS

reliability. Hence, in this work, we focus on dynamic power
prediction.

B. General PE Array Construction

The PE array serves as the matrix unit and is a cru-
cial component of DNN accelerators for performing matrix
multiplications. In the DNN model, convolution layers and
fully connected layers, which can be converted into a series
of matrix multiplication operations, dominate the workload
throughout the process. Therefore, the multiply-accumulate
circuit plays a key role in DNN accelerators.

As shown in Fig. 3(a), the PE array in DNN accelerators
typically consists of numerous homogeneous PEs. The DNN
accelerators can be classified based on the different data flows.
For example, in weight-stationary SAs like Google TPU [3],
the feature data and partial sums are transferred between PEs.
Similarly, in output-stationary SAs like Davinci [5], [39], the
feature data and weight data are transferred between PEs,
while the partial sums are reused within the PE. Another com-
mon dataflow in the PE array is broadcasting all feature/weight
data to all PEs. This type of dataflow is typically found in
smaller designs like NVDLA [6] and the Diannao family [38].

For these PE arrays in DNN accelerators, the PE can
be categorized into two commonly used types of multiply-
accumulate structures, as shown in Fig. 3(b) and (c). In
Fig. 3(b), each PE can perform multiply-accumulate-based
(MACC) calculations using multiple multipliers and adders.
Registers can be inserted into the data path of the MACC
circuit to reduce the critical path delay. This type of MACC
structure is typically implemented in output-stationary SAs
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Fig. 3. PE array and two widely used MACC structures in DNN accelerators. (a) PE array in DNN accelerators, the dataflow may vary in different DNN
accelerators. (b) PE in NVDLA [6], DianNao [38], and Davinci [39], includes multiple multipliers and adders. (c) Classical PE structure in weight-stationary
SAs.

and broadcasting-based PE arrays. In Fig. 3(c), each PE only
includes one multiplier and adder, and the final partial sum is
accumulated outside the PE array. This is the classical structure
used in all weight-stationary SAs. Therefore, in this work, we
explore our data-pattern-based OPM for these two types of
MACC structures.

C. Power Breakdown of DNN Accelerators

In DNN models, matrix multiplication plays a signifi-
cant role compared to other functional units like pooling
and activation. This is primarily due to the high-data
reuse and parallelism exhibited in matrix multiplication.
Consequently, during the execution of convolution layers or
matrix multiplications, the MACC units and on-chip buffers
tend to contribute the most to the dynamic power consumption.
A notable example is DNN Weaver, which was introduced
in MICRO 2016 [45]. The power consumption of the PE
array and on-chip buffers accounts for approximately 94%
of the total power consumption. In contrast, the function
unit (FU) responsible for ReLU activation and pooling only
contributes around 5% to the power consumption. Given that
DNN Weaver shares architectural similarities with well-known
DNN accelerators like TPU [3], Diannao [1], and NVDLA [6],
its power breakdown serves as a representative model for
DNN accelerators. Thus, our research primarily focuses on
analyzing the MACC units and on-chip buffers as the key
factors influencing power consumption.

IV. METHODOLOGY

A. Overall Framework of PROPHET

Fig. 4 shows the PROPHET development framework. It first
conducts accurate power simulations with input data of DNN
model to gather ground-truth power traces. Simultaneously,
based on our definitions, the proposed data patterns are
extracted from these input data in the sampler array. These
patterns have a strong correlation with the power consumption
of the specific SA architecture. The details of our data
pattern definitions will be presented in Section IV-B. Next, the
extracted data patterns are combined with the power traces to
create the dataset for power model training. The details of this
dataset extraction and sampling procedure will be discussed

Fig. 4. Overall development framework of PROPHET.

TABLE II
DESCRIPTION OF FREQUENTLY USED SYMBOLS

in Section IV-C. Finally, since PROPHET needs to sample the
fine-grained data patterns for both weight and feature buffers,
we implement 2-D sampler array on the input ports of PE
array for data pattern sampling. The input FIFOs is optional
depending on whether the prediction is required, more detail
will be discussed in Section IV-E.

B. Define Data Patterns

Data patterns refer to the various combinations of input
data into logic gates that result in different dynamic power
consumption. In DNN algorithms, the activation functions,
particularly the commonly used ReLU function, tend to
introduce sparse data into the feature map of intermediate
layers by generating zero outputs. On the other hand, the
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Fig. 5. Hierarchical structure of a typical PE array.

compression DNN models also introduce a lot of zero data in
the weight data, such as weight pruning, quantification, and
so on. We have discovered that the zeros in the PE arrays’
inputs significantly impact the dynamic power consumption
of PE array. The work of [8] has demonstrated that the
sparsity of input feature maps can be a pattern to predict the
workload for several milliseconds. However, such a sparsity
level can only reflect the power consumption in coarse-
grained temporal resolution. Furthermore, they only consider
the dense DNN model whose weight data are all nonzero. It
will be inaccurate when taking both feature and weight into
consideration. Therefore, it is still necessary to identify more
data patterns for fine-grained and accurate power modeling to
construct the power model for timely voltage management.

As illustrated in Fig. 5, most DNN accelerators comprise
an N × M × K array with homogeneous PEs. In each PE,
K multipliers and K adders can perform multiple-accumulate
operations for matrix multiplications. The weight-stationary
SA is a special case with k = 1. The arithmetic units in
the PE can be abstracted as a combination of combinational
logic gates G, registers, and local controllers. The dynamic
power consumption of the entire DNN accelerator during the
time window T can be represented by (3). Pdyn_m, Pdyn_a,
and Pdata are the dynamic power of multipliers, adders, and
data transformation in PE array, respectively. Pctrl is the power
consumption generated by local control logic, which is less
affected by the input data. Thus, Pctrl can be approximated
as a constant. The Pdata is the dynamic power generated by
the data access in memory and registers. For multipliers and
adders in PE, their two inputs are denoted as a and b. The
average dynamic power consumption of multipliers and adders
over the time window T can be formulated as (3) and (4),
respectively. Here, αg(a, b) represents the toggle rate of the
combinational logic g with respect to the input data (a, b) of
the multiplier or adder, and Cg denotes the average capacitance
of the combinational logic g. The toggle rate αg(a, b) follows
a certain distribution αg(a, b) ∈ Dg(a, b):

Pdyn = Pdyn_m + Pdyn_a + Pdata + Pctrl (2)

Pdyn_m ∝
T∑

⎛

⎝
N∑ M∑ K∑ G1∑

g1

V2
ddαg1(a, b)Cg1

⎞

⎠/T (3)

Pdyn_a ∝
T∑

⎛

⎝
N∑ M∑ K∑ G2∑

g2

V2
ddαg2(a, b)Cg2

⎞

⎠/T. (4)

Premises: Since zero values in input have a deterministic
impact on power consumption, we can categorize the data
patterns for multipliers and adders as below. For multipliers,
1) When both a �= 0 and b �= 0, the toggle rate will be high,
Dg(a, b) = Dm_high, resulting in high-power consumption.
2) When either a or b equals zero, the toggle rate will be low,
and Dg(a, b) = Dm_low. For adders, similarly, 1) When both
a �= 0 and b �= 0, the toggle rate will be high, Dg(a, b) =
Da_high. 2) When either a or b equals zero, αg(a, b) will follow
the other distribution Da_medium with a medium toggle rate,
and the power consumption will be medium. 3) When both a
and b equal zero, the average toggle rate will be low, and the
power consumption will be low, Dg(a, b) = Da_low.

Applying the law of large numbers in statistics, if the T ×
N × M × K is sufficiently large, the average toggle rates of
all combinational gates with the same structure in the PE
array will converge to the expectations of the distribution.
Therefore, the total dynamic power consumption of multipliers
and adders in PE array with different input situations can be
approximated as constants. For multipliers, we can statistically
record two different input situations: 1) a, b �= 0 and 2)
any one of a or b is equal to zero, denoted as m11 and
m01, respectively. Similarly, for adders in the PE array, we
can record the following three input situations: 1) a, b �= 0;
2) any one of a or b is equal to zero; and 3) both a and b are
zero, denoted as a11, a10, and a00, respectively. Meanwhile,
for dynamic power of data transformation Pdata, the Hamming
distance between two consecutive data accessed by register
and memory is the switch activities generated by these two
data. For nonzero data, every bit keeps changing, and their
hamming distance can be approximated as a constant. The
zero data is still the main component affecting the switch
activities in memory and register access. Hence, we can apply
the sparsity of weight and feature to reflect the power of data
transformation.

In this way, we can formulate the data-driven power model
as (5), where the learnable power model parameter I is the
average dynamic power corresponding to each input data
situation, α is the ratio of different input data patterns, and β

is the sparsity under the time window and can sample during
memory access. We can construct the power model based
on these data patterns and employ a regression model to fit
these parameters in (5). The data patterns are summarized
in Table III. There are only seven data patterns for DNN
accelerators compared to the RTL-proxies-based OPM, leading
to the low area and power overhead

Pdyn = P + αm11Im11 + αm01Im01 + αa11Ia11

+ αa01Ia01 + αa00Ia00 + βwIw + βf If . (5)

C. Data Pattern Extraction and Sampling

We have previously discussed data patterns related to zeros
in the input data of adders/multipliers a and b. In this section,
we will introduce how to extract and sample our predefined
data patterns. In our conference paper [23], we only considered
zero data in the feature map and assumed that all weight data
are nonzero. Under this assumption, PROPHET sampled data
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TABLE III
DESCRIPTION OF DATA PATTERNS IN PROPHET

(a)

(b)

Fig. 6. Equivalent logic tree for data patterns sampling. The data trans-
formation between samplers in the sampler array should be the same as PE
array.

patterns only from the feature data. Then a sliding window was
designed to account for the continuous effect of feature data
on power consumption due to the interpipeline structure of the
PE. However, sparse DNN models obtained through pruning
have also gained popularity in mobile devices and embedded
systems due to their higher-energy efficiency during inference.
Therefore, it is valuable to consider both weight and feature
data.

Since the temporal resolution of PROPHET should be
several clock cycles, we need to ensure that the data obtained
by samplers is the same as that in the PE array, and the sampler
should not affect the operation of the PE array. To achieve
this, we implement PROPHET on the data input ports of the
PE array. Meanwhile, the size and data flow of the sampler
array should be the same as the PE array. Thus, we need a
N×M sampler array for N×M PE array. For power prediction,
we can insert FIFOs between the PE array and data buffers to
allow PROPHET to sample input data in advance.

As shown in Fig. 6, an N×M sampler array is implemented
based on the data flow of the PE array. Each sampler
corresponds to a PE in the DNN accelerator for data pattern
sampling. For each valid input data, comparators are used to
convert the multibit data into a 1-bit zero mask signal based
on whether the data is zero. And then, the 1-bit zero mask
will move the neighboring PE depending on the data flow of
PE array. Thus, the designed 2-D sampler array can obtain

the same data order as the PE array enabling fine-grained
power trace prediction. Otherwise, it will cause large error
if the sampler array samples data patterns from mismatched
feature and weight pairs. Within the sampler, an equivalent
logic tree consisting of OR gates and AND gates is applied to
obtain the data patterns. For example, by combining signals
a1 and b1, if a1 == 0 and b1 == 0, we can identify the
data pattern m11. Similarly, if s1 == 0 and s2 == 0, the data
pattern counter for a11 should be incremented. The other data
patterns are collected in a similar manner by monitoring the
input signals of the equivalent logic gates. These data patterns
are then accumulated into counters for the power model.

For DNN accelerators with PEs consisting of multiple
multipliers and adders, the sampler also includes multiple OR
gates and AND gates. On the other hand, the structure of the
sampler in weight-stationary SAs is much simpler. Since the
sampler only consists of 1-bit signals, flip-flops, and simple
logic gates, the overhead of PROPHET is low.

Another important factor to consider is the pipeline length,
which includes the pipeline within a PE’s arithmetic unit and
the pipeline between PEs in the PE array. As long as valid
input data remains in the pipeline structure, it will continue
to affect the total power consumption. Suppose that there is
an example of data in a 3-stage pipeline structure, where each
data point affects the power consumption for 3 cycles. When
the pipeline starts working, during the first two clock cycles,
the power consumption may not reach its peak as only a
portion of the stages are activated. Only when all three pipeline
structures are activated does the power consumption increase
to its highest point. Thus, we must consider the influence of
the pipeline structure in the PE array. To achieve fine-grained
temporal resolution and accurate OPM construction, a sliding
window capable of recording all data patterns during a certain
period is necessary. Since the sampler array can replicate the
data transformation pipeline in the PE array, we only need
to consider the pipeline within a PE’s arithmetic unit. The
size of the sliding window should match the length of the
pipeline structure in the PE. At the same time, we accumulate
and average each recorded data pattern within the sliding
windows. The required temporal resolution of the OPM R is
crucial and varies depending on different power management
techniques. Therefore, we consider the temporal resolution R
as the stride of the sliding window, which can be divided into
two situations. When R > L, where L represents the pipeline
length, there is no need to slide, and the sliding window size
Nsw should be 1. On the other hand, in fine-grained scenarios
where R < L, the data patterns in the sliding window should
be updated every R clock cycles. Thus, the size of the sliding
window is calculated as shown in

Nsw =
⌊

L

R

⌋
. (6)

D. PROPHET Model Training

PROPHET training is off-chip, similar to most OPMs. The
ground-truth labels are obtained through power simulation.
The input vector for linear regression is constructed based
on the input weights and feature data of power simulations.
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Fig. 7. Example of PROPHET extract data patterns from input data.
Assuming that there is one PE which pipeline length is 16 cycles and the
temporal resolution is 4 clock cycles.

Assuming a power meter with a temporal resolution of R, the
following progress is made:

First, per-cycle data patterns are extracted from the input
feature and weight sequences. These patterns are then accu-
mulated within R clock cycles. Subsequently, the input vectors
for PROPHET’s model training and inference are obtained by
averaging the data patterns in the sliding window. The depth
of the sliding window is determined by the pipeline length (L),
while the step is determined by the temporal resolution (R).

To illustrate the sampling of predefined data patterns, Fig.
7 is provided. Assuming L = 16 and R = 4, the signals in
the logic tree continue to change as the feature and weight
data are input. By combining the input signals of each OR
and AND gate, the data patterns of this PE can be derived. As
depicted in Fig. 7, when the first input feature and weight pair
is (0.1, 0.1), the two input signals of the OR gate are (1, 1).
Consequently, we can record one data pattern for αm11. These
values are collected from all samplers in the array to obtain the
total data patterns in that clock cycle. After 4 clock cycles, the
newly recorded patterns are placed into the sliding window.
Ultimately, the input vector for PROPHET is computed as
the average of these four subwindows. Once the dataset is
constructed, linear regression is applied to train the parameters
in PROPHET.

E. Hardware Implementation and Power Prediction

Fig. 2 illustrates the general architecture of DNN accelera-
tors, which includes multiple levels of memory. The L1 buffer
is typically designed with a large capacity to store uniform
data. The data reshape module converts the operations in
convolution layers and fully connected layers into the general
matrix multiplication format. The weight and feature data
are stored in the wbuf and ifbuf, respectively, for PE array
computing. To accurately trace power consumption at a fine-
grained level, the sampling of data patterns must maintain the
same order of input data flow as in the PE array. Therefore,
when considering both weight and feature data, PROPHET
should sample both simultaneously to ensure that the sampler
array receives the same input data as the PE array.

However, the movement of input feature and weight data
from the L1 buffer to ifbuf and wbuf, is usually independent
due to different reshape operations and limited bandwidth. To
address this, we implement our power model between the PE
array, wbuf, and ifbuf to ensure that it captures the same data as
the PE array. The FIFOs before the PE array are optional and

depend on whether power prediction is required. For runtime
power prediction, these FIFOs allow PROPHET to sample data
before the PE array by generating a time interval between data
readouts from buffers and PE array executions. The maximum
number of clock cycles that PROPHET can predict in advance
is determined by the depth of these FIFOs. Since the prediction
requirement is usually not more than 100 clock cycles in
most power management scenarios, the overhead is negligible
compared to the weight and feature buffers, which have sizes
in the hundreds of Kbs.

The hardware implementation of PROPHET show as Fig. 8.
First, for each valid input data, comparators convert the data
into a single-bit mask based on whether the data is zero.
These zero masks are then fed into the sampler array. The
dataflow transformation in the sampler array mirrors that of
the PE array. For example, in SA-based DNN accelerators,
the input feature data flows along the column dimension.
Similarly, the feature zero masks should also flow along the
column dimension in the sampler array to ensure consistent
data flow for sampling. Second, every clock cycle, the data
patterns in the sampler array are collected and accumulated
into data pattern registers. Once the temporal resolution of
R clock cycles is reached, the sliding windows update and
average all subwindows to obtain the input vector for the
pretrained power model. Finally, multipliers and adders will
calculate the predicted dynamic power for the PE array, with
the trained parameters I. Since the input zero mask is a single-
bit signal and the sampler array only consists of several logic
gates, the overhead of PROPHET is very low.

V. EXPERIMENT AND DISCUSSION

A. Experiment Setup

The simulation platform for our experiments follows the
architecture shown in Fig. 2. We have implemented the L1
buffer, data reshape modules, wbufs, and ifbuf in software
to allow for flexible simulation. The remaining modules have
been synthesized, placed, and routed using the TSMC 40nm
process. To obtain accurate ground-truth power waveform, we
ran the post-layout power simulation in Synopsys PTPX [46].

In our experiments involving DNN accelerators, we have
implemented PE arrays with two commonly used MACC
structures as depicted in Fig. 3. Additionally, we have
considered two popular data types in DNN accelerators:
1) 16-bit floating point (FP16) and 2) 16-bit integer (INT16).
The 16-bit floating point data type is suitable for training
and high-precision inference scenarios, while the integer data
type is commonly employed for energy-efficient inference in
embedded systems.

Regarding the architecture of DNN accelerators, we have
chosen to implement the 4 × 4 × 16 output-stationary SA,
similar to the matrix unit CUBE in Ascend [39]. We have also
implemented the 16 × 16 weight-stationary SA, akin to the
architecture of Google TPU [3]. The details of our experiments
are summarized in Table IV. All of these PE arrays consist of
256 multipliers and adders, which is comparable to the size
of most DNN accelerators in embedded systems. The pipeline
length of the PE in the output-stationary SA is deeper than that
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Fig. 8. Equivalent logic tree for data patterns sampling. The data transformation between samplers in the sampler array should be the same as PE array.

TABLE IV
HARDWARE ARCHITECTURE CONFIGURATIONS

in the weight-stationary SA due to its longer data path. At the
same time, the integer data type can achieve a higher-operating
frequency compared to the FP16 data type.

In power simulation, it is crucial to cover the range of
dynamic power. According to the definitions of data patterns
and previous works, zero data has a strong connection with
the dynamic power consumption of the PE array. Therefore,
we employ two types of data as stimuli for power simulation.

1) Feature and Weight Data From Real-World DNN
Models: We selected the pretrained VGG19 and
ResNet50 models from the PyTorch model hub as bench-
marks for our study. The dataset construction involved
two steps. First, we partitioned the original input tensor
into small data blocks based on the convolution dataflow.
Then, we randomly chose several data blocks for power
simulation. The number of selected data blocks was
limited by the simulation clock cycles, approximately
10 000 cycles. For VGG19, the selected layer indexes
were 2, 5, 10, 14, and 16. For ResNet50, the selected
indexes were 1, 2, 5, 11, and 12. Since the weight
sparsity in pruned DNN models is typically greater than
50% [47] leading to biased dataset, we randomly mask
the weight data as zero to achieve sparsity levels ranging
from 0 to 1. The total number of simulation clock cycles
for this type of stimulus is around 100 000, which is
comparable to the generated random data. Meanwhile,
we also evaluate the power fluctuation of SA when
executing the pretrained BERT transformer. Because
the data sparsity of matrix multiplication in BERT is
almost 0, the power variation is flat leading to a biased

dataset. Hence, we do not take BERT as the dataset and
benchmark.

2) Generated Random Data: In order to improve the
generality of the training dataset, we traverse the sparsity
of all weight and feature data in steps of 10%. As a
result, we obtained 100 groups of simulation data, with
each group supporting simulation for 1024 clock cycles.
For the floating-point data type, the data range is [0, 1].
For the 16-bit integer data type, the data range covers
all the bits, ranging from [−32768 32767].

We evaluate the accuracy of the proposed data-pattern-based
power model in four different DNN accelerators, as shown in
Table IV. The per-cycle pattern trace is generated by analyzing
the input feature data based on the defined data patterns.
Power and data patterns with different temporal resolutions
and sliding window sizes are then constructed by averaging
the per-cycle waveform during a time window for experiments
with different resolutions. We evaluate our power model in
terms of accuracy and the overhead in power and area aspects.

For accuracy evaluation, we utilize two metrics: 1) the
NMAE and 2) the coefficient of determination R2. The NMAE,
as defined in (7), is an important metric that reflects the error
of power models. In the equation, yi represents the ground-
truth power, and ŷi represents the predicted power by power
models. The coefficient of determination R2, as defined in (8),
is a widely used metric in regression analysis. In this equation,
yi represents the average value of the ground-truth power from
power simulation. A higher-R2 value indicates a better fit of
the regression model to the data

NMAE = 1

n

n∑

i=1

|yi − ŷi|
|yi| (7)

R2 = 1 −
∑n

i=1

(
yi − ŷi

)2

∑n
i=1

(
yi − yi

)2
. (8)

B. Model Training Score

During model training phase, the training score, represented
by the coefficient of determination R2, is a crucial metric that
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Fig. 9. Training score R2 in four hardware platforms with PROPHET in
linear regression.

indicates the quality of the trained model. A higher-training
score signifies better-model quality. For model training, we
randomly select half of the data from both the generated
dataset and the real-world application dataset. The remaining
half of the data is used for verification. Fig. 9 displays the
training scores of four hardware platforms during our model
training phase. The training scores R2 at a per-cycle temporal
resolution can exceed 0.85, and they reach 0.9 when temporal
resolution is larger than 2 clock cycles. Moreover, as the
temporal resolution increases, the training scores surpass 0.95.
These results demonstrate that our proposed data patterns have
a strong correlation with the dynamic power of the PE array,
making them suitable proxies for constructing an accurate
power model for DNN accelerators.

C. PROPHET Performance Evaluation

We apply the NMAE in the verified dataset to reflect the
accuracy of our data-pattern-based power model. We compare
the NMAE of PROPHET with four baselines.

1) SPA: Taking only the sparsity of weight and input feature
map as data patterns and applying linear regression to
construct power model. The sparsity of input feature
is a popular pattern to predict the workload of DNN
accelerator [8] and also can be sampled during memory
access.

2) Lasso-regression-based OPM predicts dynamic power
64 clock cycles in advance. The lasso regression is
the most widely used sparsity-inducing method, for
proxy selection and model construction, to construct the
low-overhead OPM in work of [25]. We take all the
RTL signals in behavior simulations as input for lasso
regression and train a power model. Then, in the verified
dataset, we apply this trained power model to predict
the power of 64 clock cycles in advance.

3) MCP-Regression-Based OPM: The MCP technique
adopted in APOLLO [16] and DEEP [22] is considered
one of the most advanced methods for selecting the mini-
mum proxies from the RTL signals to construct accurate,
per-cycle, and low-cost OPM. For a fair comparison, we
also take all the RTL signals as input and train the power
model with MCP regression. Then, we obtain the NMAE

when the MCP-based OPM predicts the dynamic power
64 clock cycles in advance in the verified dataset.

4) PE1 × 1: Training the power model with our proposed
data patterns, but the hardware platforms scale into only
one PE. In this way, the size of a single PE is the
1/16 of output-stationary SAs and 1/256 of weight-
stationary SAs to verify the premises we mentioned in
Section IV-B.

Figs. 10 and 11 depict the comparisons between PROPHET
and the baselines on four experimental hardware platforms.
PROPHET demonstrates accurate dynamic power prediction
with high-temporal resolution. For both integer and floating-
point data types, PROPHET achieves an NMAE below
7%, even when considering per-cycle temporal resolution
requirements. As the temporal resolution increases, the error
decreases to less than 5%.

In contrast, power models based on sparsity perform
poorly. The error remains consistently above 15% for output-
stationary SAs with integer data type and weight-stationary
SAs, even with increasing temporal resolution. The error of
the FP16 output-stationary SA in baseline SPA is slightly
lower compared to other platforms due to its deeper pipeline
structure, resulting in a higher proportion of internally powered
components unaffected by data. However, the error of SPA
does not decrease with increasing temporal resolution. Even
with a temporal resolution of 64 clock cycles, the NMAE
remains above 15%.

Furthermore, two RTL-signal-based power models, trained
using classical and novel regression methods, exhibit signif-
icant errors (> 30%) when predicting dynamic power. This
inaccuracy arises because the switching activities of selected
signals rely only on current and past data, lacking consider-
ation of future input data. However, a slight improvement in
error can be observed as the temporal resolution increases.
The possible reason is there are some overlapped data in
the convolution data flow between consecutive convolution
kernels. These overlapped data will lead to similarities in
power between two consecutive periods.

When evaluating PROPHET’s accuracy in a SA with only
one PE, the error increases to 20% compared to the original
SAs in precycle temporal resolution for output-stationary
SAs. However, as the temporal resolution increases, the error
decreases. For weight-stationary SAs, the error exceeds 40%
due to their PEs consisting of only 1 multiplier and adders,
which are much smaller compared to the PEs of output-
stationary SAs. These findings confirm that as the size of the
T ×N ×M ×K operation increases, the average toggle rates of
all multipliers and adders in the proposed data patterns tend to
become constants, resulting in low errors during power model
construction.

The area and power overhead are crucial factors in the
implementation of OPM. It is essential to minimize the
area and power of OPMs to ensure minimal impact on the
overall system. In our experiments, we implemented a 4 ×
4 sampler array for output-stationary SAs and a 16 × 16
sampler array for weight-stationary SAs. To handle feature and
weight sparsity sampling, we incorporated two counters on the
ifbuf and wbuf, respectively, in the SPA. The implementation
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Fig. 10. NMAE of trained power model in the verified dataset for two output-stationary SAs. (a) Output-stationary SA with K == 16 and 16-bit integer
data types. (b) Output-stationary SA with K == 16 and 16-bit floating point data type.

Fig. 11. NMAE of trained power model in verify dataset for two weight-stationary SAs. (a) Weight-stationary SA with 16-bit integer data type. (b) Weight-
stationary SA with 16-bit floating point data type.

of MCP-regression-based OPM and lasso-regression-based
OPM resembles that of APOLLO [16], providing precycle
temporal resolution. Consequently, to estimate power con-
sumption, multipliers are replaced with AND gates to reduce
overhead. The number of proxies in lasso regression is 1097,
2026, 2239, and 1768 for OS_INT16, OS_FP16, WS_INT16,
and WS_FP16, respectively. In MCP regression, proxies are
selected in a more compressed and accurate manner, with
157, 208, 236, and 149 proxies chosen for the four hardware
platforms. This approach achieves similar accuracy compared
to lasso regression in power model construction. To ensure
a fair comparison, all trained parameters in OPMs are 16-bit
integers. Tables V and VI present the area and power overhead
of PROPHET and other OPMs. The sparsity-based OPM
exhibits minimal overhead due to the ease of counting feature
and weight sparsity. Additionally, the advanced MCP-based
OPM incurs only 1%–2% overhead, which is one-tenth of
that incurred by lasso-based OPMs. In the case of our
proposed PROPHET, the area and power overhead account
for approximately 2%–4.5% of the four different SA designs,
even with the inclusion of a sampler array for data pattern
extraction. While the sparsity-based and MCP-based OPMs
can achieve lower overhead than PROPHET, they lack accu-
racy in predicting dynamic power consumption for DNN
accelerators.

TABLE V
AREA OVERHEAD COMPARISON (UNIT:%)

TABLE VI
POWER OVERHEAD COMPARISON (UNIT:%)

Additionally, we evaluated the timing impact of PROPHET.
The experiments revealed that PROPHET does not impact
the critical path of the original SA designs. In the case of
samplers, the logic tree consists of only 1-bit AND and OR
gates. Moreover, we strategically placed registers between the
samplers and power calculation units to minimize the data path
length of PROPHET.
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Fig. 12. Selected proxies by MCP regression in output-stationary SA with
floating point data type.

D. Reliability Analysis of Proposed Data Patterns

We employ the most advanced technique, MCP regression,
for proxy selection in RTL-based OPM construction to assess
the reliability of our defined data patterns. MCP regression
utilizes a strong and relaxed penalty term during signal
selection. We compare the selected signals in MCP regression
with our proposed data patterns to evaluate their reliability.

Fig. 12 illustrates the distribution of selected RTL signals
using MCP regression on the hardware platform of FP16
output-stationary SA. Approximately 20% of the proxies is
the isZeroBp signal, which represents the zero bypassing
mechanism in multipliers. When either input data a or b is
zero, isZeroBp is set to 1, bypassing the multiplication and
resulting in an output data c of zero. These isZeroBp signals
are equivalent to our data patterns m01 and m11. Moreover,
we observe that over 60% of the selected proxies using MCP
regression are the ports of multipliers and adders, indicating a
strong connection between the input data of these components
and the dynamic power of DNN accelerators. Similarly, our
proposed data patterns also reflect the dynamic power by
examining the input data ports. Additionally, approximately
30% of the proxies identified by MCP regression correspond
to the internal signals of multipliers and adders. This explains
why MCP-based OPMs achieve lower errors when estimating
runtime power.

The experimental results demonstrate that our proposed
data patterns in PROPHET are reasonable and similar to the
MCP proxies. The advantage of PROPHET lies in the ease of
obtaining our proposed data patterns during memory access,
as opposed to monitoring the switching activities of selected
signals required by MCP regression.

VI. CASE STUDY

A. Power Peak Mitigation With PROPHET Prediction

The motivation behind PROPHET is to detect and address
dangerous power peaks that can lead to risky dynamic voltage
drops. This dynamic voltage drop can be simplified as LdI/dt,
where L represents the equivalent inductor of the PDN, and
dI/dt denotes the rate of current change over a specific period.

In Fig. 13, we present an example showcasing the effective-
ness of PROPHET in mitigating power peaks. Our experiments
have revealed that power peaks often occur during the startup

Fig. 13. Diagram of PROPHET for power peak mitigation.

Fig. 14. PROPHET predicts power waveform 4 cycles in advance and
mitigates the power surge.

phase and in data blocks located at the edges of input
feature maps due to zero padding. To allow sufficient time
for actuators to respond, we have incorporated two 4-clock-
cycle delay FIFOs, enabling PROPHET to predict power
consumption four clock cycles in advance. In this setup,
P2 represents the anticipated power consumption of the PE
array. When the power change trend (�P) exceeds a certain
threshold (th), the actuator blocks the input data for two
clock cycles, thereby reducing the rate of change in current
(dI/dt). Further details on power peak mitigation during the
execution of VGG layer 2 with output stationary INT16 SA
are provided in Fig. 14. Notably, at X = 117 and 118, a
significant power surge is observed, and the actuator inserts
two clock cycle “bubbles” to mitigate this surge. With the
predictive capabilities of PROPHET, the actuator has ample
time to respond. Moreover, by introducing a mere 4-clock-
cycle delay, the rate of change in current (dI/dt) is reduced
by 36% during this power surge. These results demonstrate
PROPHET’s significant potential in power peak mitigation
scenarios. However, the power fluctuations in real-world DNN
accelerators are more complex, and we plan to conduct a
comprehensive exploration of this topic in our future work.

VII. CONCLUSION

In this study, we introduced PROPHET, a predictive on-chip
power meter for DNN accelerators that accurately forecasts
power consumption, achieving an error rate of less than 7%
with minimal overhead. Our innovative data patterns reflect
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dynamic power efficiently, allowing predictions multiple clock
cycles ahead. The hardware prototype of PROPHET, utilizing a
logic sampler array, demonstrated superior performance com-
pared to classical methods, with an R2 > 0.85 for all hardware
platforms. Our approach outperformed sparsity-based and
RTL-signal-based models, offering complete runtime power
prediction.

Reliability analyses confirmed the efficacy of our data
patterns, showcasing significant error reductions as computa-
tional complexity increased. Over 60% of proxies in MCP
regression correlated strongly with our proposed patterns. In
conclusion, our data-pattern-based OPM is a robust solution
for DNN accelerators, enabling precise power prediction with
minimal overhead. These findings have broad applicability
to accelerators featuring regular PE arrays and multiply-
accumulate structures.

VIII. FUTURE WORK

In state-of-the-art transformer accelerators, the Softmax
operation exhibits higher-power dissipation compared to
ReLU and pooling in CNN. In this recent work [48], the
Softmax operation accounts for approximately 15% of the
dynamic power consumption in transformer accelerators. As
the Softmax operation is an independent operator, our future
work will focus on exploring a power meter specifically for
the Softmax unit.

Furthermore, the power consumption of DNN accelerators
is influenced by system-level events, such as start working
and data reuse configurations. There is still ample room for
exploration in terms of leveraging PROPHET for energy-
efficient power management in a complete DNN accelerator.
In our future work, we plan to conduct a comprehensive
exploration and evaluation in this area.
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