
1

RTLCoder: Fully Open-Source and Efficient
LLM-Assisted RTL Code Generation Technique

Shang Liu, Wenji Fang Graduate Student Member, IEEE, Yao Lu, Jing Wang, Qijun Zhang, Hongce Zhang
Member, IEEE, Zhiyao Xie Member, IEEE

Abstract—The automatic generation of RTL code (e.g., Verilog)
using natural language instructions and large language models
(LLMs) has attracted significant research interest recently. How-
ever, most existing approaches heavily rely on commercial LLMs
such as ChatGPT, while open-source LLMs tailored for this spe-
cific design generation task exhibit notably inferior performance.
The absence of high-quality open-source solutions restricts the
flexibility and data privacy of this emerging technique. In this
study, we present a new customized LLM solution with a
modest parameter count of only 7B, achieving better performance
than GPT-3.5 on all representative benchmarks for RTL code
generation. Especially, it outperforms GPT-4 in VerilogEval
Machine benchmark. This remarkable balance between accuracy
and efficiency is made possible by leveraging our new RTL code
dataset and a customized LLM algorithm, both of which have
been made fully open-source. Furthermore, we have successfully
quantized our LLM to 4-bit with a total size of 4GB, enabling
it to function on a single laptop with only slight performance
degradation. This efficiency allows the RTL generator to serve
as a local assistant for engineers, ensuring all design privacy
concerns are addressed.

I. INTRODUCTION

In recent years, large language models (LLMs) such as
GPT [1] have demonstrated remarkable performance in natural
language processing (NLP). Inspired by this progress, re-
searchers have also started exploring the adoption of LLMs in
agile hardware design [2]. Many new LLM-based techniques
emerge and attract wide attention in 2023. For example, LLM-
based solutions are proposed to generate design flow scripts
to control EDA tools [3], [4], design AI accelerator archi-
tectures [5], [6], design quantum architectures [7], hardware
security assertion generation [8], fix security bugs [9], and
even directly generate the target design RTL [4], [10]–[20].

Among the above explorations, a promising direction that
perhaps attracts the most attention is automatically generating
design RTL based on natural language instructions [4], [10]–
[18]. Specifically, given design functionality descriptions in
natural language, LLM can directly generate corresponding

Manuscript received XXXX; revised XXXX; accepted XXXX. Date of publi-
cation XXXX; date of current version XXXX. This work is partially supported
by Hong Kong Research Grants Council (RGC) ECS Grant 26208723,
National Natural Science Foundation of China (62304192, 92364102), and
ACCESS – AI Chip Center for Emerging Smart Systems, sponsored by
InnoHK funding, Hong Kong SAR. (Corresponding author: Zhiyao Xie.)

Shang Liu, Wenji Fang, Yao Lu, Jing Wang, Qijun Zhang, Hongce
Zhang and Zhiyao Xie are with the Department of Electronic and Com-
puter Engineering at the Hong Kong University of Science and Tech-
nology (HKUST), Hong Kong SAR, China (email: sliudx@connect.ust.hk;
wfang838@connect.ust.hk; yludf@connect.ust.hk; jwangjw@connect.ust.hk;
qzhangcs@connect.ust.hk; hongcezh@ust.hk; eezhiyao@ust.hk).

Hongce Zhang is also with the Microelectronics Thrust at the Hong Kong
University of Science and Technology (GZ), Guangzhou, China.

Works
New Training New LLM Outperform

Dataset Model GPT-3.5

Prompt Engineering
N/A N/A N/A

[10]–[12], [15], [16]
Thakur et al. [14]
MG-Verilog [17] Open-Source Open-Source No
Goh et al. [18]

VerilogEval [13]

Closed-Source Closed-Source
ComparableChipNeMo [4]

ChipGPT-FT [21]
BetterV [22] Yes

RTLCoder Open-Source Open-Source Yes

TABLE I: LLM-based works on automatic design RTL (e.g., Verilog)
generation based on natural language instructions.

hardware description language (HDL) code1 such as Ver-
ilog, VHDL, and Chisel from scratch. Compared with well-
explored predictive machine learning (ML)-based solutions in
EDA [23], such generative methods benefit the hardware de-
sign and optimization process more directly. This LLM-based
design generation technique can potentially revolutionize the
existing HDL-based VLSI design process, relieving designers
from the tedious HDL coding tasks.

Table I summarizes existing works in LLM-based design
RTL generation. Some works [10]–[12], [15], [16] focus on
prompt engineering methods based on commercial LLMs
like GPT, without proposing new datasets or models for
RTL code generation. As we will discuss later, reliance on
commercial LLM tools limits in-depth research exploration
and incurs serious privacy concerns in industrial IC design
scenarios. Thakur et al. [14] generate a large unsupervised
training2 dataset by collecting Verilog-based projects from
online resources like GitHub, then fine-tuning its own model.
However, this unsupervised dataset is quite unorganized with
a mixture of code and text. Evaluations on a third-party
benchmark [12] show that the performance of its fine-tuned
model is still inferior to commercial tools like GPT-3.5. The
VerilogEval [13] from the NVIDIA research team proposes its
own labeled training dataset and benchmark, then fine-tunes
its own new model. This may be the first non-commercial
model that claims comparable performance with GPT-3.5, but
according to their authors, neither the training dataset nor

1Most existing works focus on generating design RTL in Verilog code. In
this work, we also choose Verilog, while the method should be general and
applicable to other HDL types like VHDL. We will use terms RTL code and
Verilog code interchangeably.

2Most customized LLM solutions (including RTLCoder) are developed by
fine-tuning pre-trained LLMs based on a training dataset about the specific
task. In this paper, we use the terms training and fine-tuning interchangeably.

2

fine-tuned LLM model will be released to the public in the
near future [13]. Goh et al. [18] proposed an open-source
dataset with Verilog instruction-code samples. However, their
instructions have only module name information, without code
functionality descriptions. A recently released dataset MG-
Verilog [17] proposed a multi-grained dataset consisting of
descriptions of various level details with code to enhance the
model’s instruction-following ability. But the model perfor-
mance of [17], [18] also cannot outperform GPT3.5. Besides
these customized RTL-generation solutions, according to our
study, all other software code (e.g., Python) generation models
like CodeGen2 [24], StarCoder [25], and Mistral [26] are
significantly inferior to GPT-3.5 in this RTL generation task.

Compared with solutions based on closed-source commer-
cial LLM tools like GPT, the open-source LLM solution
is vitally important from both research and application per-
spectives: 1) For research purposes, obviously, closed-source
commercial tools prevent most in-depth studies and customiza-
tions of this emerging technique. 2) For realistic applications,
users of commercial LLM tools unavoidably have data privacy
concerns, since all instructions have to be uploaded to LLM
providers like OpenAI. The privacy concern is especially
critical in the VLSI design industry, where information leakage
of intellectual property (IP) or key technical innovations can
seriously hurt the competitive advantage of users’ companies.
In comparison, each user’s own local LLM developed based
on an open-source solution can eliminate all privacy concerns
and also ensure a reliable service.

However, as mentioned, high-performance open-source RTL
generation models are currently unavailable. According to our
study, a major challenge is the unavailability of high-quality
circuit design data for training: 1) Organized design data is
mostly owned by semiconductor companies, who are almost
always unwilling to share design data. 2) Design data directly
collected online is messy and unorganized, either leading to
inferior model performance or requiring prohibitive human
efforts to clean the dataset.

In this work, we finally fill this gap with our new open-
source LLM solution named RTLCoder3. To the best of our
knowledge, it is the first non-commercial and open-source
LLM method that clearly outperforms GPT-3.5 in design
RTL code generation. We validate this on two representative
benchmarks [12], [13] and observe consistent trends. To build
this RTLCoder, we first propose an automated data generation
flow and have generated a dataset with over 27,000 instruction-
code samples for the RTL generation task.

RTLCoder obviously achieves state-of-the-art trade-offs be-
tween performance and efficiency. Besides demonstrating un-
precedented RTL generation correctness in non-commercial
solutions, it only has 7 billion (B) parameters and can be
trained with only 4 consumer-level GPU cards. After further
quantizing the parameters to 4 bits, the RTLCoder-4bit takes
only 4GB of memory and can work on a laptop with limited
accuracy loss. As a result, our open-source lightweight RTL-

3Our RTLCoder has been fully open-source at https://github.com/hkust-
zhiyao/RTL-Coder. It includes the data generation flow, the complete gener-
ated training data set, the model training flow, and the final fine-tuned models
(based on both Mistral and DeepSeek).

Coder solution is accessible to almost every research group and
it is friendly to be implemented and improved by researchers.
The contributions of RTLCoder can be summarized below:

• Targeting Verilog code generation, we propose an au-
tomated flow to generate a large dataset with over 27
thousand diverse Verilog design problems and answers.
It addresses the serious data availability challenge in IC
design-related tasks, and its potential applications are not
limited to LLMs. The LLM directly trained on it can
already achieve comparable accuracy with GPT-3.5.

• We introduce a new LLM training scheme based on code
quality feedback. It further boosts the ultimate model
performance to outperform GPT-3.5, being comparable
with GPT-4. We further revised the training process
from an algorithm perspective to reduce its GPU mem-
ory consumption. The training process only requires 4
commercial-level GPU cards.

• We designed RTLCoder to be a lightweight solution with
only 7B parameters. After quantizating its parameters
into 4 bits, it takes only 4GB of memory, allowing it
to serve as a local assistant for engineers without privacy
concerns.

• RTLCoder has been fully open-sourced, including our
data generation flow, complete generated dataset, LLM
training algorithm, and the fine-tuned model. Consider-
ing RTLCoder’s lightweight property and low hardware
barrier, it allows anyone to easily replicate and further
improve based on our existing solution.

II. AUTOMATIC DATESET GENERATION

In this work, we first propose a new automated training
dataset generation flow. Based on this flow, we have generated
over 27 thousand training samples, with each sample being
a pair of design description instruction (i.e., model input)
and the corresponding reference RTL code (i.e., expected
model output). The instruction can be viewed as the input
question for LLMs, describing the desired circuit functionality
in natural language. The reference code is the expected answer
from LLMs, implementing the circuit functionality in Verilog
code. We observe that these generated training samples exhibit
high diversity and complexity in the RTL-generation domain,
encompassing a diverse spectrum of difficulty levels.

We build this automated generation flow by taking full
advantage of the powerful general text generation ability of the
commercial tool GPT. Please notice that GPT is only used for
dataset generation in this work, and we adopt GPT-3.5 in this
data generation task. The automated dataset generation flow
is illustrated in Figure 1, which includes three stages: 1) RTL
domain keywords preparation, 2) instruction generation, and 3)
reference code generation. We designed several general prompt
templates to control GPT generating the desired outputs in
each stage.

A. Stage 1: Keywords Preparation

The first stage of our data generation flow targets preparing
RTL domain keywords for subsequent stages. At process 1
shown in Figure 1, we request GPT to generate keywords

3

Keywords

Pool

ℒ𝒌𝒆𝒚

Mutation Prompt

𝑷𝒎𝒖𝒕
• Single Circuit Variation

• Circuits Combining

Keywords

Gen Prompt

𝑷𝒌𝒆𝒚

GPT-based Flow

Code

Checker

RTL Instruction-Code

Pairs

RTL Instruction-Code

dataset

Stage 1: Domain Keywords Preparation Stage 2: Instruction Generation Stage 3: Reference Code Generation

Extending
Prompt
𝑷𝒆𝒙𝒕

❶ ❷
Instruction

Pool

ℒ𝒊𝒏𝒔

❺

fail

pass

Local Automated Flow

pass

fail

Instruction

Checker ❼
New

Instruction

SourceCode

Pool

ℒ𝒄𝒐𝒅𝒆

❸

❹

❻

Fig. 1: Our proposed automated training dataset generation flow.

Prompt:
Please act as a professional Verilog designer. List the categories and
examples of blocks that are frequently used in Verilog coding tasks.

Fig. 2: An example of Prompt Pkey in 1 4

related to digital IC design (i.e., commonly used logic compo-
nents) based on a set of prompts Pkey . We obtain a keyword
pool Lkey with hundreds of digital design keywords.

Specifically, in this process 1 , to collect a comprehensive
range of RTL design task topics, we utilize a tree-like structure
with multiple branches to issue queries to GPT. We first
prompt GPT at the root node to provide categories and
examples of frequently used block keywords in RTL design
as Figure 2 illustrated. The response from GPT has a tree
structure that consists of some subfields as Figure 3 shows.
With the response, we could use the categories and examples
as branches to continue prompting GPT for more design
keywords within each topic. For example, we can use scripts
to ask GPT about more types of the block “multiplier”, it will
return more specific design names such as “Booth multiplier,
Wallace tree multiplier, etc.”. After this process, we obtain
hundreds of keywords related to RTL design in the Keywords
pool Lkey .

Besides using our introduced keywords generation flow, we
believe manually collecting initial Verilog instructions from
existing IP families is also feasible and can help to produce a
comprehensive keyword pool, as long as users devote manual
efforts to collecting the IP document resources and checking
their coverage and diversity.

This obtained keyword pool with about 350 instances will
be extended into around 5K instruction samples in process 2
and these instructions will be further mutated and combined
with each other and those obtained from source code in stage
2 to generate more new descriptions.

B. Stage 2: Instruction Generation

The second stage targets generating sufficient instructions
based on the initial keywords and Verilog source code. At pro-
cess 2 , we extend existing keywords from Lkey to complete
design instructions. Specifically, we randomly sample one or

4We use red text boundary to denote GPT input examples, and green text
boundary to denote GPT output examples in this work. Please notice that
some green GPT output in this data generation flow are instructions, which
will be the input of LLMs.

Response:
1. Combinational Logic Blocks: Arithmetic blocks (adders,
subtractors, multipliers, dividers)...
2. Sequential Logic Blocks: Shift Registers (serial-in/serial-out,
serial-in/parallel-out, parallel-in/serial-out, parallel-in/parallel-out),
Sequence detectors...
3. Finite State Machines (FSMs): Mealy FSM, Moore FSM, One-
hot FSM, Gray-code FSM...
4. Digital Signal Processing (DSP) Blocks: Filters (FIR, IIR), Fast
Fourier Transform (FFT)...
5. Communication Protocol Blocks
...

Fig. 3: A GPT response example to Prompt Pkey in 1

two keywords from Lkey each time, combined with prompts
Pext, and feed them into GPT. The output is a complete RTL
design instruction.

In addition to keyword-based instruction generation in pro-
cess 2 , we also propose to generate instructions based on
existing source code collected by us, as shown in process 3 .
This is partially inspired by the work of [27]. By providing
GPT with either part or a complete Verilog code Lcode

collected by [14], we can inspire it to create a related Verilog
design problem. By adopting this new 3 together with 2 , we
further enhance the diversity of our dataset by utilizing a vast
and varied collection of source code.

Process 2 and 3 help generate the initial design instruc-
tion pool Lins based on our customized prompt Pext. Two
types of prompt Pext are proposed for processing Lkey and
Lcode, denoted as P key

ext and P code
ext , respectively. As shown in

Figure 4, our prompt P key
ext in process 2 adopts the few-shot

prompting technique, which means we provide an example
of the question (i.e., keyword) and answer (i.e., instruction)
in the input prompt. Figure 5 shows an example of GPT’s
corresponding response. As for the prompt P code

ext used in
process 3 , an example of prompt and the response of GPT
are provided in Figure 6 and Figure 7. The prompt P code

ext

asks GPT to convert the given Verilog code snippet to the
corresponding description instruction.

For process 3 , instructions obtained through code snippets
from Lcode focus more on describing detailed circuit behavior
(such as the specific behavior in different cycles of a signal).
On the other hand, the instructions obtained from the keyword
pool Lkey in process 2 tend to provide an overall summary of
the circuit’s functionality in a high-level manner. For example,
based on the keyword “traffic light” in the keyword pool, a

4

You should create a task that only requires one Verilog module
related to the given topic.
Here is an example for you.

[Given Topic]
UART transmitter
[Instruction]
Create a Verilog module for a UART transmitter that can send data at
a baud rate of 9600. The module should have a single input for the
data to be transmitted (8 bits) and ...
module uart_transmitter(
 input clk, // system clock
 input reset_n, // active low asynchronous reset
 input [7:0] data_in, // data to be transmitted
 output reg tx, // UART transmit pin
 output reg tx_busy // UART transmit busy signal
);

Fig. 4: An example of Prompt P key
ext in 2

series of traffic light circuit instructions can be generated.
These overall descriptions can hardly be obtained solely
through code snippets if the signal name is not related to
something like ’red light’ or ’yellow light’. The instructions
generated through keywords not only describe circuit behavior
but also link to commonly used digital design terminologies
and higher-level abstracts. Hence, both initial instruction gen-
eration methods are crucial and complementary. They describe
circuit behavior from different levels of description (highly
abstract and detailed to the behavior of each signal).

In the extension process of 2 and 3 , the prompt for
generating the instruction responses should be carefully de-
signed. We provide Figure 6 for the reader’s reference. The
instructions returned by GPT should contain detailed and un-
ambiguous requirements to ensure that LLM can generate only
one functionally unique Verilog code based on this instruction.
What’s more, the design complexity should be limited so
that the corresponding Verilog code can be implemented in
hundreds of code lines.

After generating the initial instruction pool Lins with hun-
dreds of initial instructions, we will iteratively use mutation
methods to significantly augment the scale and complexity
of this pool5. At 4 , we use Pmut to apply two types of
mutation operations on instructions sampled from the design
instruction library Lins. The process 4 would check every
new design instruction using a set of rules and only passed
valid instructions are added to Lins. We cover more details of
this iterative process below.

For the mutation operation in 4 , we propose two types of
prompts P s

mut and P c
mut, performing single circuit variation

and circuits combination, respectively.
• The P s

mut focuses on changing the single circuit module
by requiring different functionalities while keeping the
same hardware type, or implementing the same function-

5The scale and complexity in this context describe the target circuit. Circuit
scale can be reflected by the total number of logic gates in the circuit after
implementation. Circuit complexity can be reflected in its functionality com-
plexity, which may be reflected by the number of lines in its implementation.
Such metrics are also used in prior benchmarking works [12]. As an example,
in Figure 10, we illustrate how combining a binary counter and a comparator
can result in a circuit with a larger area and more complex functionality.

[Instruction]
Please act as a professional Verilog designer. Your task is to create a
Verilog module that implements a pulse width modulator (PWM).
You need to design a PWM module that takes a clock signal, a reset
signal, and a user-defined duty cycle value as inputs, and outputs a
PWM signal. The duty cycle value should be an integer ranging
from 0 to 100, representing the percentage of the PWM signal being
high during each cycle.
Your module should meet the following requirements:
• The PWM signal should have a fixed frequency, determined by a

parameter called PWM_FREQUENCY. You can assume that the
input clock frequency is 100 MHz.

• The duty cycle of the PWM signal should be adjustable by
changing the duty_cycle input value.

• When the rst input is high, the PWM output should be reset to
low, and the duty cycle should start from the beginning of the
next cycle when the reset signal goes low.

• The PWM output should transition from low to high at the
beginning of each cycle and should stay high for a duration
proportional to the duty_cycle input value.

• You can assume that the input clock signal is a perfect square
wave with a 50% duty cycle, and the reset signal is synchronous
to the input clock. The solution should be synthesizable and
follow good coding practices.

module PWM(
 input clk,
 input rst,
 input [7:0] duty_cycle, // 8-bit duty cycle
value (0-100)
 output pwm_out
);

[Given Topic]
Pulse width modulator (PWM).

Fig. 5: A GPT response example (green) to Prompt P key
ext when given

topic: Pulse width modulators (PWM) (red) in 2

Prompt:
Please gain inspiration from the following random code snippet to
create a high-quality Verilog coding problem.
Verilog code snippet for inspiration:

if ((C_REG_CONFIG == 32'h00000001) || (C_REG_CONFIG
== 32'h00000008)) begin reg [C_DATA_WIDTH-1:0]
m_payload_i; reg [C_DATA_WIDTH-1:0] skid_buffer…
has_valid_storage_i = 1'b1; // Clear the value if
it's set and Master side completes the transaction
but we don't have a new slave side.

The Verilog coding problem should be completely self-contained,
providing all the contextual information one needs to understand and
write code to implement this module. Assume common
programming knowledge, but ensure that any specific context,
variables, or code snippets pertinent to this description are explicitly
included. You should describe the behavior of the circuit in detail.

Fig. 6: An example of Prompt P code
ext in 3

ality but using different hardware. Figure 8 is an example
of P s

mut and Figure 9 is a GPT’s response example with
given instructions.

• The P c
mut focuses on combining two circuit designs

together. They are combined by either adding control
logic to select using one of the two functionalities (i.e.,
parallel combination) or feeding one output into the
other’s input (i.e., serial combination). Figure 10 gives
a sample of prompt P c

mut and Figure 11 is a GPT’s

5

Response:
This Verilog module implements a configurable slave interface with
three different modes of operation. The module has the following
inputs and outputs…The module has three modes of operation,
selected by the value of C_REG_CONFIG: Mode 1
(C_REG_CONFIG == 32'h00000001 or C_REG_CONFIG ==
32'h00000008): This mode is a pass-through mode where the slave
interface forwards data from the master interface to the slave
interface and vice versa…
module configurable_slave_interface (

 input ACLK,
 input ARESET,
 input [31:0] C_REG_CONFIG,
 input C_DATA_WIDTH = 32,
 input S_VALID…)

Fig. 7: A GPT response example to Prompt P code
ext in 3 .

The rewritten task should achieve different circuit functionality but

require similar methods or components in the given instruction. Here

is one example for you.

[Given Instruction]

Please act as a professional Verilog coder. Create a module that

implements a finite state machine (FSM), used for 5-bit sequence

detection.

[New Instruction]

Please act as a professional Verilog designer. Create a module that

implements a finite state machine (FSM), used for 5-bit sequence

detection, but with a twist. The module should detect two different 5-

bit sequences, "01010" and "10101", and output a signal indicating

which sequence was detected. The output signal should be '0' for

"01010" and '1' for "10101". The FSM should transition to the initial

state whenever a reset signal is asserted. Implement the FSM using a

Mealy machine, where the output is a function of both the current

state and the input.

Fig. 8: An example of Prompt P s
mut in 4

Response:
[New Instruction]
Build a 16-bit binary counter that counts from 0 through 15,
inclusive, with a period of 16... Additionally, include a count_down
input to control the direction of the counter (count up or down)...

[Given Instruction]
Build a decade counter that counts from 0 through 9, inclusive, with
a period of 10. The reset input is synchronous, and should reset the
counter to 0. We want to be able to pause the counter rather than
always incrementing every clock cycle, so the slowena input
indicates when the counter should increment...

Fig. 9: A GPT response example (green) to Prompt P s
mut with Given

Instruction (red) in 4

response example with given instructions.
It is important to note that we need to carefully design the

instruction generation prompt considering the following two
aspects in the mutation process:

• Basic instruction validity6. For example, GPT may pro-
vide an instruction of implementing a physical temper-
ature regulator or a speedometer, which are not directly
related to Verilog coding.

6“Validity” here refers that the instruction can be implemented solely by
Verilog code, requiring no other tools or languages.

You should create a new task based on the two given instructions.
The output of one module could be the input of the other. Here is an
example for you.

[Given instructions]
1. Create a module that implements a binary counter...
2. Create a module that implements a comparator...
[New instruction]
Create a module that implements a binary counter that counts from
0 to 15, ..., Additionally, include a comparator that compares the
value of the counter to a given value, and outputs a signal indicating
whether the counter value is greater than or equal to the given value.

Fig. 10: An example of Prompt P c
mut in 4

• Level of circuit behavior detail for LLM to generate
correct code. Other studies [14], [17] have also indicated
that the level of circuit description has a significant
impact on the code generation quality. When descriptions
are overly vague, LLMs trained on this dataset struggle
to align the functionality of the code with the general
instruction. Conversely, if descriptions are too detailed,
focusing on intricate RTL circuit specifics, the RTL gen-
eration effectively becomes a form of “code translation”,
which can also not boost the general generative abilities
of trained LLMs.

Moreover, we request GPT to generate its reasoning steps (i.e.,
how it analyzes the code generation task step-by-step). These
reasoning steps further enhance the detailed information of our
instruction pool. In addition to incorporating these principles in
the query prompt, we also use the one-shot technique (provide
a query-response sample for GPT’s reference) to demonstrate
our requirements. As long as following these principles and
adopt basic prompt engineering techniques, we believe other
alternative prompts may achieve similar response quality.

For the instruction checking in 5 , we automatically check
the correctness and diversity of each new instruction generated
in the mutation process, based on a series of rules. The
rules include 1) invalid-word checking, and 2) similarity
measurement with existing Lins. For example, in invalid-
word checking, if words such as “image” and “text” are
detected, it indicates that GPT has likely provided a problem
that cannot be implemented solely with RTL code. As for
similarity rate checking, we calculate the similarity between
the new instruction and existing Lins. The new instruction is
discarded if the similarity is above a certain threshold since it
can’t add enough new information to Lins. Such checking of
instructions in 5 is imperfect, but it is fully automated and
accurate enough to generate an ultimate instruction pool Lins,
including over 50,000 instructions.

C. Stage 3: Reference Code Generation

The third stage targets generating the reference code. In
the third stage, as shown in 6 , we feed each instruction
from Lins into GPT, generating the corresponding reference
design code as the solution. Specifically, we will ask GPT
to provide at least five answers. After that, in 7 , we will
evaluate these answers using a code checker. In this work, we
adopt an automated syntax checker to verify the correctness

6

[Given Instruction]
1. Please act as a professional Verilog coder. Create a module that
implements a finite state machine (FSM), used for 5-bit sequence
detection...
2. You are tasked with designing a 4-bit binary to BCD (Binary
Coded Decimal) converter using Verilog. The binary input should
be in two's complement notation, and the output should be in BCD
format.

Response:
[New Instruction]
Create a module that combines a 5-bit sequence detection finite
state machine (FSM) and a 4-bit binary to BCD converter. The
FSM module should detect a specific 5-bit sequence in the input data
stream. When the sequence is detected, the FSM should output a
'match' signal. The binary to BCD converter should accept a 4-bit
two's complement binary input and convert it to BCD format. The
BCD conversion should only be performed when the 'match' signal
from the FSM is high.

Fig. 11: A GPT response example (green) to Prompt P c
mut with Given

Instruction (red) in 4

of RTL code syntax. Only syntax-correct design code can
be kept. If all five answers fail the syntax checking, this
instruction will be discarded. Finally, only valid instruction-
code pairs are saved as our dataset. Ideally, process 7 should
also check whether the functionality of the generated RTL
code is consistent with the instruction, but currently generating
testbenches for functionality verification cannot be automated.
Similar to the checker in stage 2, this imperfect automated
checking can already filter out the most serious mistakes in
the dataset.

D. Dataset Generation Flow Discussion

After going through all three proposed stages, we generate
the ultimate training dataset named RTLCoder-27K with more
than 27,000 instruction-code data samples. In this subsection,
we will discuss some important topics about our proposed data
generation flow and the output dataset. Multiple experiments
are conducted to provide more insights about our RTLCoder
dataset.

Statistics of keyword pool. In the keyword generation
process, we adopt the hierarchical prompting structure to query
GPT, resulting in around 350 keywords. Experienced engineers
have recognized the keyword pool as covering a vast majority
of commonly used circuit design problems. We also adopted
GPT to analyze the keyword types and illustrate the categories
and distribution of this keyword pool in Figure 12(a).

Comparison with other RTL dataset. We compare RTL-
Coder with other recent RTL code datasets [13], [14], [17],
[18] in the following. In Thakur et al. [14], the training
dataset only consists of code without instructions. Such code-
only datasets do not align well with the RTL generation
tasks based on natural language instructions. After removing
exactly the same duplicated code in the dataset, there are
approximately 25K data entries. In VerilogEval [13], each data
entry comprises an instruction-code pair, totaling 8.5K entries
in their dataset. However, their dataset is not open-sourced.
In the MG-Verilog dataset [17], there are 11K instances with
each one consisting of descriptions at various levels of detail

and corresponding code. In the Goh et al. [18], there are a
total of 60K samples. However, their instruction only pro-
vides the module name information without any functionality
descriptions. The performance of LLMs [13], [14], [17], [18]
trained on these 4 datasets will be presented in Table III in
the following Section IV and all cannot clearly outperform
GPT3.5. RTLCoder significantly outperforms all these models,
indicating the overall quality of our open dataset.

Evaluation of design type distribution. We also utilized
GPT for annotating the categories of the generated 27K-
dataset. The circuit type distribution statistics is depicted in
Figure 12(b). The distribution statistics for the two bench-
marks, RTLLM-1.1 [12] and VerilogEval [13] are also plotted
in Figure 12(c) and (d) respectively. The generated dataset
consists of a wide range of circuit designs including Arithmetic
Units, Signal Processing Units, Encryption Units, etc. It is
important to note that a single data sample may implement
functionalities of multiple circuit types, and we only adopt
one circuit type to represent each instruction. As the majority
of circuits contain submodules like Multiplexers, Decoders,
and selectors, this may result in a relatively higher proportion
of the Data Path type.

Evaluation of dataset diversity. To further check the
diversity of our proposed training dataset, RTLCoder-27K,
we utilized two diversity measures: Compression Ratios (CR)
and Part-of-Speech Compression Ratio (CR: POS) which are
suggested the best lexical diversity metrics by [28] among
Homogenization Score (BERTScore), Self-BLEU, Homoge-
nization Score (ROUGE-L), N-Gram Diversity Score, Hyper-
geometric Distribution, etc. CR is calculated utilizing text
compression algorithms which can identify redundancy in the
whole contents. We constructed a file D containing all the
text data in RTLCoder-27K following [28]. Subsequently, we
compressed the entire dataset using gzip. The Compression
Ratio (CR) is as follows:

CR(D) =
size of D⊕

compressed size of D⊕

The CR-POS can capture the repeated syntactic redundancy
by compressing the part-of-speech (POS) tag sequences of the
original text. We also followed [28] and used NLTK POS
tagger and the Penn Treebank set of 36 tags to extract the
tag sequences [28].

The results are shown in Table II. Additionally, we also
provide the CR and CR:POS values for three representative
fine-tuning datasets: Goh et al. [18], MG-Verilog [17], and
Magicoder-OSS-Instruct-75K [27] for comparison. A smaller
CR and CR-POS value indicates a higher level of diversity in
the dataset. We observe that RTLCoder-27K exhibits similar
diversity to the widely used Python benchmark and higher
diversity compared to the Verilog code datasets.

Imperfection in data functionality correctness. Our
dataset generation flow ensures the syntax correctness of all
instruction-code data samples, but cannot guarantee that every
data sample is functionally correct (i.e., code implements
the same functionality as described in instruction). This is
because automatically checking the functionality correctness

7

Fig. 12: The circuit type distribution of keyword pool, the obtained dataset RTLCoder-27K, RTLLM-1.1 [12] and VerilogEval [13].

RTLCoder-
27K

Goh et al.
[18]

MG-Verilog
[17]

Magicoder-OSS-
Instruct-75K [27]

CR 4.41 5.27 5.80 4.02
CR: POS 7.61 10.1 9.16 6.67

TABLE II: The diversity scores of 4 representative fine-tuning instruct
datasets. There are three Verilog datasets, including our RTLCoder-
27K, Goh et al. [18] and MG-Verilog [17]. We also evaluate a widely
used software (mainly Python) dataset, Magicoder-OSS-Instruct-
75K [27]. The lower value of CR and CR: POS, the higher dataset
diversity. RTLCoder-27K exhibits a satisfactory level of diversity
compared with the other three datasets.

of training samples is inherently a very challenging task.
Functionality checking for the Verilog code is practically
hardware verification, which has been studied for decades,
relies on human engineers, and is difficult to get guaranteed
results. Although the code in our proposed dataset has only
undergone syntax checks, finetuning the model using this
dataset can still lead to improved model performance on the
benchmarks as Table III shows in section IV. This indirectly
demonstrates the contribution of the proposed dataset.

Relation between RTLCoder and GPT-3.5. An interesting
observation is that, although we generate our training dataset
based on GPT-3.5, RTLCoder turns out to outperform the
GPT-3.5 baseline on representative benchmarks [12], [13].
One important reason is that, for each instruction, we have
employed a syntax checker to evaluate the reference code
generated based on GPT-3.5. Therefore, among all correct
and incorrect code from GPT-3.5, we filter out the obviously
incorrect ones and retain the largely correct ones for training
RTLCoder. This process can be viewed as a refinement of
GPT-3.5’s Verilog generation capabilities.

III. NEW TRAINING SCHEME INCORPORATING CODE
QUALITY FEEDBACK

Besides the new training dataset, we propose a new LLM
training scheme that incorporates code quality scoring. It sig-
nificantly improves the RTLCoder’s performance on the RTL
generation task. Also, we revised the training process from the
algorithm perspective to reduce the GPU memory consumption
of this new training method, allowing implementation with
limited hardware resources.

A. Existing Supervised Training on LLMs

This part will first introduce the existing supervised training
method for LLMs. Then we will further discuss its limitations
in RTL generation tasks. Suppose we have a training data
dateset {xi, yi} for i = 1, ..., N , where xi represents an design
instruction, yi represents the corresponding correct reference
code. Each sample of data will be split into a sequence of
tokens by certain rules during the preprocessing process. In
this paper, we use xi = {xt

i} and yi = {yti} for t = 1, 2, ..., T
to represent the tokenized sequence.

LLMs generate a sequence by continuously predicting the
next token based on the already generated previous ones.
For a decoder-only language model, which is the mainstream
LLM architecture, the probability of producing the next token
depends only on the previous output tokens and the input
instruction. We denote the probability of generating the t-
th token rt (rt can be any single token in the vocabulary)
as Pπ

(
rt | xi, y

<t
i

)
where π represents the model parame-

ters and y<t
i denotes the already generated previous tokens{

y1i , .., y
t−1
i

}
. Then the log probability of generating the

whole sequence can be written as:
∑T

t=1 logPπ

(
yti | xi,, y

<t
i

)
.

In the existing training method, Maximum Likelihood Esti-
mation (MLE) is commonly used to find the best parameters π
that maximize the log probability. The training flow is shown
in Figure 13(a). The loss is usually defined as below:

lossmle = −
T∑

t=1

logPπ

(
yti | xi,, y

<t
i

)
However, there exists a phenomenon named exposure
bias [29], [30]. Since the above sequence generation is au-
toregressive, which means the model always predicts the next
token based on its own generated previous ones r<t

i rather
than the reference tokens y<t

i . Therefore, even though the
probability of producing yti is high when given y<t

i in the
training, it can still result in a huge deviation from the
reference code in the generation process.

We have also observed this phenomenon in our experiments.
After the supervised training, the qualities of multiple gen-
erated code candidates for the same instruction may diverse
greatly in the performance aspect. They can include correct
code while at the same time including many low-quality an-

8

(a) Existing MLE training flow (b) Our training scheme based on quality score

Fig. 13: Comparison between (a) existing MLE-based LLM training flow and (b) our proposed LLM training flow.

swers. Some candidates exhibit serious nonsense duplication7.
To alleviate the exposure bias phenomenon, we suggest that

in addition to the reference code yi, the model’s generation
should also be considered in the training process. Since the
generation may be different from the reference code, it is
necessary to introduce a scoring mechanism to judge the
quality of generated candidates. We will give our detailed
solution in Section III-B.

B. Our Proposed Training Method

Our proposed training scheme is illustrated in Figure 13(b).
For each instruction, we will now collect multiple code candi-
dates generated by the initial pre-trained model. Then, we pack
these candidates and the original reference code yi together as
yi = {yi,k}, k = 1, 2, ..,K, where K represents the number of
generated code for one instruction. Next, all these candidates
will be scored by the scoring mechanism R(xi, yi,k) which
could be a syntax checker or unit test for functionality check.
We will then obtain a set of score zi = {zi,k}, k = 1, 2, ..,K,
denoting the quality for the code sample {yi,k}. In the training
process, we aim to make the model learn to assign relatively
higher generation probabilities to answers with higher scores.
In this way, the model not only learns from the reference code,
but also from the new information introduced by the quality
score feedback.

The conditional log probability (length-normalized) of gen-
erating the entire code yi,k is commonly written as:

pi,k =

∑
t logPπ

(
yti,k | xi, y

<t
i,k

)
∥yi,k∥

We calculate pi,k for all code candidates yi = {yi,k},
k = 1, 2, ..,K, then we normalize these pi,k values using a
softmax function, defining the probability of each code being
selected as:

si,k =
epi,k∑K
τ=1 e

pi,τ

This si,k reflects the model’s tendency to output the kth

code candidate, with higher probabilities indicating a greater
likelihood that the model will generate it.

To encourage the model to assign higher probability scores
to high-quality code, we can define a new loss function term:

7We notice that this duplication couldn’t be simply dealt with by adding
repetition penalty to the decoding process like other works in natural text
generation. Because some correct RTL design code also contain similarly
repetitive expressions.

Algorithm 1 Training scheme using gradients splitting

Input: The single data sample {xi, yi, zi}. Model forward function
si,k = fπ(xi, yi,k, zi,k). Loss calculation function Lπ(si, zi). GPU
affordable batch size J . Model parameters w.
Output: The derivative of the loss with respect to model
parameters: gi.

1: Group the sample {xi, yi,k} for k = 1, 2, ...,K into Q parts
based on batch size J .

2: initialize empty vector list temp. Initialize the gradients gi = 0.
3: for q ∈ Q do
4: Calculate si,k = fπ(xi, yi,k, zi,k), for k ∈ q.
5: Empty the computation graph
6: Calculate loss = Lπ(si, zi) //si = {si,k} for k = 1, ..,K
7: Backward process: tempk = ∂ loss/∂si,k, for k = 1, ...,K
8: for q ∈ Q do
9: Calculate si,k = fπ(xi, yi,k, zi,k), for k ∈ q

10: Backward process: gi = gi +
∑

k∈q tempk∂si,k/∂w
11: Empty the computation graph
12: Return gi

losscompare =
∑

zi,k<zi,τ

max (si,k − si,τ + λ, 0)

where λ is a threshold value.
To provide an intuitive explanation of this loss function

term, we provide a simple example. Suppose we have the ith

instruction and only two code candidates with initial selection
probability si,1 and si,2 with si,1+si,2 = 1 and si,1 > si,2. But
the first candidate has a lower quality score, i.e., zi,1 < zi,2.
Then the positive loss would drive model parameters to update
until the model assigns a new set of s∗i,1 and s∗i,2 so that
s∗i,2 − s∗i,1 ≥ λ is satisfied.

It is worth noting that this loss only depends on the relative
scores among multiple code candidates, so it can still be used
when answer quality cannot be precisely quantified. Finally,
We define the total loss as:

loss = losscompare + lossmle

C. Reduced Memory by Splitting Gradients

Directly calculating our new loss function even with 1
batch size would still require forwarding all code candidates
in a sample at once to maintain all the activation values.
This will lead to the O(K) space complexity and make the
GPU memory consumption prohibitively high in many large
language model training scenarios.

We propose a gradient-splitting approach for model training
based on quality score from an algorithm perspective. It can
achieve a O(1) space complexity as illustrated in Algorithm 1.

9

The gradients of loss with respect to w can be computed as
below: ∂ loss

∂w
=
∑
k

∂ loss

∂si,k

∂si,k
∂w

The property of the chain rule indicates that we can decompose
the gradient updates into several parts. Assume J is the
maximum allowable batch size for GPU consumption. We
divide the K candidates into Q groups based on the batch
size J . Firstly, we pass these groups through the forward
function separately and collect the obtained si values as lines
1-5 illustrate. In the second step, we calculate the loss function
and compute the derivative of the loss with respect to si in
lines 6-7, storing the temporary results in vector temp. In the
third step, we perform the forward operation on the original
Q groups again and for each forward operation, the obtained
si,k is multiplied by tempk in a dot product, followed by a
backward pass to accumulate the gradient in lines 9-12.

IV. EXPERIMENTAL RESULTS

A. Evaluation Benchmark and Metric

To evaluate the performance of Verilog code generation,
there are two representative benchmarks VerilogEval [13] and
RTLLM [12].

The VerilogEval [13] benchmark consists of two parts,
EvalMachine and EvalHuman, each including more than 100
RTL design tasks. We follow the original paper [13] and use
the widely-adopted pass@k metric in code generation tasks:

pass@k = Ei

(
1−

Ck
n−ci

Ck
n

)
where n is the total number of trials for each instruction and
ci is the number of correct code generations for task i. We set
n = 20 in this experiment. If any code in the k trials could
pass the test, then this task is considered to be addressed and
the pass@k metric reflects the estimated proportion of design
tasks that could be solved.

The RTLLM V1.1 [12] benchmark contains 29 RTL design
tasks at a larger design scale. We mostly follow the testing
method in the original paper [12], but further proposes two
slightly different metrics for evaluating syntax correctness,
using either Synopsys VCS [31] or Design Compiler [32].
They are denoted as Syn-VCS and Syn-DC, respectively. 1)
For the Syn-VCS metric, VCS not only requires the design
to comply with the Verilog syntax rules, but also requires
that the interface of the design correspond to the testbench,
so that the circuit can be simulated. 2) For the Syn-DC
metric, DC requires the design to be physically synthesizable.
The functionality result is obtained by VCS simulation. We
calculate the scores of the design syntax part and design
functionality part separately. In both parts, following the
original benchmark [12], each task is counted as success as
long as any of 5 trials passes the test. This can be interpreted
as pass@5 metric.

In the generation process, we set topp = 0.95 and
temperature = {0.2, 0.5, 0.8}. For all tested models (i.e.,
baselines, RTLCoder, and ablation studies), we evaluate all 3

Fig. 14: Training dataset analysis. (a) Tokens number distribution
of instruction and code part. (b) Similarity measurement between
training dataset and two benchmarks based on Rouge-L metric.

temperature conditions and report the best performance for
each model.

B. Examine Training Set for Fair Evaluation

To ensure a fair evaluation of our proposed RTLCoder,
before training, we explicitly examined the similarity between
samples in our proposed training dataset and those test cases in
benchmarks [12], [13], then we get rid of our training samples
that are similar to test cases during the training process.

To measure the similarity between two text sequences,
we employed the Rouge-L metric, which is a widely-used
similarity calculation scheme in the LLM domain such as by
OpenAI [1]. The Rouge-L score ∈ [0, 1], with values closer
to 1 indicating higher similarity between the two sequences.
For each instruction-code concatenated sample in the training
dataset, we computed its Rouge-L value with all test cases in
the benchmarks. In addition, we also separately analyzed the
distribution of token counts for instructions and code in the
dataset. The resulting statistic is in Figure 14.

From Figure 14 (a), we can see that a sample that consists
of one instruction and one code candidate is generally within
2048 token length. So we can set 2048 as the max length
in our finetuning. In Figure 14 (b), we observed that the
majority of training samples in the dataset have a low overlap
compared with the benchmark, with Rouge-L scores < 0.3.
However, there are still a small number of samples with higher
similarity. To ensure fair evaluation of the RTLCoder, we get
rid of all training samples with Rouge-L values > 0.5 which
counts about 100 samples.

C. Model Training

Based on our generated dataset with 27K instruction-
code pairs, we choose the latest Mistral-7B-v0.1 [26] and
DeepSeek-Coder-6.7b [33] as the basic pre-trained model
for finetuning. In all experiments, we opted for the Adam
optimizer with β1 = 0.9, β2 = 0.999, and learning rate γ = 1e-5,
while abstaining from the use of weight decay. Concurrently,
we established a context length of 2048 and a global batch size
of 256. We trained the model on only 4 consumer-level RTX
4090 GPUs (24GB each), each of which could only afford
2×2048 context length using DeepSpeed stage-2 [34]. Under
the hardware constraint, the training is impossible without the
proposed gradient-splitting method.

10

Model Type Evaluated Model
Num of

VerilogEval Benchmark [13] RTLLM V1.1 [12]

Params
(using pass@k metric) (using pass@5 metric)

Eval-Machine (%) Eval-Human (%) Syntax-VCS Func
k=1 k=5 k=10 k=1 k=5 k=10 (%) (%)

Closed-Source
GPT-3.5 N/A 46.7 69.1 74.1 26.7 45.8 51.7 89.7 37.9

Baseline
GPT4 N/A 60.0 70.6 73.5 43.5 55.8 58.9 100 65.5

ChipNeMo⋆ [4] 13B 43.4 N/A N/A 22.4 N/A N/A N/A N/A
VerilogEval⋆ [13] 16B 46.2 67.3 73.7 28.8 45.9 52.3 N/A N/A

BetterV⋆ [22] 7B 64.2 75.4 79.1 40.9 50.0 53.3 N/A N/A

Open-Source
Codegen2 [24] 16B 5.00 9.00 13.9 0.90 4.10 7.25 72.4 6.90

Baseline
Starcoder [25] 15B 46.8 54.5 59.6 18.1 26.1 30.4 93.1 27.6

Thakur et al. [14] 16B 44.0 52.6 59.2 30.3 43.9 49.6 86.2 24.1
MG-Verilog et al. [17] 7B 52.7 58.5 60.9 N/A N/A N/A N/A N/A

Goh et al. [18] 7B 40.6 48.4 54.4 N/A N/A N/A N/A N/A

Base Model
Mistral-7B-v0.1 [26] 7B 36.9 48.8 57.4 4.49 12.6 18.6 72.4 20.7

DeepSeek-Coder-6.7b [33] 6.7B 54.1 63.8 67.5 30.2 42.2 46.2 89.6 34.5

Less Training Data RTLCoder-Mistral-10k 7B 56.5 66.6 69.4 31.7 42.2 46.5 86.2 34.5
(10K Samples) RTLCoder-DeepSeek-10k 6.7B 55.3 70.4 76.2 36.7 47.0 50.4 79.3 37.9

Direct Training
RTLCoder-Mistral-Direct 7B 58.9 70.0 74.1 34.4 42.3 45.1 89.7 41.4

RTLCoder-DeepSeek-Direct 6.7B 59.8 73.6 77.2 39.1 48.3 51.3 86.2 44.8

RTLCoder

RTLCoder-Mistral-4bit 7B * 4bit 59.5 72.2 76.9 33.8 42.3 47.1 86.2 41.4
RTLCoder-DeepSeek-4bit 6.7B * 4bit 56.5 73.2 78.4 37.5 50.5 55.5 93.1 37.9

RTLCoder-Mistral 7B 62.5 72.2 76.6 36.7 45.5 49.2 96.6 48.3
RTLCoder-DeepSeek 6.7B 61.2 76.5 81.8 41.6 50.1 53.4 93.1 48.3

⋆We cannot directly evaluate VerilogEval [13], ChipNeMo [4] and BetterV [22] on RTLLM Benchmark due to closed-source models. We fully understand
and respect the authors’ privacy concerns. The accuracy values of VerilogEval [13], ChipNeMo [4], BetterV [22], GPT-3.5, and GPT-4 on the VerilogEval
Benchmark [13] are directly cited from the original publication [4], [13], [22].

TABLE III: Performance comparison of RTL code generators on VerilogEval Benchmark [13] and RTLLM Benchmark [12]. The top scores
ranked 1st, 2nd, and 3rd in each column are marked in Green , Blue , and Red , respectively. RTLCoder outperforms GPT-4 on EvalMachine
of [13]. It is only second to GPT-4 on the other benchmarks (EvalHuman of [13] and RTLLM [12]), outperforming GPT-3.5 and all others.

To implement our proposed training scheme, we first gen-
erated 3 code candidates for each instruction using the pre-
trained model with the Beam search method. Then we use
Pyverilog [35] as the syntax checker to score the code can-
didates. Specifically, we assigned a full score (i.e., 1) for the
reference code from the dataset and those candidates who can
pass the syntax check. For those who failed syntax checks, we
used the Rouge-L metric to assign the code similarity between
the candidate and reference code as its score.

In addition, considering GPU memory consumption is a
crucial factor that limits the applicability of LLMs, based
on quantization methodologies [36], we further quantize the
parameters of the obtained RTLCoder into 4 bits, gener-
ating RTLCoder-DeepSeek-4bit and RTLCoder-Mistral-4bit,
consuming only 4GB memory.

D. Experiment Results Overview

Table III summarizes the comparison of all relevant
RTL generation solutions, including commercial models
GPT3.5/GPT4, models customized for Verilog generation [13],
[14], [22], software code generators [24]–[26], [33], our pro-
posed RTLCoder and quantized version RTLCoder-4bit, and
ablation studies of RTLCoder. In addition, we further visualize
key results on VerilogEval benchmark in Figure 15.

Fig. 15: Visualization of key accuracy comparisons from Ta-
ble III, selecting pass@1 metric on EvalMachine and EvalHuman
of [13]. RTLCoder includes both RTLCoder-Mistral and RTLCoder-
DeepSeek. The baseline models include Thakur et al. [14], Chip-
NeMo [4] and VerilogEval [13].

In the VerilogEval benchmark [13], for both EvalHuman
and EvalMachine categories, RTLCoder-DeepSeek scores 61.2
and 41.6 respectively. It clearly outperforms GPT-3.5 and is
only inferior to GPT-4 among all the models in EvalHuman.
Specifically, in the EvalMachine part, RTLCoder-DeepSeek
and RTLCoder-Mistral even outperforms GPT4 by an absolute
value of 1.2% and 2.5%. A similar trend can be observed in
the RTLLM benchmark V1.1 [12]. RTLCoder is also second
only to GPT-4. In summary, RTLCoder outperforms GPT-3.5
and all non-commercial baseline models in all metrics on both
benchmarks. It is surprising that the lightweight RTLCoder

11

TABLE IV: Detailed Syntax and Functionality Evaluation Results using sampling generation method in RTLLM V1.1 [12]

Design
GPT-3.5 GPT-4 Thakur et al. [14] StarCoder[25] RTLCoder-Mistral-4bit RTLCoder-Mistral

Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func

accu 2 2 ✔ 5 5 ✔ 4 4 ✘ 3 4 ✘ 5 5 ✘ 4 4 ✘

adder 8bit 3 3 ✔ 4 4 ✔ 3 3 ✔ 2 4 ✘ 5 5 ✔ 5 5 ✔

adder 16bit 1 0 ✘ 3 3 ✔ 3 4 ✘ 2 3 ✘ 0 0 - 3 3 ✘

adder 32b 0 0 - 2 2 ✔ 1 0 ✘ 1 3 ✘ 1 0 ✘ 1 0 ✘

adder pipe 64b 5 5 ✘ 5 5 ✔ 0 0 - 0 0 - 1 1 ✘ 3 2 ✘

multi booth 8b 5 2 ✘ 5 5 ✘ 3 3 ✘ 4 3 ✘ 5 5 ✔ 5 5 ✔

multi 16b 5 0 ✔ 5 5 ✔ 3 3 ✘ 3 4 ✘ 4 2 ✘ 5 5 ✔

multi pipe 4b 0 0 - 2 2 ✘ 1 0 ✘ 3 1 ✘ 4 1 ✘ 2 0 ✘

multi pipe 8b 2 0 ✘ 5 5 ✘ 3 1 ✘ 2 3 ✘ 0 0 - 2 0 ✘

div 8bit 3 1 ✘ 5 1 ✘ 0 1 - 3 0 ✘ 3 1 ✘ 4 1 ✘

div 16bit 4 0 ✘ 5 4 ✔ 1 2 ✘ 1 1 ✘ 0 0 - 0 0 -

JC counter 5 5 ✘ 5 5 ✘ 3 3 ✘ 4 5 ✘ 5 5 ✔ 5 4 ✔

right shifter 4 4 ✔ 5 5 ✔ 0 2 - 3 3 ✔ 5 5 ✔ 5 5 ✔

synchronizer 5 5 ✔ 4 4 ✔ 4 4 ✔ 5 5 ✔ 4 4 ✔ 5 5 ✔

counter 12 5 5 ✔ 5 5 ✔ 2 4 ✔ 2 4 ✔ 5 5 ✔ 5 5 ✔

freq div 5 5 ✔ 5 5 ✔ 4 4 ✔ 4 4 ✘ 5 5 ✔ 5 3 ✔

signal gen 5 5 ✔ 5 5 ✔ 4 5 ✘ 4 4 ✘ 5 5 ✘ 5 5 ✘

serial2parallel 4 4 ✘ 5 5 ✔ 4 4 ✘ 4 4 ✘ 5 3 ✘ 5 3 ✘

parallel2serial 2 2 ✘ 5 5 ✘ 1 2 ✘ 3 4 ✔ 3 3 ✘ 3 2 ✔

pulse detect 4 4 ✘ 5 3 ✘ 4 3 ✘ 3 3 ✘ 5 5 ✘ 2 2 ✘

edge detect 5 5 ✔ 5 5 ✔ 4 5 ✔ 3 4 ✔ 4 2 ✔ 5 4 ✔

FSM 5 4 ✘ 5 2 ✘ 4 4 ✘ 5 5 ✘ 4 4 ✘ 5 5 ✘

width 8to16 4 3 ✔ 5 5 ✔ 4 1 ✔ 3 4 ✘ 5 5 ✔ 5 4 ✔

traffic light 4 0 ✘ 4 3 ✔ 5 2 ✘ 5 3 ✘ 4 0 ✔ 4 3 ✔

calendar 5 5 ✘ 5 5 ✔ 2 1 ✘ 5 4 ✔ 1 0 ✘ 5 5 ✘

RAM 4 0 ✔ 5 2 ✔ 5 5 ✔ 2 0 ✔ 3 0 ✔ 3 0 ✔

asyn fifo 0 0 - 3 2 ✘ 0 0 - 0 0 - 0 2 - 1 3 ✘

ALU 2 0 - 5 4 - 2 2 ✘ 1 0 ✘ 2 1 ✘ 1 0 ✘

PE 5 5 ✔ 5 5 ✔ 3 3 ✘ 3 5 ✔ 1 1 ✔ 5 5 ✔

Success rate 89.7% 65.5% 11/29 100% 100% 19/29 86.2% 86.2% 7/29 93.1% 82.8% 8/29 86.2% 75.9% 12/29 96.6% 79.3% 14/29

with only 7 billion parameters could achieve such impressive
accuracy despite its smaller size.

Furthermore, we validate the effectiveness of our pro-
posed dataset and algorithm through an ablation study. The
RTLCoder-Mistral-Direct and RTLCoder-DeepSeek-Direct are
directly trained with the existing method mentioned in Fig-
ure 13(a). Using our training dataset, they can already signifi-
cantly outperform the base model and even GPT-3.5 on part of
these indexes. Then the RTLCoders trained with our proposed
training scheme further outperform those using Direct training
method on all benchmarks, indicating that our training method
greatly further improves the model performance.

In addition, although the quantized model RTLCoder-
DeepSeek-4bit shows a slight performance degradation com-
pared to the original model, it is still superior to GPT-3.5 on
the VerilogEval benchmark and comparable to it on RTLLM
V1.1 with only 4GB size. Such RTLCoder-4bit can work on
a simple laptop, allowing it to serve as a local assistant for
engineers, addressing privacy concerns.

We also randomly selected 10K samples from the 27K
training dataset to finetune the base models and obtained
RTLCoder-Mistral-10k and RTLCoder-DeepSeek-10k respec-
tively. Compared with the two models, RTLCoders trained on
a 27K dataset are clearly superior on all metrics. Increasing the
size of the training dataset and enhancing its diversity clearly
further improves the model performance.

As for the pre-trained model selection, we can see that

different base model also has a significant impact on the
performance of the fine-tuned model. On one hand, RTLCoder-
DeepSeek slightly outperforms RTLCoder-Mistral in accuracy
on most benchmarks. This trend is consistent with the base
model’s relative accuracy (i.e., DeepSeek outperforms Mistral
in most benchmarks). On the other hand, the inference speed
of RTLCoder-Mistral is considerably faster than RTLCoder-
DeepSeek, largely because of the Grouped Query Attention
and Rolling Buffer KV Cache techniques used in Mistral.

E. Experiment Results in Detail

To further examine the performance in detail, for both
benchmarks [12], [13], we report RTLCoder’s performance on
each individual design case in both syntax and functionality
correctness.

We list the test results of RTLCoder-Mistral and available
baseline models on the RTLLM V1.1 benchmark for each
design task in Table IV. Given 5 trials of generation, here
we counted the number of passed cases in terms of Syn-VCS,
Syn-DC, and Functionality. As introduced, for both syntax and
functionality, we count one success if any of the 5 trials pass
the test. Generally, Syn-VCS is easier to pass than Syn-DC.

We further inspect the wrong answers in Table IV. We
observed that the overall code structures of wrong answers
from GPT-3.5, GPT-4, and RTLCoder-Mistral exhibit no ob-
vious mistakes, despite the functionality incorrectness. In

12

(a) EvalMachine syntax (b) EvalMachine functionality

(c) EvalHuman syntax (d) EvalHuman functionality

Fig. 16: Detailed syntax and functionality results of RTLCoder-
Mistral on VerilogEval Benchmark [13], reporting EvalMachine and
EvalHuman separately. Each sub-figure has 8 columns, and thus cell
at (i, j) represents the ((j−1)×8+ i)th task. The color of each cell
indicates the count of correct cases among 20 trials. EvalMachine
contains 143 tasks, so the last 1 cell is empty. EvalHuman contains
156 tasks, so the last 4 cells are empty.

comparison, the code generated by other open-source baselines
occasionally contains obviously redundant content or deviates
considerably from the given description. In terms of syntax,
we observed that both GPT and RTLCoder-Mistral frequently
assign 0 directly to two-dimensional arrays, resulting in syntax
errors. Regarding functionality, we noticed that for more com-
plex combinational logic circuits such as multi pipe 4bit and
multi pipe 8bit, and sequential logic circuits like pulse -
detect and FSM, some of the logical behaviors described in the
instructions are not adequately captured by all LLM solutions,
leading to functional errors.

The RTLCoder-Mistral’s results on VerilogEval Benchmark
are reported in Figure 16. Each cell in the image represents
one design case, with color indicating the number of successful
ones among all 20 trails. There are 8 columns in each image.
The location of cell (i, j) represents the ((j − 1) × 8 + i)th

design case in the provided description file. So we used white
cells to fill the cells in the last row (18th row for EvalMachine
and 20th row in the EvalHuman) that do not correspond to a
design task.

During the process of generating text sequences, the model
continuously repeats the behavior of predicting the next token.
For all models in our experiment, we adopt the sampling
method, which randomly selects the next token from the vo-
cabulary dictionary based on the probability distribution. Here
we further add an ablation study based on the beam search
method. A beam of the top “beam size” sub-sequences with
the highest generation probabilities is maintained and updated
during the generation process. We conduct experiments using

TABLE V: Ablation study of different decoding methods in RTLLM
V1.1 Benchmark [12]. The result of the sampling decoding method
is adopted and reported in the Table III.

Model
Sampling decoding Beam search decoding

[used in experiment] [for ablation study]
Syn-VCS Syn-DC Func Syn-VCS Syn-DC Func

Thakur et al. [14] 86.2 86.2 24.1 69.0 51.7 17.2
StarCoder[25] 93.1 82.8 27.6 58.6 58.6 17.2

RTLCoder-Mistral-4bit 86.2 75.9 41.4 75.9 65.5 31.0
RTLCoder-Mistral 96.6 79.3 48.3 75.9 72.4 37.9

beam search method with a beam size 5 on RTLLM V1.1 for
RTLCoder-Mistral and open source baselines. The results are
shown in Table V. The accuracies of all methods drop after
adopting beam search. RTLCoder-Mistral is still superior to
all the open-source baselines with beam search.

Verilog Python Cpp Sh
Mistral-7B-v0.1 4.49 25.2 30.1 9.07

DeepSeek-Coder-6.7b-v1 30.2 66.8 63.9 36.3
RTL-Coder Mistral 36.7 25.3 21.4 1.99

RTL-Coder DeepSeek 41.6 66.7 63. 0 32.6

TABLE VI: The pass@1 results of the trained RTLCoder and two
base models on different programming tasks

We also investigate the performance of the RTLCoder fine-
tuned on the Verilog task compared to its pre-train models on
other code-generation tasks. Table VI shows pass@1 results
on Veilog tasks from VerilogEval-Human [13], python tasks
from HumanEval+ [37], Cpp and Sh programming tasks from
[38]. RTLCoder-DeepSeek shows a significant improvement
over its base model in the Verilog task and performs similarly
to the base model in the other three programming tasks.
RTLCoder-Mistral, compared to its base model, also shows
better performance in the Verilog task but experiences more
performance degradation in the Cpp and Sh benchmarks. This
observation indicates that different pre-train models when fine-
tuned on the same specific task, exhibit varying degrees of
forgetting when applied to other benchmarks. Overall, such a
degradation in other programming tasks does not affect our
target application (i.e., circuit RTL generation).

V. LIMITATION AND FUTURE WORK

The results of GPT4 on VerilogEval-Human and RTLLM
1.1 are very impressive in Table III which indicates the sig-
nificant superiority of GPT4 to all the other reported models.
In our opinion, GPT-4, the most powerful large-scale model
by OpenAI to date, outperforms existing open-source models
for mainly three main reasons: 1) The size of the pre-training
dataset used by GPT-4 is orders of magnitude larger than our
adopted pre-trained models. The generation of a huge dataset
that enables high-performance LLM consumes a significant
amount of manpower and resources. 2) The GPT-4 model is
much larger in scale than any existing open-source model.
The scaling law [39] suggests that as the model parameters
increase, the model’s generalization and learning capabilities
also improve. 3) The alignment technique such as RLHF [40]

13

employed by GPT-4 can enhance the quality of the model’s
outputs, reducing incorrect answers, which is also one of
the motivations for us proposing the scoring-based training
approach in our paper.

Given limited resources, we believe there are several key
strategies for the open-source model to outperform GPT4 in
specific tasks.

• The diversity and coverage of the dataset can be further
improved. Due to limited manual efforts during dataset
generation, the training set primarily relies on guiding
GPT to create instructions. To further enhance the cov-
erage of the dataset for Verilog design problems, manual
inspection and creation for high-quality data sample gen-
eration can be conducted.

• The checking of functional correctness of the Verilog
code should be further explored if possible, using either
manpower or a reliable automated verification process.
Although our fine-tuned models have a significant per-
formance improvement and even outperform GPT-3.5,
reliable filtering based on functionality checking can
certainly further boost the model’s generation ability.

• The automated functionality checking for hardware is
challenging. A possible solution is to apply LLMs such
as GPT to also help generate verification assertions based
on instructions [41]. Then the code combined with asser-
tions can be verified by verification platforms such as
Cadence Jasper. However, the correctness of assertions,
since they are also automatically generated by LLMs, is
not guaranteed either. This may result in wrongly filtering
out many correct samples.

• The scoring-based training scheme can be improved by
applying automated functionality checking. This tech-
nique can hopefully enhance the model’s instruction
alignment capability.

VI. CONCLUSION

This work proposes a new LLM solution named RTL-
Coder for RTL code generation, achieving state-of-the-art
performance in non-commercial solutions and outperforming
GPT-3.5. We contribute a new data generation flow and a
complete dataset with over 27 thousand instruction-answer
samples, addressing the serious data availability problem in
hardware-design-related tasks. Also, we contribute a new
training scheme based on design quality scoring. It greatly
boosts the model’s performance. Importantly, RTLCoder has
been fully open-sourced. RTLCoder’s lightweight property and
low hardware barrier allow anyone to easily replicate and
further improve based on our existing solution. We expect
more brilliant LLM-based solutions in this agile hardware
design direction.

REFERENCES

[1] OpenAI, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774,
2023.

[2] L. Chen, Y. Chen, Z. Chu, W. Fang, T.-Y. Ho, Y. Huang, S. Khan,
M. Li, X. Li, Y. Liang et al., “The dawn of ai-native eda: Promises and
challenges of large circuit models,” arXiv preprint arXiv:2403.07257,
2024.

[3] Z. He, H. Wu, X. Zhang, X. Yao, S. Zheng, H. Zheng, and B. Yu,
“Chateda: A large language model powered autonomous agent for eda,”
in MLCAD Workshop, 2023.

[4] M. Liu, T.-D. Ene, R. Kirby, C. Cheng, N. Pinckney, R. Liang, J. Alben,
H. Anand, S. Banerjee, I. Bayraktaroglu et al., “Chipnemo: Domain-
adapted llms for chip design,” arXiv preprint arXiv:2311.00176, 2023.

[5] Y. Fu, Y. Zhang, Z. Yu, S. Li, Z. Ye, C. Li, C. Wan, and Y. Lin,
“Gpt4aigchip: Towards next-generation ai accelerator design automation
via large language models,” arXiv preprint arXiv:2309.10730, 2023.

[6] Z. Yan, Y. Qin, X. S. Hu, and Y. Shi, “On the viability of using llms
for sw/hw co-design: An example in designing cim dnn accelerators,”
arXiv preprint arXiv:2306.06923, 2023.

[7] Z. Liang, J. Cheng, R. Yang, H. Ren, Z. Song, D. Wu, X. Qian, T. Li,
and Y. Shi, “Unleashing the potential of llms for quantum computing: A
study in quantum architecture design,” arXiv preprint arXiv:2307.08191,
2023.

[8] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and
J. Rajendran, “Llm-assisted generation of hardware assertions,” arXiv
preprint arXiv:2306.14027, 2023.

[9] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “Fixing
hardware security bugs with large language models,” arXiv preprint
arXiv:2302.01215, 2023.

[10] K. Chang, Y. Wang, H. Ren, M. Wang, S. Liang, Y. Han, H. Li,
and X. Li, “Chipgpt: How far are we from natural language hardware
design,” arXiv preprint arXiv:2305.14019, 2023.

[11] J. Blocklove, S. Garg, R. Karri, and H. Pearce, “Chip-chat: Challenges
and opportunities in conversational hardware design,” arXiv preprint
arXiv:2305.13243, 2023.

[12] Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark
for design rtl generation with large language model,” arXiv preprint
arXiv:2308.05345, 2023.

[13] M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating
large language models for verilog code generation,” arXiv preprint
arXiv:2309.07544, 2023.

[14] S. Thakur, B. Ahmad, Z. Fan, H. Pearce, B. Tan, R. Karri, B. Dolan-
Gavitt, and S. Garg, “Benchmarking large language models for auto-
mated verilog rtl code generation,” in DATE, 2023.

[15] S. Thakur, J. Blocklove, H. Pearce, B. Tan, S. Garg, and R. Karri, “Au-
tochip: Automating hdl generation using llm feedback,” arXiv preprint
arXiv:2311.04887, 2023.

[16] M. Nair, R. Sadhukhan et al., “Generating secure hardware using chatgpt
resistant to cwes,” Cryptology ePrint Archive, 2023.

[17] Y. Zhang, Z. Yu, Y. Fu, C. Wan et al., “Mg-verilog: Multi-grained
dataset towards enhanced llm-assisted verilog generation,” arXiv preprint
arXiv:2407.01910, 2024.

[18] E. Goh, M. Xiang, I. Wey, T. H. Teo et al., “From english to asic:
Hardware implementation with large language model,” arXiv preprint
arXiv:2403.07039, 2024.

[19] S. Liu, Y. Lu, W. Fang, M. Li, and Z. Xie, “Openllm-rtl: Open
dataset and benchmark for llm-aided design rtl generation,” in 2024
IEEE/ACM International Conference on Computer Aided Design (IC-
CAD). IEEE/ACM, 2024.

[20] M. Li, W. Fang, Q. Zhang, and Z. Xie, “Specllm: Exploring generation
and review of vlsi design specification with large language model,” arXiv
preprint arXiv:2401.13266, 2024.

[21] K. Chang, K. Wang, N. Yang, Y. Wang, D. Jin, W. Zhu, Z. Chen, C. Li,
H. Yan, Y. Zhou et al., “Data is all you need: Finetuning llms for chip
design via an automated design-data augmentation framework,” arXiv
preprint arXiv:2403.11202, 2024.

[22] Z. Pei, H.-L. Zhen, M. Yuan, Y. Huang, and B. Yu, “Betterv: Con-
trolled verilog generation with discriminative guidance,” arXiv preprint
arXiv:2402.03375, 2024.

[23] M. Rapp, H. Amrouch, Y. Lin, B. Yu, D. Z. Pan, M. Wolf, and J. Henkel,
“Mlcad: A survey of research in machine learning for cad keynote
paper,” IEEE TCAD, 2021.

[24] E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, “Code-
gen2: Lessons for training llms on programming and natural languages,”
arXiv preprint arXiv:2305.02309, 2023.

[25] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[26] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[27] Y. Wei, Z. Wang, J. Liu, Y. Ding, and L. Zhang, “Magicoder: Source
code is all you need,” arXiv preprint arXiv:2312.02120, 2023.

14

[28] C. Shaib, J. Barrow, J. Sun, A. F. Siu, B. C. Wallace, and A. Nenkova,
“Standardizing the measurement of text diversity: A tool and a compar-
ative analysis of scores,” arXiv preprint arXiv:2403.00553, 2024.

[29] Y. Liu, P. Liu, D. Radev, and G. Neubig, “Brio: Bringing order to
abstractive summarization,” arXiv preprint arXiv:2203.16804, 2022.

[30] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in NeurIPs,
2015.

[31] Synopsys, “VCS® functional verification solution,”
https://www.synopsys.com/verification/simulation/vcs.html, 2021.

[32] ——, “Design Compiler® RTL Synthesis,”
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-
test/design-compiler-nxt.html, 2021.

[33] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,
X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming–the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

[34] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” in KDD, 2020.

[35] S. Takamaeda-Yamazaki, “Pyverilog: A python-based hardware design
processing toolkit for verilog hdl,” in Applied Reconfigurable Comput-
ing, 2015.

[36] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate
post-training compression for generative pretrained transformers,” arXiv
preprint arXiv:2210.17323, 2022.

[37] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[38] L. Ben Allal, N. Muennighoff, L. Kumar Umapathi, B. Lipkin, and
L. von Werra, “A framework for the evaluation of code generation mod-
els,” https://github.com/bigcode-project/bigcode-evaluation-harness,
2022.

[39] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” arXiv preprint arXiv:2001.08361, 2020.

[40] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma,
D. Drain, S. Fort, D. Ganguli, T. Henighan et al., “Training a helpful and
harmless assistant with reinforcement learning from human feedback,”
arXiv preprint arXiv:2204.05862, 2022.

[41] W. Fang, M. Li, M. Li, Z. Yan, S. Liu, H. Zhang, and Z. Xie, “Assertllm:
Generating and evaluating hardware verification assertions from design
specifications via multi-llms,” arXiv preprint arXiv:2402.00386, 2024.

Shang Liu received the B.E. degree in Automation
Science and Electrical Engineering from Beihang
University, Beijing, China, in 2023. He is currently
pursuing the Ph.D. degree with the Department of
Electronic and Computer Engineering, Hong Kong
University of Science and Technology, Hong Kong.
His research interests include agile VLSI design
methodologies and Artificial Intelligence.

Wenji Fang is currently a Ph.D. student with the
Department of Electronic and Computer Engineering
at the Hong Kong University of Science and Tech-
nology. He received his M.Phil. degree in Micro-
electronics from the Hong Kong University of Sci-
ence and Technology (Guangzhou) in 2024, and his
B.Eng. degree from Nanjing University of Aeronau-
tics and Astronautics in 2021. His research interests
include Electronic Design Automation (EDA) and
VLSI design verification.

Yao Lu received the B.E. degree from the School
of Electronic Science and Engineering, Southeast
University, Nanjing, China, in 2020, and the master
degree from the School of Microelectronics, Fudan
University, Shanghai, China, in 2023. She is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Electronic and Computer Engineering, The
Hong Kong University of Science and Technology,
Hong Kong. Her current research interests focus on
machine learning applications in EDA.

Jing Wang received the B.S. degree in Electrical
Information Engineering from Peking University,
Beijing, China, in 2022, and the master degree in
Artificial Intelligence from the Department of Statis-
tics and Actuarial Science, The University of Hong
Kong, China, in 2023. He is currently pursuing the
Ph.D. degree with the Department of Electronic and
Computer Engineering, Hong Kong University of
Science and Technology, Hong Kong. His research
interests include agile VLSI design methodologies
and Artificial Intelligence.

Qijun Zhang received the B.Eng. degree from
Tongji University, Shanghai, China, in 2022. He
is currently a Ph.D. student in the Department of
Electronic and Computer Engineering (ECE) at the
Hong Kong University of Science and Technology
(HKUST). His research interests include Computer
Architecture and Electronics Design Automation.

Hongce Zhang (Member, IEEE) received the B.S.
degree in microelectronics from Shanghai Jiao Tong
University, Shanghai, China, in 2015, and the Ph.D.
degree from the Electrical and Computer Engineer-
ing Department of Princeton University, NJ, USA,
in 2021.

He is currently an Assistant Professor with the Mi-
croelectronics Thrust, Function Hub of Hong Kong
University of Science and Technology (Guangzhou),
Guangzhou, China, and is also affiliated with the
Electronic and Computer Engineering Department of

the Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong SAR. His research interests include formal verification and hardware
model checking.

Zhiyao Xie is an Assistant Professor of the De-
partment of Electronic and Computer Engineering
(ECE) at the Hong Kong University of Science and
Technology (HKUST). Zhiyao received his Ph.D.
degree from Duke University in 2022 and B.Eng.
from City University of Hong Kong in 2017. His re-
search interests include machine learning algorithms
for EDA and VLSI design. He has received mul-
tiple prestigious awards, including the IEEE/ACM
MICRO 2021 Best Paper Award, ACM SIGDA SRF
Best Research Poster Award 2022, ASP-DAC 2023

Best Paper Award, ACM Outstanding Dissertation Award in EDA 2023,
EDAA Outstanding Dissertation Award 2023, and the 2023 Early Career
Award from Hong Kong Research Grants Council (RGC).

https://github.com/bigcode-project/bigcode-evaluation-harness

