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Abstract—Power efficiency is a critical design objective in
modern microprocessor design. To evaluate the impact of
architectural-level design decisions, an accurate yet efficient
architecture-level power model is desired. However, widely
adopted analytical power models like McPAT and Wattch have
been criticized for their unreliable accuracy, while machine
learning (ML) methods like McPAT-Calib rely on sufficient
known designs for training and perform poorly when available
designs are limited, which is the case in realistic scenarios.

In this work, we propose PANDA, an innovative architecture-
level solution that combines the advantages of analytical and
ML power models. It achieves unprecedented high accuracy on
unknown new designs even when there are very limited designs
for training. Besides being an excellent average power model,
We also extend PANDA to support the time-based power trace
prediction, which can enable the analysis of peak power, power
fluctuations, and voltage fluctuation. This is highly challenging at
the architecture level. Other qualities such as area, performance,
and energy accurately can also be supported. In addition to
single design quality, PANDA can model the trade-offs among
different design qualities such as the trade-off between power
and timing by predicting the Pareto-optimal curve. Finally,
PANDA can further support power prediction for unknown
new technology nodes. Our experiment shows that, for average
power prediction, our method can achieve high accuracy with a
correlation coefficient R of 0.99 and mean absolute percentage
error (MAPE) of 7.91% even when only one configuration is
known, outperforming McPAT-Calib which has R of -0.24 and
MAPE of 35.96%. For time-based power trace prediction, our
method can achieve a low MAPE of 4.34%, outperforming the
state-of-the-art method Powertrain which has a MAPE of 53.8%.

I. INTRODUCTION

Power efficiency is a key objective in microprocessor ar-
chitecture design. As chip complexity keeps increasing, de-
signing microprocessors for higher power efficiency requires
huge efforts and a long turnaround time. As a result, there
is a high demand for fast yet accurate early-stage power
modeling methodologies, which are essential for effective
early design optimizations. For example, before the register-
transfer level (RTL) implementation, chip architects need to
efficiently analyze the power efficiency of many different
design configurations at the architecture level.

However, traditional power modeling approaches cannot
well satisfy these requirements. Conventional VLSI design
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Fig. 1: A summary of architecture-level power modeling methods.
Analytical methods adopt inaccurate oversimplified handcrafted mod-
els, while the accuracies of ML methods degrade significantly when
the number of training data is limited. PANDA unifies both analytical
and ML solutions, addressing their long-lasting limitations.

flow delivers accurate power estimations after going through
several design stages, including RTL implementation, logic
synthesis, RTL simulation with workloads, and gate-level
power simulation using commercial tools [1], [2]. It is pro-
hibitively time-consuming for designers to accurately measure
each architectural-level design variant. In terms of faster alter-
natives, commonly used architectural-level power models such
as McPAT [3]–[5] and Wattch [6] have been widely criticized
for their unreliable accuracies in several researches [7], [8].
For example, our experiment has measured that, for RISC-
V BOOM, even adopting the McPAT scaled towards the
ground truth will have an error with MAPE of 15%, and the
error can reach 1234% without the scaling. Despite certain
advancements in following works, they are typically only
created in-house to meet the needs of proprietary designs [7].

In recent years, several ML methods [11], [13], [14] have
been proposed to directly calibrate analytical models like
McPAT [3]. These methods mainly use McPAT’s output as
model input, aiming to generate more accurate estimations,
especially when the target design architecture is similar to
certain designs in training dataset. However, when applied
to unknown new design configurations, these methods have a
significant accuracy drop. This problem is particularly serious
when training data is limited, which is often the case in
practical scenarios. As mentioned above, collecting the label of
each new sample, which requires implementation with VLSI
flow and workload-based simulations, is a time-consuming
process. A recent ML approach [14] proposes using trans-
fer learning to predict unknown new designs. Nevertheless,
it still requires a few ground-truth samples in each target
configuration domain, which can also be time-consuming to
generate. Additionally, certain design space exploration (DSE)
works [15], [16] develop their own ML-based power models
through iterative training based on labels collected during
exploration. Besides still being constrained by training data,
they typically cannot incorporate workload-related informa-
tion, thus failing to predict each workload-specific power.

In this work, we will first present our qualitative analysis
of existing analytical [3], [6] and ML-based [11], [13]–[16]

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3522877

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 07,2025 at 05:57:01 UTC from IEEE Xplore.  Restrictions apply. 



2

Works
Power Other Design Qualities

Component Cross- Cross- Cross- Time-based Gate Timing Performance Design Quality
Power Config Domain Tech Node Waveform Area (Slack) (# Cycles) Trade-off

Gem5 [9] / Sniper [10] !

Gem5 [9] / Sniper [10] + McPAT [3] ! ! ! ! ! ! !

Wattch [6] ! ! ! ! !

PowerTrain [11] ! ✓–⊛

TCAD’20 [12]
McPAT-Calib [13] !

ASP-DAC’23 [14] ! ✓–⋆

PANDA (Ours) ! ! ! ! ! ! ! ! !

TABLE I: Comparison of existing microarchitecture-level design quality models. We primarily focus on power modeling methods. An empty
cell means the functionality (at column) is not originally proposed by the work (at row). ⋆The work of [14] is not completely cross-domain,
and still requires the ground-truth labels of a few samples in the target new domain. ⊛The work of [11] can only generate the time-based
power waveform at a very coarse-grained temporal resolution.

Method
#Known Config = 1 #Known Config = 14
MAPE(%) R MAPE(%) R

McPAT (Analytical) 1234 0.89 1234 0.89
McPAT-plus (Analytical) 14.81 0.89 14.81 0.89

McPAT-Calib (ML-based) 35.96 -0.24 5.7 0.98

TABLE II: Comparison between two existing methods, McPAT and
McPAT-Calib, where McPAT-plus is the McPAT scaled towards
ground truth. It shows that the analytical model has low accuracy
while the ML-based model relies on sufficient training data.

architecture-level models, as summarized in Fig. 1. The per-
formance of ML-based models is superior when there is suf-
ficient training data that covers the potential testing scenarios.
However, limited data availability can lead to misleading ML-
based models, necessitating the use of traditional analytical
methods. In practice, design teams often face a situation
where they have a limited number of implemented architecture
configurations available for training data. The demand for
diverse and abundant training data poses a significant barrier
to the widespread adoption of ML solutions [11], [13]–[16]
in practice. Table II quantifies this analysis. It shows that the
analytical models have low accuracy and the ML-based model
relies on sufficient training data to achieve a high accuracy.

Inspired by these observations, we introduce a novel
architectural-level power modeling approach named PANDA.
As depicted in Fig. 1, the name PANDA embodies the integra-
tion of white-box analytical models and black-box ML models,
leveraging the complementary strengths of both approaches,
like the panda with both white and black fur. PANDA employs
an analytical framework to capture the hierarchy of individual
components. For each component, it combines an ML model
with a customized analytical function based on essential
configuration parameters. This analytical function captures
the core behavior of the component, while more intricate
patterns are learned by the ML Model. Consequently, PANDA
outperforms existing solutions, particularly in scenarios with
limited training data. Its minimal data requirements facilitate
its potential widespread adoption. Notably, unlike most ex-
isting ML techniques [11], [13]–[16] that rely on established
analytical models, PANDA stands as an independent solution,
unencumbered by dependencies on existing models.

Besides average power, architecture-level time-based power
modeling is also essentially useful in modern processor evalua-
tion and optimization. In contrast to average power, time-based
power trace provides power information for each time step, al-
lowing detailed power-related analysis. For example, such fine-
grained power information enables the analysis of peak power,
power fluctuation, and voltage droops, which are the premises

of most mitigation and optimization techniques. With modern
CPUs hitting the “power wall”, the mitigation of higher-
than-threshold peak power and drastic power fluctuations is
vitally important. However, because of the lack of RTL-level
information, i.e. the RTL implementation and the toggling of
signals, the architecture-level time-based power trace modeling
is highly challenging. Wattch [6] is a widely adopted tool
for architecture-level time-based power trace analysis, but
the accuracy is unreliable. This is because the model and
parameters are outdated compared with modern CPU designs,
and some detailed component analyses are missing.

What’s more, to comprehensively evaluate a design at the
architecture level, evalu ations of other design qualities like
performance (i.e., number of cycles to complete a workload) ,
area, and energy are also desired. For performance, cycle-level
simulators like gem5 [9] and Sniper [10] are widely adopted,
but it is not sufficiently accurate. For gate area, McPAT [3] is
widely-adopted but inaccurate. More importantly, in modern
VLSI design flow, trade-offs between power and other de-
sign qualities widely exist when using different downstream
synthesis options. Therefore, the same architecture design
configuration will not necessarily lead to a fixed power value
after implementation. But most existing ML-based power
models [11], [13], [14] do not consider such trade-offs. To
solve these challenges, our solution PANDA also enables
accurate evaluations of other design objectives.

Table I shows the comparison of existing architecture-level
design quality models and PANDA. It qualitatively compares
PANDA with existing works in the modeling of power and
other design qualities (e.g., area, timing, and performance).
Most of the existing works [3], [6], [9]–[14] only focus on
a small number of application scenarios. The only exception,
gem5 [9] / Sniper [10] + McPAT [3], targets modeling both
the power and other design qualities, but the accuracy is very
limited. Also, even gem5/Sniper+McPAT cannot model time-
based power traces and the trade-off between different design
qualities. In comparison, PANDA is a comprehensive frame-
work that targets multiple design quality evaluation problems.

The key contributions can be summarized below.
• We analyzed the root cause of limited accuracy in both

analytical and ML-based power models, then propose an
open-sourced architecture-level power modeling solution
named PANDA1, which unifies these two major types
of methods. PANDA demonstrates superior performance

1It has been open-sourced at https://github.com/hkust-zhiyao/PANDA
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Component i Configuration parameters Ci of each component Event parameters Ei of each component CPU part

BP FetchWidth, BranchCount BTBLookups, condPredicted, condIncorrect, commit.branches

Frontend
IFU

FetchWidth, DecodeWidth
fetch.insts, fetch.branches, fetch.cycles, numRefs, numStoreInsts, numInsts,

decode.runCycles, decode.blockedCycles, decode.decodedInsts, numBranches,
FetchBufferEntry, ICacheFetchBytes intInstQueueReads, intInstQueueWrites, intInstQueueWakeupAccesses,

fpInstQueueReads, fpInstQueueWrites, fpInstQueueWakeupAccesses
I-TLB ICacheTLBEntry itb.accesses, itb.misses

I-Cache ICacheWay, ICacheFetchBytes
icache.overallAccesses, icache.overallMisses, icache.ReadReq.mshrHits,

icache.ReadReq.mshrMisses, icache.tagAccesses

RNU DecodeWidth intLookups, renamedOperands, fpLookups, renamedInsts, runCycles, blockCycles, committedMaps

Execution

ROB DecodeWidth, RobEntry rob.reads, rob.writes

ISU
DecodeWidth, MemIssueWidth, IssuedMemRead, IssuedMemWrite, IssuedFloatMemRead, IssuedFloatMemWrite,

FpIssueWidth, IntIssueWidth IssuedIntAlu, IssuedIntMult, IssuedIntDiv, IssuedFloatMult, IssuedFloatDiv
Regfile DecodeWidth, IntPhyRegister, FpPhyRegister intRegfileReads, fpRegfileReads, intRegfileWrites, fpRegfileWrites, functionCalls

FU Pool MemIssueWidth, FpIssueWidth, IntIssueWidth intAluAccesses, fpAluAccesses

LSU LDQEntry, STQEntry, MemIssueWidth MemRead, InstPrefetch, MemWrite

Mem Access
D-TLB DCacheTLBEntry dtb.accesses, dtb.misses

D-Cache
DCacheWay, DCacheTLBEntry, dcache.ReadReq.accesses, dcache.WriteReq.accesses, dcache.ReadReq.misses, dcache.WriteReq.misses,
DCacheMSHR, MemIssueWidth dcache.overallMisses, dcache.MshrHits, dcache.MshrMisses, dcache.tagAccesses

Other Logic All All Other Logic

TABLE III: Our identified architecture-level design configuration parameters Ci and event parameters Ei of each ith component.

compared to state-of-the-art baselines, achieving a reduc-
tion in absolute error by 5% to 30%. The improvement
is especially obvious when the training data is limited.

• We also enable PANDA for fine-grained time-based
power traces, which can enable the analysis of peak
power, power fluctuations, and voltage fluctuation (e.g.,
Ldi/dt). This is highly challenging at the architecture
level, considering the lack of RTL implementation or RTL
simulation. Most existing works only support estimating
the average power for each target workload.

• Besides power, PANDA also models other design objec-
tives including design performance, area, and energy at
the architecture level. It can also model the trade-offs
among different design qualities such as the trade-off be-
tween power and timing by predicting the Pareto-optimal
curve. Finally, PANDA further supports the power pre-
diction targeting unknown new technology nodes.

II. FORMULATION OF EXISTING WORK

In this section, we provide a general formulation of all exist-
ing power models. Fig. 4 represents analytical models [3], [6],
ML-based models [11], [13], [14], and PANDA, in a consistent
framework. We observe that these power modeling methods
can be unified into a general formulation. Therefore, we begin
by presenting our formulation of two existing approaches,
followed by introducing our novel method in the next section.

Architecture-level power modeling takes architecture-level
configuration parameters for each component and event param-
eters for each component as the model input to estimate power.
These configuration parameters, denoted as set C, are the
representative parameters that can describe the scale of each
component in the CPU. The event parameters, denoted as set
E, are related to the workload executed on each component.
Assuming there are N components modeled in our targeted
CPU design, for the ith component, we denote related con-
figuration parameters as Ci, with C = {Ci | i ∈ [1, N ]}, and
related event parameters as Ei, with E = {Ei | i ∈ [1, N ]}.

Formulation of ML works. Existing ML solutions [11],
[13], [14] build ML models targeting total power, based on
all available design configuration parameters C and event pa-
rameters E.2 Fml denotes ML methods. It can be formulated
below, with Pml denoting power prediction.

2For simplicity, we do not include the McPAT output as a potential input
feature in the formulation of ML works.

Pml = Fml ({C,E})
It can be rewritten as an equivalent general form by explicitly
indicating configuration parameters of all components:

Pml = Fml ({Ci | i ∈ [1, N ]}, {Ei | i ∈ [1, N ]}) (1)

It means existing ML methods adopt the available configu-
ration parameters and event parameters information from all
components to evaluate the total power of the whole design.

Formulation of analytical works. Different from ML
methods, analytical methods like McPAT [3] explicitly de-
sign separate analytical models for each component, whose
estimated power is denoted as P i

ana, according to designers’
background knowledge. We formulate such analytical methods
for each component i as below,

P i
ana = F i

agg (Ei, F
i
res(Ci)) (2)

where an analytical ‘resource function’ F i
res(Ci) first calcu-

lates a resource value that reflects the resource consumption
based on configuration parameters. Then ‘aggregation func-
tion’ F i

agg combines both resource values F i
res(Ci) and event

parameters Ei to calculate component power.

We illustrate the aforementioned analytical methods with
the I-Cache component in CPU frontend as an example. The
configuration parameters Ci of I-Cache include the number of
ways of the N-set associated cache (i.e., ICacheWay) and the
unit of line capacity that I-Cache supports (i.e., ICacheFetch-
Bytes). Analytical models like McPAT compute the power
based on the number of hits and misses. We can formulate
its resource function F i

res as estimating the energy per hit
and miss based on the I-Cache configuration parameters.

F i
res (ICacheWay, ICacheFetchBytes) = Energy per hit/miss

(3)
Then aggregation function F i

agg combines the resources and
corresponding event parameters, including the number of hits
and misses. Then the actual implementation of Equation (2)
for I-Cache component can be expressed as below.

P i
ana = F i

agg (#Hit, #Miss, Energy per hit/miss)

=
#Hit ∗ Energy per hit + #Miss ∗ Energy per miss

Total benchmark execution time
Based on predicted component power, the total power is sim-
ply the summation of all components Pana =

∑
i∈[1,N ] P

i
ana.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3522877

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on January 07,2025 at 05:57:01 UTC from IEEE Xplore.  Restrictions apply. 



4

Fig. 2: The overview of PANDA. The workflow of PANDA has
two stages including training and prediction. Our contributions and
corresponding sections have been shown.

III. METHODOLOGY

Fig. 2 shows the overview of PANDA framework, which
supports the power modeling including average power and
time-based power trace, other quality prediction, and cross-
technology node transfer. The framework includes the train-
ing and prediction stages. In the training stage, we collect
features from the input configuration and architecture-level
simulators and generate labels with standard VLSI flow with
EDA tools. In the prediction stage, with the feature collected
from the architecture-level simulator, we can utilize the models
obtained in the training stage for estimation. As shown in this
figure, Sec. III-A introduces component identification. Then
Sec. III-B and III-C discuss the average power modeling.
Based on average power modeling, Sec. III-D describes the
time-based power trace prediction. Finally, the other quality
prediction and cross-technology node transfer will be dis-
cussed in Sec. III-E and III-F respectively.

A. CPU Components and Parameters Identification

For the target out-of-order (OoO) CPU3 in our study, we
identify essential CPU components that can be independently
modeled for power evaluation. Fig. 3 shows overall CPU archi-
tecture including these components, which can be categorized
into three parts: frontend, execution, and memory access. Each
part consists of several key components, as introduced below.

• The CPU frontend includes branch predictor (BP),
instruction fetch unit (IFU), instruction translation-
lookaside buffer (I-TLB), L1 instruction cache (I-Cache).

• The CPU execution part includes the rename unit (RNU),
reorder buffer (ROB), issue unit (ISU), register file (Reg-
file), and functional unit pool (FU Pool), including ALUs,
floating-point units, and other functional units.

• The CPU memory-access part includes data translation-
lookaside buffer (D-TLB), the data cache (D-Cache), and
the remaining logic in the load/store unit (LSU).

Any CPU design logic not covered by the components men-
tioned above is referred to as Other Logic.

Table III presents the widely available architecture-level
configuration and event parameters for each component.

3PANDA experiments on the RISC-V OoO CPU core BOOM [17]. It can be
extended to other CPU designs with minor modifications.

Fig. 3: The architecture of our target Out-of-Order RISC-V CPU core.
The solid-filled blocks indicate key individual components modeled
by PANDA. These components correspond to the Table III. The slash-
filled block refers to the Other Logic indicated in Table III.

B. Formulation of Average Power Modeling in PANDA

Formulation of PANDA. In contrast with ML methods
in Equation (1) and analytical methods in Equation (2), we
combine the advantages of both methods in this work. The
general expression for each component i is shown below.

P i
PANDA = F i

agg (F i
ml(Ci, Ei), F

i
res(Ci))

Similar to the notations used in Equation (1)(2), here the
F i
agg and F i

res denote analytical functions, and F i
ml denotes

an ML-based function. The general formulation combines
the ML model in Equation (1) and the analytical model in
Equation (2). Notably, it is a formulation rather than a specific
implementation for power modeling methods, so the F i

ml and
F i
res here are different from the F i

ml described for ML-based
power model and the F i

res for analytical power model above.
Now we start to introduce each part and explain its advantages.

First, we design an analytical resource function F i
res(Ci)

according to background knowledge of how the configuration
parameters Ci will affect the power of this component. Com-
pared with the similar function in Equation (2), we capture the
simpler yet primary pattern in this function, and leave complex
patterns to be learned by our ML model.

Using the same I-Cache component example, for a typical N
set-associative I-Cache, each cache access requires accessing
both tag and data array in all cache ways simultaneously for
lower latency. It causes the power consumption to be roughly
proportional to the number of cache ways (i.e., ICacheWay).
Regarding the ICacheFetchBytes, it decides the size of the
cache line of the I-Cache, so the power of accessing a cache
line in a way will scale proportionally with it. Considering
both factors, our resource function is as below.

F i
res(Ci) = ICacheWay ∗ ICacheFetchBytes (4)

The resource function is a function of configuration parameters
rather than a constant because the configuration parameters are
different for different configurations.

Second, we propose the ML model F i
ml(Ci, Ei) based on

both configuration parameters and event parameters for each
component i. It learns all the detailed correlations beyond the
simple correlation in resource function. Finally, the estimations
of ML model F i

ml and resource function F i
res are multiplied

to generate the final power estimation. The finalized PANDA
formulation is shown below.
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(a) Analytical power model (b) ML-based power model (c) Component-level ML model (d) PANDA

Fig. 4: Illustration of different power modeling methods. Slash-filled blocks mean analytical parts and solid-filled blocks mean ML parts.
(a) The analytical method [3], [6]. (b) The ML method [11], [13]–[16]. (c) Component-level power model, with ML-based power models
for each component. (d) PANDA, slash-filled blocks mean analytical resource functions, while solid-filled blocks mean ML models. It can
also be extended for time-based power trace prediction.

Component i Resource function F i
res(Ci)

ICache Fres = ICacheWay * ICacheFetchBytes
BP Fres = FetchWidth
ISU Fres = fReserveStationNum(DecodeWidth)
IFU Fres = DecodeWidth

Regfile Fres = IntPhysRegister + FpPhysRegister
I-TLB Fres = ICacheTLBEntry + bias

DCache Fres = DCacheWay * MemIssueWidth
RNU Fres = DecodeWidth
LSU Fres = LDQEntry + STQEntry
ROB Fres = RobEntry

D-TLB Fres = DCacheTLBEntry + bias
FU Pool Fres = 1

Other Logic Fres = DecodeWidth + bias

TABLE IV: PANDA’s resource function F i
res of each major compo-

nent i in the target out-of-order CPU core.

P i
PANDA = F i

agg (F i
ml(Ci, Ei), F

i
res(Ci))

= F i
ml(Ci, Ei) ∗ F i

res (Ci) (5)

As Equation (5) shows, PANDA adopts a simple multiplica-
tion to aggregate the ML model F i

ml and analytical resource
function F i

res. But there may not be a definitive answer. The
detailed discussion can be found in [18].

Substituting the resource function F i
res (Ci) in Equation (5)

with Equation (4), the power of the I-Cache example is:

P i
PANDA = F i

ml(Ci, Ei) ∗ ICacheWay ∗ ICacheFetchBytes (6)

C. Resource Functions and ML Model for Average Power

Table IV shows our proposed key resource functions F i
res

for all major components in the target out-of-order CPU
core. We derive these functions based on our architecture-
level analysis that the power consumption of each component
correlates with a function of configuration parameters, which
is the rationale of resource function. The detailed analysis is
described below. It is also validated in Sec. V-A. We also
observe that the resource function can lower the difficulty of
the ML model by changing the data distribution, which will
be discussed in Sec. V-B.

Similar to the I-Cache example, the power consumption of
an N-way set-associative L1 data cache (D-Cache) exhibits
a rough proportionality to the number of cache ways (i.e.,
DCacheWay). Additionally, modern CPUs enhance throughput
by concurrently servicing multiple read requests [17]. So the
power typically correlates with the number of memory-access
instructions issued per cycle (i.e., MemIssueWidth). Conse-
quently, we derive F i

res = DCacheWay * MemIssueWidth.

1 Frontend. The Frontend of the Out-of-Order CPU en-
compasses four primary components: BP, IFU, I-TLB, and
I-Cache. In the previous section, we have already discussed
the I-Cache component. Here we introduce our proposed
resource functions of some of the remaining components:
(1) For the branch predictor (BP), normally the size scales
proportionally with the number of instructions fetched each
time (i.e., FetchWidth) at the frontend. Therefore we propose
F i
res = FetchWidth for the BP. (2) For the I-TLB, its power is

mainly affected by the number of TLBEntry (i.e., ICacheTL-
BEntry), but there is also a part that remains unchanged when
increasing the number of TLBEntry. Therefore, we set F i

res

= ICacheTLBEntry + bias for I-TLB, with the bias denoting
a constant power value. The bias can be estimated by fitting
this linear function to the training data.

2 Execution. The Execution part of the Out-of-Order CPU
encompasses five main components: RNU, ROB, ISU, Regfile,
and FU Pool. Here we explain the design of some representa-
tive components: (1) The renaming unit (RNU) typically has a
renaming width equal to the DecodeWidth. Consequently, we
propose the resource function F i

res = DecodeWidth for the
RNU. (2) The power consumption of the issue unit (ISU) is
impacted by the reserve stations. The number of reserve station
entries typically depends on the DecodeWidth. We define
the resource function F i

res = fReserveStationNum(DecodeWidth),
where fReserveStationNum maps DecodeWidth to the number of
reserve stations. (3) The FU Pool is a complex component
comprising various function units. To handle this complexity,
we assign the resource function F i

res = 1 for the FU Pool,
deferring the specifics to the ML function.

3 Memory Access. The Memory Access component of the
Out-of-Order CPU comprises three main components: LSU,
D-TLB, and D-Cache (which has already been discussed). The
D-TLB is similar to I-TLB, so we only discuss LSU here: (1)
The power consumption of the load store unit (LSU) is closely
associated with the total number of entries in these queues,
represented as LDQEntry + STQEntry. Hence, we propose the
resource function F i

res = LDQEntry + STQEntry for LSU.
4 Other Logic. The ‘Other Logic’ represents the most

intricate portion of the CPU. Estimating the power consump-
tion of the ’Other Logic’ may initially appear challenging.
However, we discovered that the indicator of DecodeWidth
proves to be valuable in this regard, because DecodeWidth
serves as a general representation of the pipeline width for
the entire CPU design. Consequently, we establish the resource
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Fig. 5: The comparison between McPAT and Wattch of dev-acc.

function as F i
res = DecodeWidth + bias.

However, we would like to mention that this resource
function has some limitations especially when the type of
workload is special. Our analysis targets the general case
across workloads. When the workload shows a special pattern,
for example, a workload with a stride access pattern that only
accesses the first way of DCache, power will not correlate
with DCacheWay, so the resource function does not work.
Moreover, when applying on a new architecture, the resource
function should be redesigned by architects based on the
analysis of the target design. We emphasize that the cost
of designing a resource function is far lower than that of
designing an analytical power model that captures all details
in the architecture. This is because the resource function
only needs to capture the first-order power characteristics. In
this case, our method can still significantly reduce the power
modeling efforts and also provide high accuracy.

As for the ML model F i
ml of each component, we all

adopt Gradient Boosting Trees [19] like XGBoost [20], a
widely-adopted ML algorithm for tabular data type, to build
regressors. The Gradient Boosting Trees Regression is an
ensemble-learning-based ML algorithm. It builds a regression
model based on an ensemble of weak decision tree models.
The objective is to investigate the correlation between multiple
variables and determine the influential factors that affect the
dependent variable. The model is constructed incrementally,
enabling the optimization of any differentiable loss function.
The hyper-parameter “max depth” determines the complexity
of decision trees, and the parameter “num of estimators”
determines the number of decision trees utilized.

D. From Average Power to Time-based Power Prediction

To further predict the time-based power trace at the ar-
chitecture level, we propose a temporal-information-aware
method by integrating the average power prediction discussed
in previous sections and a new fluctuation model. Our fluc-
tuation model is based on Wattch [6], which is a classical
cycle-level power model. In comparison to McPAT, which is
built for the average power model and unsuitable for fine-
grained time-based power prediction, Wattch uses cycle-level
activities of each component to model the time-based cycle-
level power trace, thanks to the tight integration with the
performance simulator. The cycle-level activities include the
accessed units and the number of ports accessed in each

cycle. Fig. 5 visualizes the comparison between McPAT and
Wattch of dev-acc. It shows that the time-based prediction of
Wattch is a better feature than McPAT. Based on these cycle-
level activities, Wattch can estimate the per-cycle power for
each component. However, because of Wattch’s outdated CPU
architecture and technology-related parameters, the accuracy
of Wattch itself when applied directly to modern CPUs is
unreliable when compared with ground-truth labels. Here the
ground-truth labels are the power trace generated by the time-
based VLSI power simulation flow using EDA tools.

Targeting time-based power prediction, based on predicted
average power Paverage, the fluctuation model predicts the
power fluctuation Fluct to decide the power within each time
step P , i.e., consecutive T cycles, where T is a user-defined
parameter deciding the temporal resolution of such time-based
power prediction. Our method can be formulated below,

P = Paverage ∗ (1 + Fluct) (7)

The fluctuation model is an ML model that captures the
“temporal pattern”, which reflects a correlation between the
fluctuation of the current time step and Wattch-estimated
power of the consecutive neighboring time steps. It adopts
three types of features for each target time step: (1) The
configuration parameters of the BOOM CPU in Table III,
including 14 features. They indicate the resources of the target
CPU. (2) The activity information of the current time step
from Wattch, altogether 19 features. The activity information
includes the number of accesses for each component, including
renaming unit access, branch predictor access, ROB access,
load-store queue access, regfile access, I-Cache access, D-
Cache access, ALU access, result bus access, wakeup logic
access, and other related logic access. (3) The power value
predicted by Wattch for multiple consecutive neighboring time
steps. We adopt L time steps before and after the current time
step, where L is a hyper-parameter, altogether there are 2L+1
features, corresponding to 2L + 1 steps of Wattch-predicted
power. So there are 14 + 19 + 2L+ 1 features.

To capture the fluctuation, when training the fluctuation
model, we propose to obtain the label by normalizing the
power label per time step ltruth with the average power
laverage of the whole workload. The ltruth is collected by
time-based VLSI power simulation flow using EDA tools, and
the laverage can be calculated from the ltruth. The training
label of the fluctuation model lfluct is listed below,

lfluct = (ltruth − laverage)/laverage (8)

In this way, the ML model learns power fluctuation directly,
without concerning absolute average power value.

For the prediction stage, the output of the fluctuation model
trained with Equation 8 will be a normalized value. We
will combine the output of the fluctuation model pfluct with
the average power paverage predicted by the aforementioned
average prediction method to get the final result,

pout = paverage ∗ (1 + pfluct) (9)

Because the PANDA’s prediction for average power paverage is
rather accurate, this fluctuation-oriented power model provides
reasonably accurate time-based power pout for each time step.
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Fig. 6: The illustration of our two ML models. (a) Use XGBoost as
ML model, where power trace is treated as tabular data. The power
traces of the 2L+1 time steps are used. (b) Use LSTM as ML model,
where power trace is traded as sequential data. The power traces of
the L time steps before the current time steps are used.

Then we introduce the specific ML models we have ex-
plored for such fluctuation prediction. To capture the corre-
lation between features and the fluctuation per time step, we
explore two different ML models. A power trace can be either
regarded as tabular data (e.g., a vector) or sequential data (e.g.,
a sequence of the power values). In the first approach, we treat
the power trace as tabular data. XGBoost [20] is one of the
most widely adopted models for learning tabular data, which is
shown in Fig. 6(a). In the second approach, we trade the power
trace as sequential data. LSTM (Long Short-Term Memory)
[21] is a representative model for learning sequential data. In
this case, we use LSTM to capture the temporal information,
as shown in Fig. 6(b). Here we only use the Wattch-generated
power values of the L time steps before the current time
step. The evaluation of both LSTM and XGBoost is shown in
Table VII. We found that training the LSTM for this problem
usually leads to overfitting, especially with a small number of
training data. The detailed results of the two models will be
discussed in Section IV-D.

Finally, we try to qualitatively analyze how the ML solution
significantly improves the inaccuracies of Wattch. In general, it
is because the ML solution can effectively capture patterns in
each target workload program. Fig. 7 shows an example. In this
example, for the ‘rsort’ workload (i.e. radix sort), we observe
several power drops in the ground-truth power trace, but it
is wrongly evaluated as power rises in the Wattch-generated
power trace. The ‘rsort’ conducts the bucket mapping and
collecting stages iteratively, where the mapping is relatively
compute-centric while the collecting is relatively memory-
centric. The power of the compute-centric stage mainly de-
pends on the power of the pipeline, and the power of the
memory-centric stage mainly depends on the power of the
cache. In the Wattch, the ratio of the power consumption of the
pipeline over the cache is wrongly higher. So in this case, as
shown in Fig. 7, although the ground-truth power of collecting
is higher than bucket mapping, it is reversed in Wattch because
of the wrong estimation. By learning this pattern, the ML
model can realize that, for some consecutive time steps, a
power drop in Wattch actually corresponds to a power rise in
the real trace. We further illustrate this with a toy example.
Assume the number of consecutive time steps 2L + 1 is 3,
for time steps t1, t2, t3, t4, the Wattch-generated power trace
of is ‘17, 17, 15, 15’, and the ground truth is ‘0.50, 0.50,
0.54, 0.54’. During training, the model can learn at t2 that,
the Wattch power trace of ‘17, 17, 15’, corresponds to 0.50 as
ground truth. It can also learn at t3 that, power trace of ‘17, 15,
15’ corresponds to 0.54 as ground truth. In this way, the model
learns correlation beyond the single-time-step correlation.

Fig. 7: The comparison between Wattch and ground-truth for work-
load ‘rsort’ on configuration C1. The power rises of ground truth in
blue circles correspond to power drops in Wattch.

Our fine-grained time-based power trace prediction is tightly
coupled with the average power modeling. There are three
primary reasons. (1) Time-based power is a natural extension
of average power modeling. PANDA’s time-based power pre-
diction is achieved by combining two parts, the average power
prediction and the fluctuation prediction. The average power
prediction is a part of the time-based power prediction. (2)
Both time-based and average power modelings are critical for
users. From the perspective of user demand, time-based power
prediction is critical for modern processor design. (3) Both
time-based and average power modelings are essential features
for commercial EDA tools. Inspired by these commercial tools,
time-based power should be supported besides average power
estimation to make PANDA more useful. Therefore, time-
based power trace prediction is an important extension to fill
the gap between the average power modeling and the standard
power estimation tools. Besides, the method of time-based
power is also consistent with the average power modeling,
because the decoupling of time-based prediction into such
two parts is also an analytical operation itself, therefore time-
based prediction is a method unifying analytical and ML-based
solutions to some extent.

E. Other Design Quality Prediction

In addition to power prediction, the modeling of other de-
sign qualities is also supported by PANDA, such as area, per-
formance, and energy. We discuss each design quality below:
(1) The area model in PANDA resembles the component-level
power model mentioned earlier. However, it only adopts con-
figuration parameters Ci as features, without event parameters
Ei. (2) For performance prediction, we find that gem5 exhibits
a reasonably accurate correlation denoted by R, but it also
displays noticeable absolute errors. To address this, we develop
a performance model to calibrate gem5. The model adopts
the ratio between the ground truth of the execution cycles
and the number of cycles generated by gem5 as the training
label. The input features include two parts: all configuration
parameters C and selected event parameters E. To capture
key performance factors like branch prediction and mem-
ory access, we carefully select important event parameters,
namely, {numCycles, idleCycles, branchPred condPredicted,
branchPred condIncorrect, icache overallMisses, icache Read-
Req.mshrMisses, dcache ReadReq.misses, dcache WriteReq.-
misses, dcache overallMisses, dcache overallMshrMisses}. (3)
PANDA enables the evaluation of energy consumption by
multiplying its performance prediction with power prediction.

Besides the single design quality, the trade-off between
two different design qualities is critical for design evaluation.
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Configuration Parameter C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8

DecodeWidth 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
FetchBufferEntry 5 8 16 8 16 24 18 24 30 24 32 40 30 35 40

RobEntry 16 32 48 64 64 80 81 96 114 112 128 136 125 130 140
IntPhyRegister 36 53 68 64 80 88 88 110 112 108 128 136 108 128 140
FpPhyRegister 36 48 56 56 64 72 88 96 112 108 128 136 108 128 140

LDQ/STQEntry 4 8 16 12 16 20 16 24 32 24 32 36 24 32 36
BranchCount 6 8 10 10 12 14 14 16 16 18 20 20 18 20 20

MemIssue/FpIssueWidth 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2
IntIssueWidth 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5

DCache/ICacheWay 2 4 8 4 4 8 8 8 8 8 8 8 8 8 8
DTLBEntry 8 8 16 8 8 16 16 16 32 32 32 32 32 32 32

DCacheMSHR 2 2 4 2 2 4 4 4 4 4 4 8 8 8 8
ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4

TABLE V: The 15 configurations (named C1-C15) used in our experiment. These are divided into 5 domains depending on DecodeWidth.

For example, one of the important trade-offs is the trade-off
between power and timing, which can be measured by total
negative slack (TNS). For a single design, because of different
selected synthesis parameters, there will be different synthesis
results with different power and timing qualities, causing a
power-timing trade-off. Tunable synthesis parameters include
max fanout, max capacitance, max transition, high fanout net
threshold, set max area, set dynamic optimization, etc. They
support trade-offs between low-power and high-performance
design. Each synthesis result can be described as a point in
the power-versus-timing quality plot. Then the trade-off can be
described as the Pareto-optimal curve of all attainable points.

However, predicting the Pareto-optimal curve for an un-
known configuration is challenging. Because of limited num-
ber of training designs and complexity caused by varying
synthesis parameters, directly training a single model to predict
multiple points for an unknown configuration is difficult.

To deal with the complexity caused by synthesis parameters,
we propose the synthesis-parameters-independent prediction.
There are two steps in our method. (1) In the first step, we
predict the power and timing of a representative point on the
trade-off curve. We choose the point with good qualities in
both power and timing as the representative point. Specifi-
cally, in this work, we select the point with the minimum
multiplication between the absolute value of TNS and Power.
Please notice that the prediction for such a single point only
depends on the design configuration, so it can be relatively
accurate. (2) In the second step, we predict relative positions
between other points and the representative point. In this step,
we use both the synthesis parameters and configurations as
features. Although the relative position depends on synthesis
parameters, the relative positions across different configura-
tions have a more similar data distribution than that of the
absolute positions. So the prediction can be easier, especially
for limited training data. After all of the possible points of a
configuration are predicted, we compute Pareto-optimal points
and use TNS = a ∗ ln(b ∗ Power + c) to fit a curve, where
the a, b, and c are the parameters for the curve. This curve
formulation has also been used in the prior work [22].

F. Transferring to New Technology

With the development of the process technology, designers
should estimate the power consumption in a new process

technology node for an unknown design. But the widely
adopted scaling estimation based on P = CV 2 is too simple.

To train the ML model for transferring to a new technology
node, for each training design, the label is the ratio between
power consumption in the target technology node and the
source technology node. The features include three parts:
(1) The power consumption in the source node predicted by
PANDA. (2) The ratio between the scales and voltages of
the target and source nodes. (3) The directly-scaled power
estimation using the equation P = CV 2. We gather ground-
truth data for training from only small designs across multiple
different technology nodes and train the ML model on them.

IV. EXPERIMENTAL RESULTS

A. Experiment Setup
We generate a dataset based on Chipyard [23]. For a fair

comparison with prior works [13], we employed 15 similar
RISC-V BOOM [17] CPU configurations in Table V, named
C1 to C15, ranging from small to large design sizes. Similar
to prior works [14], [16], we further divided these 15 config-
urations into five domains based on their DecodeWidth, which
is a key configuration parameter that affects multiple pipeline
stages. For power simulation, we used eight workloads in the
riscv-tests [24] suite, including dhrystone, median, multiply,
qsort, rsort, towers, spmv, and vvadd.

We performed RTL simulation at 1GHz with Synopsys
VCS® [25]. The logic synthesis and ground-truth power sim-
ulation are performed with Synopsys Design Compiler® [26]
and PrimePower [2], respectively. We used the TSMC 40 nm
standard cell library and the corresponding Memory Compiler.
In our evaluation of cross-technology node prediction, we also
adopted the TSMC 28 nm and 65 nm standard cell libraries.
These are the most advanced industry libraries accessible to
academia. Although ASAP7 [27] is an open-sourced 7 nm
library, it is far from a realistic library and can not provide
any power-related information for the SRAM.

To avoid engineers’ bias during ML model hyper-parameter
tuning, for all these XGBoost models, we simply adopt the
default hyper-parameters (i.e., max depth=6, num of estima-
tors=100). PANDA is already sufficiently accurate in this case.
For the extension to time-based power trace prediction, we set
the length of the time step T = 25, and the hyper-parameter
L = 5, which is the number of consecutive time steps before
and after the current time step that the model observes.
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Fig. 8: The MAPE and R of different models under different number
of unknown configurations.

B. Summary of Baseline Methods4

We compared PANDA with representative prior works, in-
cluding (a) McPAT (+gem5 [9] [28]) [3], (b) PowerTrain [11],
(c) McPAT-Calib [13], (d) TCAD’17 [29]. (e) McPAT-plus,
which ideally scales the power prediction of McPAT towards
the ground-truth. (f) A weaker variant of PANDA named
the Component-level model, as shown in Fig. 4(c). It builds
ML models for each component with configuration and event
parameters in Table III, but does not adopt resource functions.

We conduct multiple experiments with different amount of
training data for cross-validation. When the number of known
configurations for training is n (n ∈ [1, 14]), 15−n unknown
configurations will be testing data. We evaluate performance
with the mean absolute percentage error (MAPE)5 and corre-
lation coefficient R averaged over all testing configurations.

C. Power Prediction Results

Fig. 8 shows the accuracy of PANDA and our baseline mod-
els when they are trained with different number of known con-
figurations. PANDA consistently achieves the lowest MAPE
and highest R. The superior performance of PANDA over all
ML-based baselines is increasingly obvious as the number of
known configurations (i.e., training data amount) in the x-axis
decreases. This trend validates PANDA’s excellent accuracy
given very limited training data.

Here we try to analyze the reasons behind the performance
gap between PANDA and representative ML solutions McPAT-
Calib [13] and PowerTrain [11] in Fig. 8. In comparison,
in previous ML solutions, too much knowledge needs to be
learned when training a single ML model from scratch. Also,
since they rely on McPAT, they may be limited by McPAT’s
poor accuracy when approaching a higher accuracy. Another
ML baseline TCAD’17 [29] naturally performs poorly since
it is designed for on-chip power meter instead of this task.

As for the purely analytical model baseline McPAT-plus,
as a correctly-scaled version of McPAT, its accuracy remains
unchanged in Fig. 8 regardless of the training data amount. It
represents the optimal version of McPAT with ideal scaling
parameters. But even with optimal scaling parameters, the
accuracy is still relatively low. It indicates that the overall
accuracy is limited without ML models. By unifying both

4We remove detailed description of baseline methods due to page limit. Please
kindly refer to our conference version Sec III.B for all details.

5MAPE = 1/n ∗
∑n

k=1 |yk − ŷk|/yk , yk is label and ŷk is prediction.

(a) McPAT-Calib: known 14 (b) PANDA: known 14

(c) McPAT-Calib: unknown do-
main

(d) PANDA: unknown domain

(e) McPAT-Calib: known 5 (f) PANDA: known 5

(g) McPAT-Calib: known 1 (h) PANDA: known 1

Fig. 9: Accuracy comparison between McPAT-Calib and PANDA
under different scenarios when predicting average power. The x-axis
is the ground-truth average power, and the y-axis is the prediction of
average power.

analytical and ML techniques, PANDA outperforms it sig-
nificantly even when there is only one known configuration
(n = 1) for training. For the original McPAT, while the R is
the same as McPAT-plus, the absolute error MAPE is higher
than 1000%, so it is not presented in the figure.

Finally, the component-level model, as a weaker variant of
PANDA with limited architecture knowledge, provides a great
decomposition of PANDA’s high performance. Its comparison
with PANDA can be viewed as a simple ablation study to
validate the importance of the resource function proposed in
PANDA. By training ML models at the component level, it
maintains a reasonable accuracy when the number of known
configurations n > 10 and outperforms other ML baselines.
But PANDA soon outperforms it significantly when training
data further decreases. Such a gap shows the contribution of
resource functions based on architecture knowledge.

We further visualize predictions in Fig. 9. We compare
the strongest baseline McPAT-Calib [13] and PANDA under
different scenarios: 1) 14 configurations known; 2) a domain
unknown; 3) 5 configurations known; and 4) 1 configurations
known. The ‘domain unknown’ scenario means that 12 config-
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Component Name
14 Known Unknown Domain 10 Known 5 Known 1 Known

Contribution(%)
MAPE(%) R MAPE(%) R MAPE(%) R MAPE(%) R MAPE(%) R

DCache 8.09 0.98 8.62 0.98 13.20 0.94 13.88 0.94 19.85 0.92 11.04
ICache 2.34 1.00 2.55 1.00 3.22 1.00 5.62 1.00 7.40 1.00 14.70

BP 0.96 1.00 1.23 1.00 1.70 1.00 4.40 1.00 6.69 0.99 34.28
RNU 15.64 0.93 16.59 0.90 13.85 0.93 13.33 0.93 16.53 0.93 5.57
I-TLB 0.38 -0.74 0.38 -0.31 0.38 -0.35 0.38 -0.35 0.38 -0.74 0.69
D-TLB 2.17 1.00 2.16 1.00 2.13 1.00 2.12 1.00 2.17 1.00 0.56
Regfile 0.43 1.00 0.44 1.00 0.42 1.00 0.52 1.00 0.70 1.00 6.05
ROB 4.65 1.00 5.76 0.99 4.98 0.99 4.91 0.99 5.15 0.99 3.86
IFU 7.09 0.86 23.51 0.73 16.98 0.75 27.23 0.86 43.43 0.87 8.26
LSU 2.70 1.00 2.15 1.00 2.50 1.00 3.46 1.00 4.79 1.00 3.91

FU Pool 1.39 1.00 2.20 0.99 2.55 0.99 12.35 0.81 17.25 N/A 3.46
ISU 6.77 0.98 8.35 0.98 7.12 0.98 8.34 0.98 9.99 0.98 4.89

Other Logic 4.30 0.97 6.18 0.97 5.65 0.96 6.11 0.95 6.49 0.93 2.73

TABLE VI: The power prediction of each component under different numbers of known configurations and the average percentage contribution
of each component to the total power across different configurations and workloads. The correlation metric is the correlation coefficient R.

urations in four domains are known and the 3 configurations
in the remaining domain are unknown, then we train the
model on the 12 known configurations and test it on the
3 unknown configurations. It is different from ‘known 12’
because in ‘domain unknown’ the unknown configurations
have a different DecodeWidth from all known configurations.
The gray line represents the 100% accurate prediction. So
the closer the points are to the gray line, the higher the
accuracy is. In Fig. 9, each row of sub-figures represents a
scenario. For each scenario, PANDA prediction is relatively
more concentrated towards the gray line. This reflects the
PANDA’s consistent advantage over the McPAT-Calib.

From Fig. 9(a)(b) to (g)(h), as known configurations reduce,
the accuracy of PANDA remains relatively high, while the
accuracy of McPAT-Calib drops significantly. When only one
configuration is known, McPAT-Calib predictions become a
horizontal line, which means that the model learns almost
nothing. Even when known configurations are sufficient (e.g.,
14 configurations are known), there are still several McPAT-
Calib prediction points with large errors, especially for small
designs. We believe the prediction for small designs is more
difficult for McPAT-Calib because the similarity between it
and its most similar design (for example C1 and C2) is
lower than that of the large design (for example C14 and
C15). For example, regarding the FpPhyRegister, from C1 to
C2, it increases by 12, which is 33% of C1. The increase
is also 12 from C14 to C15, but it is just 9% of C14.
Some other configuration parameters such as IntPhyRegister,
DCache/ICacheWay, and RobEntry also demonstrate a similar
trend. PANDA can avoid this problem by decoupling the
resource function from the power model. In this way, PNADA
can leverage all of the known configurations well and can
generalize to a large range of configurations, while the McPAT-
Calib, a direct tree-based model, can only perform well for
data points similar to the known configurations.

In addition to the total power, we further evaluate PANDA’s
prediction accuracy in each component. Table VI shows the
power prediction accuracy of each component under different
numbers of known configurations and the average percentage
contribution of each component to the total power across
different configurations and different workloads. In PANDA,
the accurate prediction of total power relies on the prediction
of each component. We can find that PANDA can achieve
high accuracy for components with high power consumption.

This is the reason for the high accuracy of the total power
prediction. More importantly, in practice, computer architects
may also require the power of each component for more fine-
grained information. Table VI shows that PANDA is not only
accurate in total power but also in more fine-grained power
values for components, which can be further used to support
power optimization better. Similar to the trend of total power,
as known configurations are reduced, the accuracy decreases
slightly for each component. Especially, the cache is one of
the components with high power consumption. In Table VI,
for both ICache and DCache, the accuracy remains relatively
acceptable even when the known configuration is only one.
Another example is the Other Logic, which is a complex
combination of many smaller components. PANDA can still
do well even for such a complex component. But the PANDA
does not perform well for I-TLB. It is because the number
of I-TLB access in gem5 SE mode is always zero, providing
no information for the PANDA. This is consistent with the
previous work [13]. For the FU Pool, since its resource
function Fres = 1, it relies on the ML part to learn the pattern
from training samples. When the known configuration is only
one, almost all predictions are similar to the power of this
single training sample. In this special case, the correlation R of
FU Pool is not a valid metric, thus denoted as N/A in Table VI.
However, the I-TLB and FU Pool consume a small percentage
of the total power, so the inaccurate prediction does not have
an obvious negative impact on the total power prediction.

D. Prediction of Time-based Power Trace

In our experiment of time-based power trace prediction, we
focus on the small configurations C1 to C6. Compared with
large configurations C7 to C15, these small configurations
naturally have relatively low power consumption. So these
small configurations are more similar to low-power mobile
processors than large configurations. Therefore, we choose
them for our experiment. Moreover, accurate per-cycle power
simulation on smaller cores is also much faster than large
ones, making data generation feasible in weeks. To clearly
evaluate time-based power, the workloads for the experiment
better have obvious fluctuation patterns. So we adopt 5
workloads with clear fluctuations, including multiply, rsort,
vvadd, multiply-acc, and div-acc. Multiply-acc and div-acc are
derived from multiply and div by inserting some accumulation
loop. By doing so, the pattern in the power trace can be
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Config
Max(%) Min(%) MAPE(%)

Wattch Wattch-plus McPAT McPAT-plus Powertrain LSTM Ours Wattch Wattch-plus McPAT McPAT-plus Powertrain LSTM Ours Wattch Wattch-plus McPAT McPAT-plus Powertrain LSTM Ours

C0 3175 2.35 1454 29.14 32.65 55.99 4.67 1562 48.25 1550 37.08 31.63 5.88 4.70 2982 6.62 1473 30.67 26.87 15.66 4.42
C1 3508 12.30 1273 9.66 19.39 90.31 4.47 1834 39.80 1365 16.94 2.86 20.40 5.74 3329 10.22 1272 13.54 6.81 31.70 4.90
C2 3672 17.41 1078 9.41 142.1 31.89 1.85 1831 39.90 1113 6.74 164.4 92.43 3.88 3543 14.42 1025 13.54 151.8 49.22 2.50
C3 3718 18.85 1157 1.54 8.61 39.81 7.00 1927 36.90 1232 4.16 18.50 21.56 8.45 3464 12.68 1143 3.29 10.82 25.53 6.63
C4 3432 9.94 1449 26.75 80.56 68.18 2.58 1781 41.44 1584 37.78 72.70 9.17 5.66 3236 7.42 1459 27.55 78.94 15.75 3.70
C5 2224 27.66 875.7 28.81 43.51 253.3 3.48 1131 61.67 900.7 26.99 55.70 187.6 2.93 2064 32.65 823.3 32.63 47.50 222.4 3.83

Average 3289 14.75 1215 17.55 54.48 89.92 4.10 1670 44.66 1291 21.69 57.64 56.17 5.13 3104 14.00 1199 19.54 53.80 60.05 4.34

TABLE VII: The comparison of power trace prediction with prior works. This table shows three metrics related to the value range: maximum
power, minimum power, and the MAPE of the time-based power trace. Each data is the average value across different workloads.

(a) The power trace of div-acc on C1 (b) The power trace of rsort on C1

(c) The power trace of div-acc on C3 (d) The power trace of rsort on C3

Fig. 10: The visualized comparison of power trace prediction of PANDA, Wattch, and ground truth. The left axis is the axis of Wattch, the
right axis is the axis of PANDA and ground truth. It shows that the prediction of PANDA is much more similar to the ground truth.

easy to observe. And we use the Wattch and Wattch-plus, the
Wattch scaled towards the ground truth, as our baseline. In
this experiment, we use 5 configurations with all workloads
for training and 1 configuration with all workloads for testing.

In Table VII, we evaluate three important metrics for
time-based power of each workload, including peak power,
minimum power, and average per-time-step error for each
time step, which can be measured by MAPE. The shown
data is average value for each configuration across different
workloads. The peak and minimum power are critical for CPU
design because they reflect the two extreme conditions to be
supported at runtime. The average per-time step error reflects
power model accuracy in general conditions. Besides Wattch
and Wattch-plus, we also compare PANDA with three extra
baselines, McPAT, McPAT-plus, and Powertrain, with small
modifications to collect events every time step. We evaluate
two models we proposed, XGBoost (denoted as PANDA) and
LSTM. The result shown in Table VII verifies that PANDA
outperforms others in peak power, minimum power, and
average per-time step error for different configurations. We
can also find that XGBoost can outperform LSTM obviously,
with MAPE of 4% and 60% respectively. The poor accuracy
of LSTM is largely due to overfitting when training data is
limited. In conclusion, we adopt XGBoost as our ML model.

Fig. 10 visualizes the prediction result and the comparison
with Wattch’s power trace. Due to the page limit, we only
show the results of two workloads div-acc and rsort on two
configurations C1 and C3 respectively. The left axis is the
power trace of the Wattch, and the right is the prediction of
PANDA and ground truth. We can find that the power trace

Design Quality
Baseline PANDA

Baseline Method MAPE(%) R MAPE(%) R

Area McPAT-plus 12.90 0.98 2.92 0.99
Performance gem5 26.79 0.98 6.69 0.98

Energy gem5 + McPAT-Calib 31.87 0.97 9.51 0.98

TABLE VIII: The comparison of Area, Performance, and Energy
prediction between baseline and PANDA

of Wattch is far from the ground truth, although there are
slight similarities in their patterns. PANDA is significantly
better than the Wattch. For example, in the workload ‘rsort’,
there are three obvious power rises in the ground truth. For
the Wattch, in all corresponding three time steps, it predicts
power drops. In comparison, PANDA correctly predicts power
rises, with a similar pattern as the ground truth.

As an architecture-level model, PANDA has low runtime
and memory overhead compared with the traditional VLSI
flow. The actual runtime and memory overhead depend on
the software implementation and hardware resources. Conser-
vatively, based on our measurement, the runtime of time-based
prediction of 6 configurations for 8 workloads is within 2
minutes, which is mainly spent on Wattch, and the model only
takes less than 30 seconds. In comparison, the corresponding
VLSI flow takes about 3 days. Regarding the memory over-
head, our method consumes tens of MB which is the memory
requirement of Wattch, while the VLSI flow takes tens of GB.

E. Prediction of Other Design Qualities

In addition to the power prediction, Table VIII shows the
prediction accuracy of PANDA on area, performance, and
energy, adopting the ‘unknown-domain’ scenario. Since most
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(a) The ground truth trade-off curve
for dhrystone

(b) The predicted trade-off curve for
dhrystone

Fig. 11: The prediction of Pareto-optimal curve of each configuration.
The left subfigure shows ground truth and the right subfigure shows
predictions. Pareto-optimal curves show the trade-off between power
and timing. The dashed curve is the actual Pareto-optimal curve
observed from the points. The solid curve is fitted with the Pareto-
optimal points. We only plot the points close to the optimal curve.

prior power models do not cover these design qualities, in this
section, we use McPAT-plus, the McPAT scaled towards the
ground truth, as the baseline for area estimation, and gem5 as
the baseline to estimate performance, measured with the num-
ber of cycles for each workload. For the energy, we multiply
the performance generated by gem5 by the power predicted by
McPAT-Calib as the energy baseline. For baselines, we observe
a reasonable correlation but a huge absolute error value. In
comparison, PANDA can even achieve higher correlation while
keeping the MAPE error under 10%.

The prediction of Pareto-optimal curve for TNS-power
trade-off is evaluated on six configurations from C1 to C6.
To demonstrate the trade-off, in our experiment, we set a
high clock frequency for synthesis, thus the TNS is always
negative. To collect the ground truth of the pareto curve, we
modify the parameters adopted in synthesis to demonstrate
the trade-off between TNS and power. Based on the netlist
we can get the TNS. Then we perform power simulations for
each netlist and the average power across different workloads
is adopted as the power in the TNS-power trade-off figure.
Based on these points, we can get the pareto curve. Fig. 11
illustrates the prediction of each configuration with dhrystone
workload, where only points near pareto curve are shown.
Prediction with other workloads is similar since we observe
that the design quality trade-off mainly depends on design
configurations and synthesis parameters. Table IX shows the
accuracy of our prediction for each workload, where the
MAPE is calculated with the average power and TNS for
Pareto-optimal points in the ground truth and our prediction.
In Fig. 11, the left subfigure is ground truth, and the right one
shows prediction. We analyze the result from two aspects, 1)
the absolute position of the representative point; 2) the relative
position of other points, as discussed in the methodology.
The representative point prediction can be reflected by the
position of each Pareto-optimal curve. We observe that the
representative point prediction is accurate, reflecting accurate
single-design-quality prediction in PANDA. The prediction
for relative positions of other points can be evaluated by
comparing the shape of the trade-off curve. We also observe
that the shape of the predicted Pareto-optimal curve is similar
to ground truth. In summary, PANDA can predict design trade-
offs well at the architecture level.

Workload dhrystone median multiply qsort rsort towers spmv vvadd
MAPE for

22.6 19.8 18.8 20.9 20.9 18.0 19.3 18.3
Ave TNS (%)

MAPE for
2.6 4.2 2.6 1.9 2.1 2.0 3.5 2.7

Ave Power (%)

TABLE IX: The accuracy of the TNS-power trade-off prediction for
each workload. It is calculated by average power and TNS for Pareto-
optimal points in the ground truth and our prediction.

Source Target MAPE-Original(%) MAPE-Scaled(%) MAPE-PANDA(%)

28 nm 40 nm 51.51 30.98 14.83
28 nm 65 nm 73.12 40.42 10.16
40 nm 28 nm 115.98 20.03 6.24
40 nm 65 nm 43.39 10.07 11.66
65 nm 28 nm 289.02 25.52 5.28
65 nm 40 nm 83.94 5.91 14.24

Average 109.49 22.16 10.40

TABLE X: Cross-technology prediction by 1) prediction at source
technology, 2) directly-scaled prediction towards target technology,
3) prediction transferred to target technology by PANDA.

F. Cross-Technology Prediction

To verify the cross-technology prediction in PANDA, we
conduct the experiment with three technology nodes: TSMC
28 nm 0.8V, TSMC 40 nm 1.1V, and TSMC 65 nm 1.2V.
PANDA’s ML transferring model is trained using approxi-
mately 20 small designs synthesized across these three tech-
nologies. These small designs, on average, consist of only
thousands of gates, while the smallest configuration C1 com-
prises 0.3 million gates. The transfer model predicts the power
of an unknown design configuration at the target node based
on PANDA’s prediction at the source node.

We compare three types of predictions in Table X, including
1) the original prediction based on the PANDA’s power model
at the source technology node; 2) the directly-scaled prediction
to the target node based on CV 2; 3) the transferred prediction
of our proposed ML transferring model. The average MAPE
for the scaled prediction is 22.16%, while for our model, it
is 10.40%. These results show that the prediction accuracy of
PANDA can outperform direct scaling significantly.

V. DISCUSSION

In this section, we provide an additional analysis for the
reasonability of the PANDA and discuss the potential inte-
gration of PANDA. We first visualize the correlation between
ground-truth power and the resource function in Sec. V-A, and
then discuss the correctness from the data distribution aspect in
Sec. V-B. Moreover, we finally discuss the potential integration
to other architecture-level tools in Sec. V-C.

A. Correlation between Power and Resource Function

To further validate the correctness of PANDA, in Fig. 12,
we visualize the correlation between each component’s power
and its resource function F i

res respectively. We only show
6 representative components here because of page limit. We
categorize components into two classes. The first class is
component without ‘bias’ in resource function, including D-
Cache, ISU, LSU, and BP. We observe that their power mainly
scales proportionally with resource function. The second class
is component with ‘bias’ in resource function, including D-
TLB and Other Logic. For Other Logic, we show DecodeWidth
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(a) D-Cache (b) ISU (c) Other Logic

(d) LSU (e) BP (f) D-TLB

Fig. 12: Component power vs its resource function F i
res. For the

Other Logic part in subfigure (c) and D-TLB part in subfigure (f),
we exclude the bias term from its resource function in the x-axis to
indicate the correlation.

in x-axis, and then we can find its power approximately
proportional to the resource function (i.e., DecodeWidth +
bias). D-TLB also shows a similar trend.

In conclusion, the correlation shown in Fig. 12 implies the
correctness of proposed resource functions F i

res, which will
be multiplied by ML model output to generate the final power
prediction of each component, as defined by Equation (5).

B. PANDA Analysis: Data Distribution Aspect

From another perspective, Fig. 12 also shows that for the
same resource function value in x-axis, there are still many
power value variations in the vertical direction, caused by
the difference in other configuration parameters and event
parameters. These variations will be captured by PANDA’s
ML part of each component F i

ml. According to Equation (5),
the ML model F i

ml is actually trained to predict the power
divided by the resource function (i.e., power/F i

res).
To analyze such vertical power variation for different re-

source function values, we visualize the original power dis-
tribution of D-Cache, ISU, and BP in Fig. 13(a)(c)(e) respec-
tively. It corresponds to vertical points in Fig. 12(a)6(b)(g).
Then we further visualize the distribution of power/F i

res

in Fig. 13(b)(d)(f). This is what the ML model is re-
quired to learn. The comparison between Fig. 13(a)(c)(e) and
Fig. 13(b)(d)(f) shows an interesting pattern and provides
another explanation of the superior performance of PANDA.

In detail, as shown in Fig. 13(a)(c)(e), the power dis-
tributions of configurations with different resource function
values are largely different. As a result, when training data
is limited, ML models may only see training samples from a
few distributions, so perform badly on testing designs that are
from unknown other distributions. The gap between different
distributions of original power is large, causing an obvious pre-
diction error. In comparison, PANDA actually trains the ML
model to predict power/F i

res, as shown in Fig. 13(b)(d)(f).
This power/F i

res objective provides obviously more similar
distributions compared with the original power distribution.

6Configurations with Fres = 2 only account for 6% among all configurations
of D-Cache displayed in Fig. 12(a). Therefore, we discard this small part in
Fig. 13, only showing Fres = 4, 8, 16.

(a) Original Distribution (b) Distribution for F i
ml to learn

(c) Original Distribution (d) Distribution for F i
ml to learn

(e) Original Distribution (f) Distribution for F i
ml to learn

Fig. 13: Power distribution of key components: (a)(b) D-Cache; (c)(d)
ISU; (e)(f) BP. They correspond to the power distribution of points
in Fig. 12. Sub-figures (a)(c)(e) describe the original power, learned
by existing ML methods. Sub-figures (b)(d)(f) describe the power
divided by resource function (i.e., power/F i

res), learned by PANDA’s
ML model. PANDA’s ML part F i

ml learns more similar distributions,
benefiting accuracy when training data is limited.

Even when training data is limited, the ML part’s prediction
will fall into a similar distribution anyway, without causing a
large error. This analysis provides one more rationale for our
multiplying ML model with resource function in PANDA.

C. Potential Integration

PANDA can be potentially integrated with other
architecture-level physical quality models. There are some
thermal modeling tools such as HotSniper [30], HotSpot [31],
and PACT [32], and architecture-level hotspot estimators
such as HotGauge [33]. First, these tools are based on the
McPAT, where the power estimation of McPAT is the input
of these tools. For example, the power estimation of each
component such as the core and the cache can be estimated
by McPAT, then the thermal modeling tools can use it to
estimate the temperatures. Therefore, our power model can
naturally improve the accuracy of these tools. Besides, the
McPAT is usually used as a standalone module to provide
power estimation, so we think replacing the McPAT with
PANDA is easy to implement. Second, the modeling methods
of these thermal modeling tools and hotspot estimators are
also natively inaccurate. Therefore, besides only taking a
more accurate power estimation as input, to further improve
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the accuracy, the method proposed in PANDA that unifies the
analytical and ML-based model can be potentially integrated
into these tools. Architecture-level analysis for the target
physical quality such as thermal and hotspot can be utilized
to capture simple but important patterns, and a data-driven
model can further learn more complex patterns with a few
training data. Moreover, CACTI [34] is an architecture-level
model for memory system, such as cache. With the analysis
of how each operation in memory system consumes energy,
we can also integrate our method to improve CACTI. These
points can be our future work.

VI. CONCLUSION

In this work, we introduce PANDA, a comprehensive
architecture-level CPU modeling framework for power and
other design qualities. PANDA unifies analytical and ML ap-
proaches to model the average power. PANDA also extends the
average power model to support time-based power modeling.
Besides power, other design qualities are also supported. It
can also evaluate TNS-power trade-off derived from different
synthesis parameters, accurately predicting the Pareto-optimal
curve. PANDA enables early-stage evaluation of CPU, serving
as a valuable addition to the toolkit of architects.
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