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Convolutional neural networks (CNNs) successfully detect lithographic hotspots by learning from hand-

designed features of layout patterns or entire layouts, as images, in an end-to-end fashion. However, com-

pared to lithography simulation, CNN-based solutions demonstrate inferior hotspot detection accuracy and

a high false-alarm rate. Moreover, the interpretability of the hotspot prediction process has yet to be consid-

ered due to the “black-box” nature of CNNs. In this work, inspired by conventional lithography simulation

where defect regions are simulated as direct evidence for hotspot identification, we propose an explainable

two-stage CNN-based hotspot detector that considers both the accuracy and interpretability of hotspot de-

tection. Our architecture learns to locate the defect areas in the first stage as extracted hotspot features. In

the second stage, we combine the strength of feature engineering and end-to-end learning, incorporating

the original layout input, the learned defect location map from the first stage, and a fixed auxiliary region

of interest (ROI) map for final hotspot detection. Experimental results for our technique exhibit the highest

hotspot accuracy (98.1%) and the lowest false-alarm rate (4.0%) thus far compared to all prior CNN solutions.

We also demonstrate the best overall qualitative and quantitative interpretability results with the highest

increase in confidence (IC) and the lowest average drop (AD) in scores when CNN interpretation methods

such as Grad-CAM-based approaches are applied. We further demonstrate use cases of our technique for suc-

cessfully justifying and pinpointing hotspot mispredictions by examining the prediction evidence from our

learned defect locations.
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ologies→ Neural networks;
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1 Introduction

Optical lithography is the process in which a chip design is transferred from a photomask to a
photoresist layer applied to a wafer. In advanced technology nodes, complex interactions between
light patterns in lithography have made printed patterns sensitive to process variations, resulting
in printing defects known as lithographic hotspots. To avoid yield loss, designers must identify
these potential design defects as early as possible. This process, known as lithographic hotspot
detection, is a critical step in the physical design of a computer-aided design (CAD) flow.

Over the years, various methods have been proposed to detect lithographic hotspots, includ-
ing lithography simulation [12, 26], pattern matching (PM) [16, 42, 47], and machine learning

(ML)/deep learning (DL)-based approaches [31, 44, 46, 48]. Among these, lithography simulation
is deemed the golden solution due to its high accuracy, as shown in Figure 1. It applies mathemat-
ical and physical modeling of the lithography process on the layout patterns and simulates the de-
fect regions, i.e., error markers, between problematic metals. However, it is also time-consuming.
PM-based approaches, on the other hand, speed up the detection process by analyzing the feature
characteristics of layout patterns against a library of known hotspots. However, a new hotspot that
has not been seen before and is not included in the library may go undetected. Recent studies use
ML/DL models for hotspot detection by learning the correlations between hotspot and non-hotspot
features and their ground-truth labels from many simulated layout clips. These trained ML/DL
models can achieve a much faster turnaround time than lithography simulation and improved
accuracy and generalization over PM-based approaches, promising new directions for achieving
both speed and accuracy in lithographic hotspot detection.

Early ML/DL-based solutions involved feature engineering of layout clips followed by ML mod-
els or convolutional neural networks (CNNs) [10, 11, 28, 42, 46, 48, 50]—for instance, bounded
rectangle-based representation [48], fragmentation-based signature extraction [10, 11], concentric-
circle-based sampling [50], and density transforms [28, 42] were used as layout feature inputs to
ML models for layout classification. DCT coefficients were used in [46] to denote layout features
and further analyzed by CNNs for hotspot detection. However, handcrafted feature engineering
has limitations as it can exclude other important layout information crucial for hotspot detec-
tion, such as overall structure and relative positions between polygons, resulting in less optimal
detection accuracy. Given the compelling feature extraction and expressive capability of CNNs,
end-to-end lithographic hotspot detection has become the standard practice for all DL methods.
It achieves state-of-the-art (SoTA) accuracy compared to all previous PM and ML methods thus
far, where layout patterns are represented as images as direct input to a CNN without any loss of
information. Many CNN architectures have been explored for hotspot detection, including bina-
rized neural networks [19], Inception networks with attention modules [15], automated searched
architectures [9], and more.

However, despite the promising performance of end-to-end CNN hotspot detection, pressing
hurdles hold back the widespread adoption of CNN-based solutions. These include the following:

(1) Inferior detection accuracy. Ample and balanced training data are essential to a neural
network’s performance. However, in lithographic hotspot detection, hotspot samples are
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(a) Layout clip (b) HS simulation (c) NHS simulation

Fig. 1. (a) Layout clip and lithography simulation outputs of (b) hotspot and (c) non-hotspot clips. Error

markers are in red, and regions of interest (ROI) are in pink.

Fig. 2. Illustration of the training process (green arrow) of a CNN-based hotspot detector, where lithography

simulation (orange arrow) provides the ground-truth labels for layout inputs.

generally far fewer than non-hotspots for training. Designers pursue overall accuracy but
prioritize hotspot accuracy over non-hotspot by using higher class weight for hotspots [23]
or biased learning [46] in training optimization; such tradeoffs usually result in a high false-
alarm rate where non-hotspots are mispredicted. All prior works using CNNs maintain a
tradeoff between hotspot and non-hotspot accuracy, and both are less accurate than the
simulation-based approach, leaving room for more accurate layout feature extraction and
classification within the DL framework.

(2) Lack of interpretability. In contrast to conventional hotspot detection based on lithogra-
phy simulation tools whose mathematical modeling forms the basis for explanation, CNN-
based models rely on neural networks, and the exact contribution of each convolutional layer
is not explicitly known. These include their computing paradigms and weights of neurons
that all remain obscure to humans for hotspot identification. The rationale for the prediction
results of CNN-based hotspot detectors has yet to be probed in all prior work. Thus, we aim
to address this problem by improving the interpretability of CNNs used for hotspot detection.

It is worth noting that CNN training uses lithography simulation for layout ground-truth label-
ing, and error markers denoting printing defects are simulated for hotspot determination within
a predefined region of interest (ROI), as shown in Figure 2. Upon obtaining these hotspot/non-
hotspot labels, CNN-based hotspot detectors learn to classify layout features or entire layouts di-
rectly into binary categories. However, these error marker results, where hotspots occur, present
direct evidence for identifying a hotspot but are entirely discarded and excluded from the learning
process of DL solutions. As far as we know, all the prior work on CNN-based hotspot detection
ignores such essential information and only relies on the resulting layout labels for training.

In this work, we seek to explain the final classification results of our end-to-end CNN hotspot
detector instead of the internal function of each filter/module. In natural image classification tasks,

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 3, Article 40. Publication date: March 2025.



40:4 C. Jiang et al.

the interpretation results via interpretation methods should align with human interpretations of
what the classified object typically looks like and can be visualized as specific patterns of an ob-
ject. However, in the context of clip-based hotspot detection, there is no single polygon pattern
alone that leads to the prediction of a hotspot clip but complex interactions during lithography of
proximate polygons within a certain region of the clip. We consider this region the root cause and
the critical area for a CNN to make a hotspot prediction. As a result, instead of identifying specific
patterns, we explain the end results of our classification CNN using its focused region within the
layout clip and inspect whether this region actually contains a defect.

Inspired by lithography simulation, in this work, we propose an explainable two-stage CNN-
based hotspot detector to combine the strengths of feature engineering and end-to-end learning.
In the first stage, we abstract the lithography simulation process and learn its resulted defect loca-
tions as extracted hotspot features of layout clips, which we further integrate into the second stage
with the original layout clip and the predefined ROI map as additional feature channels, producing
a novel three-channel feature for hotspot classification. Compared to prior work, experimental re-
sults demonstrate that our proposed architecture produces the highest hotspot accuracy, the lowest
false-alarm rate, and the most accurate interpretation when commonly used CNN interpretation
methods are applied.

Our contributions include:

— A CNN-based lithographic hotspot detector where layout defect locations are explicitly
learned for improved prediction accuracy and interpretability

— A two-stage CNN-based lithographic hotspot detector using combined feature engineering
and end-to-end learning, yielding more accurate feature extraction and classification

— Extensive exploration and insights on the accuracy and interpretation of CNN-based hotspot
detectors across a range of architectures and interpretation methods

— Successful identification of hotspot mispredictions based on learned defect locations of our
proposed architecture

The rest of this article is organized as follows. In Section 2, we examine the interpretability of
existing CNN-based hotspot detectors and explore a case study using error markers as hotspot fea-
tures for classification. This motivates our design of an explainable two-stage CNN-based hotspot
detector. To provide the technical preliminaries of our design, we present in Section 3 the basics of
CNN, CNN interpretation methods, and the concept of lithographic hotspot detection. Following
this, we describe our two-stage CNN-based hotspot detector in Section 4, detailing the proposed
CNN architecture with training data augmentation and preprocessing methods. We then describe
our experimental setups with datasets, baseline models for comparison, and CNN interpretation
methods for evaluation in Section 5. We demonstrate, via our experimental results in Section 6, that
our model achieves the highest accuracy and interpretability results compared to all prior work,
which we further discuss in Section 7. We contextualize our work with related work in Section 8
and conclude in Section 9.

2 Motivation

2.1 Interpretability of Existing CNN-based Hotspot Detectors

Model interpretation aims to answer the question: “Why does the model make this decision?”
An interpretable CNN model is assumed to be able to reasonably explain its predictions, thus
significantly enhancing user trust and providing valuable insights for further model improvement.
Although significant achievements have been made in explaining CNNs for image classification
tasks, they have yet to receive attention in CNN-based lithographic hotspot detection.
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(a) Layout clip (b) Simulation (c) TCAD’19 (d) TCAD’20 (e) TCAD’22

Fig. 3. (a) A layout clip, (b) its lithography simulation result with error markers (in red), and its Grad-

CAM [34] interpretations of the prediction results made by various CNN-based hotspot detectors, including

(c) TCAD’19 [46], (d) TCAD’20 [19], and (e) TCAD’22 [15].

To motivate our research on explainable CNN-based hotspot detectors, we examined the in-
terpretability of existing CNN-based hotspot detectors used in prior work, including those from
TCAD’19 [46], TCAD’20 [19], and TCAD’22 [15]. We applied a commonly used CNN interpreta-
tion method, Grad-CAM [34], to obtain corresponding explanatory heatmaps for each CNN given
an input layout clip, as shown in Figure 3. In the heatmap, red areas indicate areas a CNN pri-
marily focuses on and substantially influence the model’s predictions. In contrast, blue regions are
relatively less influential in the model’s predictions. The visual interpretation results in Figure 3 re-
flect the crucial areas that different CNN hotspot detectors rely on for their hotspot determination.
Without exception, all these highlighted areas either are on the boundary or corners of the lay-
out or have no causal relationship with the “hotspot” defect areas. These highlighted areas are far
from the ground-truth error markers (Figure 3(b) in red) and their surrounding regions, which are
the actual areas that cause and enclose the hotspot. These results suggest the poor interpretability
of these hotspot detection CNNs despite their SoTA detection accuracy, raising severe concerns
about the reliability and trustworthiness of their predictions of hotspots. Therefore, it’s imperative
to develop an explainable CNN model that can accurately focus on the root-cause areas of a layout
clip for hotspot identification that adheres to lithography principles and provides high detection
accuracy at the same time.

2.2 Case Study: Classifying Error Markers into Hotspots

Enlightened by the fact that the highly interpretable lithography simulation relies on defect infor-
mation for hotspot identification, a natural idea is to use defect locations as the extracted layout
features for a CNN-based hotspot detector.

To verify this idea, we conduct a case study that uses simulated error marker maps from lithog-
raphy simulation as the input for a simple four-layer neural network with three convolutional
layers and one fully connected layer. We classify the error marker maps and, thus, the underlying
layout clips into hotspot and non-hotspot. We use the dataset and experimental setups described
in Section 5.1. Our experimental results in Table 1 show that it achieves 96.3% hotspot accuracy
and a 5.5% false-alarm rate, comparable to the SoTA detection accuracy of prior hotspot detectors
as we later show in Table 2. For a fair comparison, we train the same four-layer neural network
to directly classify the layout clips instead of the error markers into binary classification, which
obtains 81.9% hotspot accuracy and a 20.7% false-alarm rate, far inferior to the detection accuracy
obtained using error marker inputs.

Our experimental results based on several CNN architectures in Table 1 suggest that using error
markers as hotspot features is far more effective than end-to-end learning using layout inputs
for hotspot detection. A relatively simple CNN can achieve such high accuracy, demonstrating its
advantage in accuracy by identifying genuine hotspot features for classification.
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Table 1. Comparison of Hotspot Detection Accuracy (%) between Using

Inputs of Layout Clips and Error Markers

Model Input Layout Clip Error Marker

Four-layer CNN
Hotspot Accuracy 81.9 96.3

False-alarm Rate 20.7 5.5

ResNet50
Hotspot Accuracy 91.0 95.1

False-alarm Rate 0.9 0.1

ResNet152
Hotspot Accuracy 89.4 99.8

False-alarm Rate 1.1 0.1

Fig. 4. Grad-CAM explanations of VGG-16 for (a) an input image when predicting (b) the house finch class

and (c) the house class.

Motivated by our case study, our development in the next step of an explainable CNN-based
hotspot detector involves the localization of layout defects and the following classification network
that classifies these learned defects into hotspot/non-hotspot.

3 Preliminary and Problem Formulation

To appreciate the potential of explainable CNN-based lithographic hotspot detection, we present
relevant technical preliminaries for CNN interpretation methods and formulate our problem of
explainable CNN-based hotspot detection with evaluation metrics.

3.1 CNN Interpretation

CNNs have achieved great success in classification tasks, and they are also the most commonly
used architecture in DL-based lithographic hotspot detection. However, their unique computing
paradigm, equipped with specific network parameters, makes them extremely difficult for humans
to understand and interpret. One line of CNN interpretation methods [5, 18, 30, 32, 34, 41] has been
proposed to rationalize CNNs’ prediction by attempting to identify discriminative regions of an
input that positively influence the prediction of a specific class. An explanation mask highlights
these regions with pixel-wise weights, as illustrated in Figure 4. Among these methods, Class

Activation Map (CAM)-based techniques [5, 18, 34, 41] are now SoTA in CNN interpretation. In
CAM, the explanation mask is obtained by linearly combining a weighted sum of each feature map
in the output of the last convolutional layer, which is known for capturing high-level semantics of
the target class for prediction, as shown in Equation (1):

MCAM = Upsample

(
ReLU

(∑
k

αkAk

))
. (1)

ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 3, Article 40. Publication date: March 2025.



LithoExp: Explainable Two-stage CNN-based Lithographic Hotspot Detection 40:7

Here αk represents the “importance” of thekth feature mapAk for predicting a target class. Various
CAM-series CNN interpretations differ, in large part, in the way they assign αk .

3.2 Lithographic Hotspot Detection

Lithography simulation applies optical and resist models on layouts, producing contours that re-
semble actual printed images. The simulation results are then compared against predefined design
rules to identify hotspots, such as line width and spacing between metals. To avoid high com-
putational costs and excessive runtime for full-layout lithography simulation, designers usually
partition layouts into clips using a sliding window. Each clip undergoes a separate lithography
simulation. Since only the central area within the clip has access to all its proximal information
for lithography, we refer to this central region as the ROI for each clip, as shown in pink in Figure 1.
In all the clips, only ROIs that are predefined as a fixed area are examined for hotspots. A clip is
classified as a “hotspot” if the simulated defect is inside the ROI or its overlap with the ROI is above
a predefined threshold (e.g., 30%) of its own area. Otherwise, it is classified as a “non-hotspot.”

3.3 Problem Formulation

Lithographic hotspot detection aims to (1) identify as many actual hotspot clips as possible to
increase yield and (2) avoid misprediction on layout clips that are non-hotspots, which can lead
to wasted design effort. When a CNN model is used for detection, the objectives also include
reasonable interpretation of its predictions through qualitative and quantitative analysis of the
explanation mask generated by a commonly used CNN interpretation method.

We define the following metrics to evaluate the classification performance of a CNN-based
hotspot detector:

Definition 1 (Hotspot Accuracy (HA)). The ratio of actual hotspot clips that are truthfully pre-
dicted as hotspots, which indicates how well the hotspot detector can identify real hotspots among
defective designs.

Definition 2 (False-alarm Rate (FAR)). The ratio of actual non-hotspot clips that are mispre-
dicted as hotspots, which measures the undesired misdiagnosis that causes wasted effort in re-
simulation for non-hotspot verification.

The explanation mask displays the specific input regions that a CNN uses to predict a particular
class. In an ideal explainable CNN, these input regions should be intuitive to humans or are con-
sistent with the laws of physics, thus providing reasonable visual interpretation. Moreover, these
highlighted regions should fulfill two criteria: (1) they should be complete, meaning that they in-
clude all the essential information pertaining to the target class, and (2) they should exclude any
irrelevant information that is not useful or could even negatively impact the target prediction.
Therefore, we quantitatively evaluate the interpretability of a CNN-based hotspot detector using
the following two metrics, as in prior literature [5, 41].

Definition 3 (Increase in Confidence (IC)). The ratio of T real hotspots that have increased
hotspot prediction score p ′ than their original prediction score p, when the explanation mask is
applied to the layout clip as input to the CNN hotspot detector, as shown in Equation (2):

IC =
1

T

T∑
i=1

{p ′i <= pi : 0, 1}. (2)

The IC score measures how much irrelevant information is removed from the original layout clip
when an explanation mask is applied to the input. This reduction of irrelevant information can
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potentially improve the accuracy of the target prediction. Therefore, more explainable CNNs

tend to have higher IC scores.

Definition 4 (Average Drop (AD)). The drop ratio of hotspot prediction score p ′ when the expla-
nation mask is applied to the layout clip as input to the CNN hotspot detector, compared to their
original prediction score p. When the masked clip increases hotspot prediction, the drop is 0. The
AD is averaged over all T actual hotspots and calculated as in Equation (3):

AD =
1

T

T∑
i=1

max(0,pi − p
′
i )

pi

. (3)

In contrast to the IC score, the AD score measures the integrity of the critical information related
to the target class that remains within the input after explanation masking. Incomplete target
information can undermine its prediction. Therefore, more explainable CNNs usually result

in lower AD scores.

With the above evaluation metrics, we formulate the CNN-based lithographic hotspot detection
problem as follows:

Problem 1: Explainable CNN-based Hotspot Detection—given layout clips with ground-
truth hotspot/non-hotspot labels and corresponding error markers from lithography simulation,
we want to train a CNN-based classifier that (1) maximizes the HA and minimizes the FAR and
(2) maximizes the IC and minimizes the AD when applying CNN interpretation methods.

4 Proposed Method

4.1 Overview

Complex interactions between light and layout patterns during lithography result in printing de-
fects where open or short circuits occur. Lithography simulation proactively identifies these sus-
pected problematic metals and denotes them with error markers. The locations of these possible
printing defects directly determine a hotspot if it overlaps with the ROI by a predefined amount,
and we deem such defect locations the root cause for a hotspot layout. Our case study using error
markers for hotspot classification in Section 2.2 has demonstrated the potential of CNN hotspot
detection based on defect locations. Intuitively, we can learn to localize these defect regions as in-
put features for a hotspot detector instead of aimlessly learning hard-to-interpret hotspot features
end to end as in prior work.

Learning the locations of defect regions has dual benefits: (1) the guided learning of defect loca-
tions extracts genuine features for hotspot detection, which presumably increases detection accu-
racy, and (2) as in lithography simulation for hotspot identification, hotspot root causes are taken
as inputs to the hotspot detector, which enables interpretability and transparency of a CNN-based
hotspot detector. Therefore, we propose a two-stage CNN-based hotspot detector, as shown in
Figure 5, that learns to localize defect locations at the first stage and incorporates them as hotspot
features for classification at the second stage.

4.2 Preprocessing of Error Markers

In all prior work on CNN-based lithographic hotspot detection, simulated error markers are solely
used for layout ground-truth labeling but excluded from the training optimization loop. In this
work, we augment the training dataset with simulated error markers and use them to learn the
defect maps, i.e., blank layouts with defects only, as the critical layout features. In this case, sim-
ulated error markers are used as ground truth for these learned defects. Specifically, we train a
feature extractor using simulated error markers as the learning targets. The extractor inputs the
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Fig. 5. Illustration of our proposed explainable two-stage CNN-based hotspot detection.

Fig. 6. (a) Original error marker, (b) preprocessed error marker, and (c) learned defect location map.

layout clip and outputs a learned defect map of the same size, similar to the process in lithogra-
phy simulation. Such a feature extractor is expected to extract as many defects as possible with
minimum omissions, and the defect occupations should be restrained enough without mistakenly
identifying any background areas as defects.

However, precise defect learning presents several difficulties. On the one hand, as error markers
occupy a minuscule area in the defect map, accurately finding their coordinates poses a significant
challenge. On the other hand, the error marker shapes vary, adding more obstacles to the feature ex-
tractor. In fact, instead of attributing defects with precise coordinates and shapes, we are primarily
interested in their locations within the defect map; this indicates that employing simple-to-learn
shapes to indicate the defect locations is appropriate in our task. Thus, we propose a preprocessing
method for the error markers to facilitate defect localization.

As shown in Figure 6, we substitute the original error markers with round shapes proven to ease
the learning process [2]. Specifically, we define circumcircles to locate different defect regions, each
with a minimum radius ri covering the entire ith original error marker. To avoid overlap between
error marker locations, we restrict the radius of the round shape to be no larger than 1/10 of the
layout width s . This constraint is mainly for cases of large error markers, which usually reside on
the margins of the clip. We place the origin of the round shape in the center of the error marker
and constrain the radius of the processed defect location as shown in Equation (4):

ri ←min
(
ri ,

s

10

)
. (4)

We assign different weights to different parts of a round shape to characterize their varying im-
portance as hotspot features and introduce attenuating importance from the center to the margins
of the round shapes. We represent the defect locations with varying pixel intensities—the outside
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areas are denoted with smaller pixel values, and the centers have larger pixel values. Specifically,
we use three-level pixel intensities to represent each pixel in the round shapes, which are equally di-
vided over the radius, and from the center to the outside are valued by 1, 2/3, and 1/3, respectively.

4.3 Combining Feature Engineering and End-to-end Learning

We learn the locations of hotspot defect areas as extracted features to help improve prediction ac-
curacy when followed by a classification network. However, deficiencies exist in the localization
results that lead to inferior detection accuracy when the learned defect maps are directly classified
into hotspots and non-hotspots, as we later show in the experimental results in Figure 9(b) and
Table 4. On the one hand, the learned defect location maps may not encompass all defect loca-
tions, potentially missing critical defects that highly intersect with the ROI, i.e., hotspots, leading
to classification errors. On the other hand, the generated defect maps unavoidably include noise,
compromising classification accuracy. Furthermore, structural information of the layout clips and
the proximity of the defects are not included in the defect location maps but are beneficial for
hotspot detection. Therefore, we include both learned defect location maps and original layout
clips as inputs to our CNN hotspot detector, which combines the strengths of feature engineering
and end-to-end learning by providing a shortcut to the root cause of hotspot prediction and com-
pensating for any deficiency in the extracted hotspot features by including the original layout clip
as in end-to-end learning.

We note that not all simulated error markers cause actual printing defects, and only those in-
tersected with the central ROI are deemed to result in hotspots. In prior work, the CNN hotspot
detector has to explore this ROI effect in determining a hotspot by learning from massive training
samples, which increases the difficulty of effective feature extraction for hotspot detection. In this
work, instead of implicitly learning the ROI features from training data, we introduce an ROI map
as an additional feature map in addition to the learned defect location map and original layout
clip. Such an ROI map uses the same ROI as in lithography simulation for labeling the training
clips, and it’s predefined and fixed as an internal network parameter. This ROI map explicitly em-
phasizes the “real” hotspot features for prediction, reducing the learning difficulty of identifying
actual defects for the final classification task.

Thus, we combine the learned defect location maps with the original layout clips and a prede-
fined ROI map that include distilled (defect locations), constraining (ROI map), and overall layout
information (layout clip) and formulate three-channel features for the following classification net-
work for hotspot detection.

4.4 A Two-stage CNN for Hotspot Detection

To facilitate defect localization trained on preprocessed error markers and the following classifica-
tion of combined feature maps, we propose a two-stage CNN hotspot detector where each stage
has different CNN designs. In the first stage, we aim to locate the layout defect regions and formu-
late a defect location map as hotspot features for further classification in the second stage. Inspired
by image segmentation tasks in computer vision [20, 21], we adopt and modify a commonly used
segmentation network, the FCN8s [29], for defect localization. Instead of segmenting each pixel
in the layout into specific categories as in image segmentation, we learn the actual pixel values of
the preprocessed error markers as described in Section 4.2.

In the second stage, we take as input the three-channel feature map consisting of the original
layout clip, the learned defect location map, and the predefined ROI map used in layout labeling,
as described in Section 4.3. To extract spatial information in the three-channel feature map, we
apply four consecutive convolutional layers followed by one fully connected layer with sigmoid
activation for the final hotspot/non-hotspot classification.
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Fig. 7. Architecture of our two-stage CNN hotspot detector.

We show our two-stage CNN architecture in Figure 7, where the ConvBlock consists of two
consecutive convolutional layers, each followed by a batch normalization and ReLU activation.
We represent the output dimensions of network layers within parentheses.

We train the two-stage networks separately and sequentially. In stage 1, we first train the neural
network with learning targets of preprocessed error markers, which generates a learned defect
location map for each training layout clip. These learned defect location maps, along with their
original layout clips and the fixed ROI map, are used as training inputs for the neural network in
the second stage. The training optimization in the two stages uses an MSE and cross-entropy loss,
respectively, as shown in Equation (5):

L1 =
∑
x ∈D

MSE(ME , F1(x))

L2 =
∑
x ∈D

−y log
(
F2(x , F1(x),MR)

)
.

(5)

Here, the training loss L1 for stage 1 and L2 for stage 2 are summed up over all training clips x in
datasetD with ground-truth labelsy ∈ [0, 1]. We denote the first-stage defect localization network
F1 and the second-stage classification network F2. ME is the learning target of the preprocessed
error markers map in the first stage, and MR is the predefined ROI map in the second stage.

5 Experimental Setup

5.1 Dataset

We experiment with the same dataset used in prior work [22, 31], which uses 45 nm FreePDK for
its design and Mentor Calibre [35] for lithography simulation. We note that other commonly used
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datasets, such as ICCAD-2012 [40], have proprietary simulation settings and parameters and thus
cannot be used here for lithography simulation and error marker generation. We divide the chip
layout into clips of 1, 110 nm × 1, 110 nm in GDSII format, with the ROI set at the center of each
clip, measuring 555 nm × 555 nm. Defect location maps for each layout clip are generated by
lithography simulation and saved as GDSII files in the same dimensional size as the layout clip.

To prepare the clips as appropriate input to the neural network, we use the gdspy library [25]
to convert each clip and its corresponding defect location map into images and resize them to
256 × 256. We use binary pixel values; metal areas have a pixel value of 1, and the unpopulated
regions are 0. In the preprocessed defect location map, we use three-level pixel intensities 1/3, 2/3,
and 1 to represent defect round-shape locations from the outside to the center. Our training dataset
comprises 250,509 hotspots and 268,466 non-hotspots, and the test dataset includes 999 hotspots
and 19,001 non-hotspots nonoverlapping with the training data.

5.2 Baseline Hotspot Detectors

We compare our proposed hotspot detector with three baselines from prior work using CNNs.
One is a CNN using hand-designed features as inputs, i.e., the DCT coefficients of layout clips [46],
and the other two are representative end-to-end learning networks [15, 19]. We denote them as
TCAD’19, TCAD’20, and TCAD’22, respectively. TCAD’19 consists of 4 convolutional layers and 2
fully connected layers, TCAD’20 consists of 10 binarized convolutional layers grouped in 4 blocks
with residual connections, and TCAD’22 uses 5 Inception and attention blocks followed by 3 fully
connected layers.

5.3 CNN Interpretation Methods

To interpret the CNN’s prediction of a specific class, we use SoTA CNN interpretation methods, e.g.,
the CAM-based series [18], to highlight the discriminative regions that positively affect a target
prediction. We apply Grad-CAM [34], Grad-CAM++ [5], LayerCAM [18], and ScoreCAM [41] to
the feature maps of the last convolutional layers in our proposed architecture and layout-clip-
classification baselines to obtain the explanation masks for each network, which we superimpose
on the layout clip for better visualization. In the quantitative evaluation of the interpretability of
each network, we apply the explanation masks on the input layout clips to calculate the IC and
AD scores as defined in Section 3. Specifically, in our architecture, we mask our layout clip in the
three-channel features to the second-stage classification network.

5.4 Experimental Platform and Training Hyperparameters

We implement our two-stage CNN-based hotspot detector in Python 3.7 with Tensorflow 2.8.0 and
test on a server with Xeon W-3335 CPU and Nvidia GeForce RTX 3090 GPU. We train each of the
two-stage CNNs separately for 10 epochs with an SGD optimizer, with a batch size of 32 and a
learning rate of 0.001.

6 Experimental Results

6.1 Classification Accuracy and Interpretation Results of Different Hotspot Detectors

Table 2 presents the classification accuracy and inference time of our proposed two-stage CNN
hotspot detector against three baselines and their interpretability results for hotspot clips under
various interpretation methods.

Accuracy. Our proposed architecture achieves the highest HA of 98.1% and the lowest FAR of
4.0%. TCAD’19 using DCT coefficients as layout features exhibits the lowest detection accuracy,
suggesting higher efficiency of end-to-end learning (TCAD’20, TCAD’22) and our combined archi-
tecture than feature engineering-based methods.
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Table 2. Accuracy (%), Interpretability Results (%), and Inference Time (ms) of Our Proposed

Architecture Compared with Baselines

Net
Accuracy Grad-CAM Grad-CAM++ LayerCAM ScoreCAM

I.T.HA FAR IC AD IC AD IC AD IC AD

TCAD’19 94.3 9.8 3.3 98.3 3.1 145.6 1.8 67.0 3.1 96.1 4.03
TCAD’20 97.2 7.2 0.0 364.2 0.0 340.1 0.0 336.8 0.0 338.0 1.34
TCAD’22 97.3 6.9 0.1 172.8 6.8 83.7 6.6 58.7 0.4 119.8 2.53
Ours 98.1 4.0 7.8 14.4 5.4 28.0 13.8 9.4 2.7 16.4 6.52

I.T.: inference time.

Runtime. TCAD’20 requires the lowest inference time of 1.34 ms per layout clip due to its bina-
rized weights and reduced computational complexity, whereas the DCT computations of TCAD’19
result in even longer inference time than the complex attention and inception modules used in
TCAD’22. Our two-stage CNN hotspot detector requires the longest 6.52 ms per inference run
for a layout clip incorporating an encoder–decoder architecture; in contrast, all prior CNNs use
only the encoder for compressed latent learning rather than our defect map generation that has
a feature map size the same as the input. Despite the additional inference cost, our architecture
achieves the highest detection accuracy among all CNN-based solutions. It is worth noting that
lithography simulation on average requires 3,779 ms to classify one layout clip, and all CNN-based
hotspot detectors, including ours, are much faster by three orders of magnitude.

Interpretability Analysis. In interpretability analysis, we favor a higher IC and a lower AD.
Our architecture outperforms all three baselines in the AD among all interpretation methods. It ob-
tains the highest IC (Grad-CAM of 7.8%, LayerCAM of 13.8%) in two of four interpretation analyses
and the second highest in the other two cases (Grad-CAM++ of 5.4%, ScoreCAM of 2.7%) against
three baselines. TCAD’22 using Grad-CAM++ and TCAD’19 using ScoreCAM achieve slightly bet-
ter performance on the IC metric than our architecture; however, they demonstrate inferior inter-
pretability in all the other cases. TCAD’20 employing binary neural networks exhibits the worst
interpretability performance against all other architectures examined by any of the four interpre-
tation methods.

Visual Interpretation. We visualize the interpretation results in Figure 8 for a hotspot clip
with their lithography simulation results and learned defect location map from our architecture.
Regions marked in red have a larger influence than blue regions in predicting a hotspot. Our archi-
tecture best rationalizes its classification results by locating the most precise areas where actual
defects occur, as evidenced by error markers from lithography simulation. In contrast, the visual
interpretations of three baselines are mostly less accurate and either occupy a large area of the
layout clip (e.g., Grad-CAM++ and ScoreCAM for TCAD’20 and TCAD’22) or mark the regions on
the layout borders that are entirely irrelevant for hotspot prediction (e.g., Grad-CAM for TCAD’20
and TCAD’22, and all cases for TCAD’19). TCAD’22 occasionally presents slightly better visual
interpretation than the other two baselines by covering the defect area but also including large
non-essential parts. Our architecture demonstrates the most stable results across all interpretation
methods.

6.2 First-stage Layout Defect Localization with Different Network Architectures and

Error Marker Preprocessing Methods

To explore the efficacy of error marker preprocessing for first-stage defect localization, we com-
pare the accuracy of defect localization in cases with or without error marker preprocessing as the
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Fig. 8. Visual interpretation of our proposed CNN hotspot detector and three baselines with various inter-

pretation methods.

learning target. We also evaluate how the segmentation network affects defect localization,
of which we experiment with networks including FCN32s, FCN8s [24], U-Net [33], and
DeepLabv3+ [6], all commonly used in segmentation tasks [29]. We show the visualization of the
learned defect location maps for each combination of error marker preprocessing methods and
segmentation networks in Figure 9. Quantitatively, we measure defect localization accuracy using
the Defect Match Rate (DMR) and False Defect Rate (FDR), where the DMR measures the
ratio of ground-truth error markers that are successfully learned in a defect location map, and the
FDR calculates the area percentage of learned locations at which actual defects do not exist. We
provide their definitions as follows.

Definition 5 (Defect Match Rate (DMR)). The ratio of ground-truth defects, as verified by lithog-
raphy simulation, that have been successfully located in the learned defect location maps. We
denote the number of actual defects et in the t th layout clip with dt and the number of learned
defects e ′t with d ′t . The DMR is calculated with the average ratio of all T layout clips, as described
in Equation (6):

DMR =
1

T

T∑
t=1

∑dt

i=1

∑d ′t
j=1 IIoU (e ′

t j
,et i )>0.5

dt

. (6)

Here, Icondit ion is the indicator function that returns 1 if the condition is met and otherwise 0.
IoU (a,b) is the Intersection over Union function that calculates the overlap ratio between a and b.

Definition 6 (False Defect Rate (FDR)). The ratio of non-defect background area bt in the t th
ground-truth defect map that is actually segmented as defects e ′t in its corresponding learned defect
location map. The FDR is averaged over all T clips, as described in Equation (7):

FDR =
1

T

T∑
t=1

e ′t
∧
bt

bt

. (7)
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Fig. 9. Visualization of the learned defect location maps with different error marker preprocessing methods

and segmentation networks. (a) Learned defect location maps with learning targets of original error markers

and (b) learned defect location maps with learning targets of preprocessed error markers.

In practice, to identify and regularize each individual defect in the learned defect locations, we
use the findContours function in the OpenCV library to represent these learned defect locations
with circumcircles, each covering a cluster of pixels with positive pixel values. Specifically, we
consider a defect “matched” if its learned location intersects with over 50% of the area of the
corresponding error marker or preprocessed round shape in the simulated defect maps, as shown
in Equation (6). To mitigate noise generated in the learned defect location maps, we filter out
learned defects with areas smaller than five pixels.

We report the DMR and FDR results in Table 3 for different cases of error marker preprocessing
and segmentation networks. We find that learning the original shapes of error markers results in
an unsatisfactory DMR and FDR. FCN32s achieves the highest DMR of 76.2% but with an FDR
of 23.9%, which suggests almost one-quarter of the background area of the ground-truth defect
map is predicted as non-existing defects. DeepLabv3+ has a lower FDR of 7.2%, indicating fewer
segmentation errors of non-defect areas. However, it only detects 57.5% of true defect locations.
The other two segmentation networks, FCN8s with a DMR of 55.1% and an FDR of 26.0% and U-Net
with a DMR of 43.8% and an FDR of 10.5%, also demonstrates inadequate performance for reliable
defect localization.

In comparison, learning preprocessed error markers as round shapes significantly improves the
DMR for all segmentation networks and reduces the FDR for FCN8s. Specifically, the DMR for
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Table 3. Defect Match Rate (DMR) and False Defect Rate (FDR) of Defect

Localization with or without Error Marker Preprocessing Using Different

Encoder–Decoder Networks

Error Marker Net
DMR (%) FDR (%)

NHS HS Avg NHS HS Avg

Original

FCN32s 87.2 65.3 76.2 41.6 8.5 23.9
FCN8s 52.1 61.2 55.1 23.5 29.0 26.0
U-Net 53.0 36.7 43.8 9.7 11.2 10.5
DeepLabv3+ 58.4 54.7 57.5 11.9 3.0 7.2

Preprocessed

FCN32s 100.0 100.0 100.0 27.0 34.8 30.4
FCN8s 94.7 100.0 97.5 5.3 12.7 8.9

U-Net 100.0 100.0 100.0 37.6 54.0 45.4
DeepLabv3+ 95.4 100.0 97.8 18.2 11.8 14.5

FCN32s and U-Net increases to 100% by successfully detecting all defects in the layouts. However,
their increase in the FDR indicates a rise in falsely identifying the layout background area as
defects. The FDR of FCN32s increases from 23.9% to 30.4%, and for U-Net it largely increases
from 10.5% to 45.4%. DeepLabv3+ also achieves a significant improvement of the DMR in locating
actual defects, rising from 57.5% to 97.8%, but at the cost of an increase in segmentation errors,
with the FDR increasing from 7.2% to 14.5%. FCN8s achieves the most significant improvement by
learning preprocessed error markers instead of the original ones, with its DMR increasing from
55.1% to 97.5% and the FDR decreasing from 26.0% to 8.9%, suggesting enhanced defect localization
accuracy and reduced noise. Therefore, we use FCN8s for defect localization in our first-stage CNN
hotspot detector.

DMR and FDR results for learning original and preprocessed error markers can also be examined
by the visualization of their learned defect location maps in Figure 9. We see that FCN8s more
accurately identifies the actual defects and largely reduces background noise when learning from
preprocessed error markers, whereas the rest of the three segmentation networks discover more
defect areas but also with increased noise background.

6.3 Second-stage Classification Accuracy with Different Feature Combinations

We further explore how the feature inputs of the second-stage classification network affect predic-
tion accuracy, as shown in Table 4. We compare cases using features of the learned defect location
map only, its combination with the predefined ROI map or the layout clip, and our final feature
design of a three-channel feature map, which includes the learned defect location map, the layout
clip, and the ROI map. We also evaluate the basic end-to-end learning case where the layout clip is
directly classified into hotspots/non-hotspots and the case in which its combination with the ROI
is used as input.

Experimental results demonstrate that instead of using the original layout clips as inputs as in
end-to-end learning, which results in a huge FAR of 20.7%, learning from extracted layout features—
the defect locations—drastically improves the HA to 95.8% and the FAR to 6.6%. When the ROI
constraint is directly provided in the input instead of implicitly learned from training data, its
combination with the original layout clip or the learned defect map increases accuracy. Again,
the learned defect map shows advantages over the original layout clip in classification accuracy
when coupled with the ROI as input. We also find that concatenating the learned defect map with
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Table 4. Accuracy (%) of Various Feature Combinations between

Layout Clip, Learned Defect Location Map, and the Predefined ROI

Map for Second-stage Classification

Feature Combinations HA FAR

Layout 81.9 20.7
Layout and ROI 96.4 12.1
Learned Defect Locations 95.8 6.6
Learned Defect Locations and ROI 97.6 5.5
Learned Defect Locations and Layout 96.6 4.0

Learned Defect Locations and ROI and Layout 98.1 4.0

the original layout clip achieves better overall accuracy than all prior combinations. When the
ROI constraint is directly provided in the input by coupling the leaned defect locations with the
predefined ROI map, the HA increases to 97.6%, and the FAR reduces to 5.5%, compared to cases
that use learned defect locations only and implicitly learn such ROI constraint from training data.
We achieve the highest HA of 98.1% and FAR of 4.0% by combining feature engineering and end-to-
end learning, which joins the extracted features of defect locations, the original layout clip, and an
auxiliary ROI map as an integrated feature map to the classification network, which encompasses
all the essential and auxiliary information for hotspot identification.

6.4 Identifying Mispredictions by Verifying Learned Defect Locations

Lithographic hotspot detection is expected to identify as many hotspots as possible. However,
despite the SoTA hotspot accuracy of our proposed hotspot detector, a 100% detection rate is more
than challenging to accomplish, as either stage of the defect localization and classification can
induce deviations from their ground truth that impact final detection accuracy. However, even
though we cannot achieve perfect precision, we can still make more use of our fairly accurate
defect localization ability, as indicated in Table 3 and Figure 9, by using error marker preprocessing
and FCN8s segmentation. We illustrate how we can rectify possible flaws in the second-stage
classification by identifying mispredicted hotspots by verifying their learned defect location maps.
We show in Figure 10 one example of misprediction that classifies a hotspot as non-hotspot, where
we find in the learned defect location map that our hotspot detector locates the defect region within
the ROI. According to lithography simulation, it should be a hotspot, but it has a contradictory non-
hotspot prediction. In this way, we can identify real hotspots that escape detection.

We carefully inspected all 40 hotspot clips that our CNN hotspot detector misclassifies as non-
hotspot in our dataset and successfully found that 26 of them (a ratio of 65%) have classification
results that contradict their learned defect locations. These hotspot clips will apply lithography
simulation for final verification.

7 Discussion

7.1 Detection Accuracy of Various Architectures

As shown in Table 2, our architecture surpasses all three prior works in accuracy, and we owe
this to the simulated error markers we used in training. These error markers guide the network to
learn actual defect locations as genuine hotspot features for further hotspot detection, instead of
solely considering feature distinction between hotspots and non-hotspots as in all prior studies. In
addition to the essential defect information, we also use layout clips and predefined ROI maps for
classification that compensate for any information loss that’s not included in the learned defect
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Fig. 10. Identifying hotspot clips mispredicted as non-hotspot from learned defect locations. We show (a) a

hotspot clip, (b) its simulated error marker with ROI, and (c) its learned defect location map with ROI.

location maps. Among the three models, the improved accuracy of end-to-end learning architec-
tures (TCAD’20 and TCAD’22) demonstrates the compelling feature extraction capability of CNNs
compared to hand-designed feature engineering (TCAD’19). TCAD’22 exhibits slightly better de-
tection performance than the other two. Its enhanced accuracy is mainly due to its use of spatial-
and channel-wise attention modules, which contribute significantly to the feature extraction that
allows the model to extract more distinctive features between hotspots and non-hotspots. In con-
trast, TCAD’19 shows a relatively lower detection accuracy, which can be partially attributed to
the loss of crucial information during the DCT conversion of the layouts, after which the layout
structural information no longer exists.

7.2 Detection Accuracy of Various Feature Combinations

In Table 4, we compare the hotspot detection accuracy of the classification network using differ-
ent feature combinations. We find increased HA and FAR of hotspot detection using learned defect
locations than using the original layout clips as classification input features. Detection accuracy
increases when the original clip or the defect map is coupled with the ROI map. Besides, we see fur-
ther enhancement in accuracy by complementing the feature input to include the original layout
clips and an ROI map alongside the learned defect locations. We see the largest accuracy enhance-
ment when we include the original layout clips and the ROI map alongside the learned defect
locations. The structure information embedded in the original clips, such as metal distance and
relative positions, is also essential for hotspot determination, which is not reflected in the defect
location maps. Implementing an ROI map to the features helps regulate the network’s attention
to the central regions of the layout clips and defect location maps for more directional feature
extraction. The integrated information embedded in the layout clips, defect locations, and ROI
maps combines to provide the most comprehensive yet critical information that yields the highest
accuracy.

7.3 Can We Directly Identify Hotspots from Learned Defect Location Maps?

In light of the accurate defect localization of our proposed architecture, as shown in Table 3 and
Figure 9, a simple and straightforward approach to hotspot detection is to inspect whether there
exist defects within the ROI of our learned defect location maps after stage 1. This method directly
identifies a hotspot clip without needing a second-stage classification network. Specifically, we de-
fine a threshold parameter to identify a learned defect as an actual hotspot based on its intersection
with the ROI. Such a threshold is defined as the minimum ratio of the intersection between the
learned defect and the ROI to the defect area, which varies between 0 and 1. We examine special
cases of threshold = 0, where a layout clip is considered a hotspot as long as a learned defect over-
laps with the ROI, and threshold = 1, where a learned defect has to entirely reside within the ROI
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Table 5. Accuracy (%) of Directly Identifying Hotspots from Learned Defect Location Maps

with Various Threshold Settings That Denote the Minimum Overlap Ratio between Learned

Defect Locations and the ROI

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HA 100 100 100 100 99.7 99.3 98.2 94.2 90.2 85.7 81.0
FAR 69.3 62.7 58.4 55.2 52.5 49.5 46.9 44.1 41.4 38.7 34.9

A layout clip is considered a hotspot as long as the intersection ratio is above the threshold. Otherwise,

it’s a non-hotspot.

to be determined as a hotspot. All learned defects will be preprocessed to become circle contours
as described in Section 6.2 before overlap calculation.

We show hotspot detection accuracy with the HA and FAR in Table 5. When we use a lower
threshold on the intersection ratio of learned defect and ROI, we obtain a higher HA. For example,
when threshold = 0 to 0.3, we achieve 100% HA but also with a high FAR up to 69.3%. This occurs
due to the surrounding noise areas generated in the learned defect locations that are mistakenly
identified as part of the defects. As we increase the threshold, we can partially mitigate the noise
effect with a lower FAR but also come out with lower HA. On examining all the thresholds varying
between 0 and 1, it’s hard to find an optimum intersection ratio between the learned defect location
and ROI for actual defect identification that can balance the HA and FAR. In fact, learned defects
are imperfect compared to ground-truth error markers. Other useful information embeds in the
learned defects such as pixel value intensities but are not considered in hotspot detection. An
oversimplified binary representation of the learned defects and layout background for hotspot
determination inevitably results in unsatisfactory hotspot detection accuracy.

7.4 Interpretability of Various Architectures

As direct evidence for hotspot determination, our use of the defect locations in the architecture and
training process tremendously enhances the transparency and interpretability of our CNN hotspot
detector, as indicated by the improved IC and AD scores, compared to all baseline architectures, as
shown in Table 2. Our architecture significantly reduces AD scores, suggesting that more accurate
“hotspot” regions are used for detection. Among the baseline architectures, TCAD’22 achieves the
highest IC score using Grad-CAM++; its use of spatial- and channel-wise attention improves the
feature extraction process between hotspots and non-hotspots. However, such features, though
distinctive, can be non-essential for hotspots, as reflected by its large AD scores. TCAD’19 achieves
the highest IC score using ScoreCAM. Its information transformation from the spatial domain
to the frequency domain of layouts discards rich information, which potentially includes both
hotspot-relevant and hotspot-irrelevant information, thus sometimes yielding a high IC but also a
high AD.

7.5 Visual Interpretation of Various Architectures

As depicted by the visual interpretation results in Figure 8, TCAD’20 mostly fails to concentrate on
a specific layout area for hotspot classification, primarily because its binarized calculation makes it
challenging to process layout structural information. TCAD’19 shows a significant deviation from
the ground-truth defects in its interpretation, as it uses the DCT coefficients to represent the layout
and discards spatial information, which is essential for hotspot determination. TCAD’22 shows
more accurate interpretation than TCAD’19 and TCAD’20, owing to its more efficient attention
modules, which enrich the diversity of extracted features, thereby increasing the likelihood of
extracting critical features. However, this diversity also includes features that are irrelevant to
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hotspots, as reflected by the large highlighted areas in its visual interpretation. In contrast, our
architecture provides the most accurate and clean interpretation consistent with the actual defects
located by lithography simulation, and we attribute this to the use of defect locations in training
the CNN to classify a hotspot.

7.6 Our Training Data Augmentation Requires No Additional Effort

Prior works use data augmentation mostly to expand dataset size and enrich data information to
improve classification accuracy [31]. Though effective, they require delicate data augmentation
techniques and extensive lithography simulation for augmented layouts. The additional effort for
data augmentation linearly rises with the amount of augmented data. Our approach, on the con-
trary, extends the training dataset with intermediate results of lithography simulation when la-
beling the training data, i.e., the error marker information denoting actual defect locations in the
layouts. These error marker maps are entirely neglected in prior work but contain significant in-
formation for hotspot detection. They are immediately accessible after training data labeling with
no additional cost.

7.7 Effects of Error Marker Preprocessing and Segmentation Networks on Defect

Localization

As shown in Table 3 and Figure 9, the first-stage defect feature extractor that learns preprocessed
error markers significantly improves defect localization, compared to learning the original error
markers. We attribute this improvement to the fact that, as found in prior work [2], it is easier for a
neural network to learn a round shape than a complex shape. Since our focus in hotspot detection
lies on the location of defects represented by error markers, and their shape is of less importance,
preprocessing them with round shapes retains the defect locations while reducing task complexity.
This change leads to improved performance in defect localization. Furthermore, the original error
markers constitute only a tiny portion of the entire layout clip, which further adds difficulties to
the task of learning their accurate locations.

In terms of the segmentation networks used in the feature extractor, we notice a similar DMR
achieved by various segmentation networks, and FCN8s obtains the smallest FDR. We attribute
this to its structural design. The convolution flow and integration of feature maps from multiple
layers in FCN8s, compared to FCN32s and DeepLabv3+, enable better learning of defect location
features with less noise. U-Net has the most output noise, potentially from its connection to the
coarse features obtained at the input level.

7.8 Wider Implications for ML-based CAD Flows

The insufficient interpretability of existing CNN lithographic hotspot detectors raises important
questions about the reliability and trustworthiness of using ML in CAD. With increasing layout
complexity, it becomes more challenging for neural networks to learn effective feature representa-
tions through end-to-end learning from the layout. These neural networks are not guaranteed to
learn essential and genuine features of a hotspot. In addition, as neural networks become increas-
ingly sophisticated, their interpretability concerns compound.

Since ML and DL techniques are becoming more and more involved in the many CAD flow
steps, interpretability considerations in ML-CAD are paramount. Given the existing end-to-end
learning paradigm of CNN architectures used in the CAD flows, we surmise that any current ML-
CAD solutions using neural networks are facing interpretability issues. Given that the key insight
we provide in this study is using actual hotspot features, i.e., the defect locations, to assist hotspot
detection in the lithographic context, we posit that similar ground-truth features exist in other
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CAD domains that are beneficial to the interpretability and accuracy of a neural network solution,
and future work is needed to discover these.

7.9 Differences between Our CNN Classifier-based Hotspot Detector for Layout Clips

and Object Detection-based Hotspot Detector for a Full Layout

Our explainable CNN-based hotspot detection relies on layout clip defect localization at the first
stage and learns a defect map followed by a second-stage classification network. We note that
some works use object-detection-based methods for hotspot detection, such as [7, 8], which are
quite different from our method. First, their methods identify hotspot regions for a full/large layout,
whereas ours classifies partitioned clips into hotspots and non-hotspots. They work on an object
detection problem, and ours solves a binary classification problem. We operate in a more fine-
grained manner in learning the printing defects within a layout clip rather than framing out all
the potential hotspot clips as in [7, 8]. Our defect localization step is more like an image-to-image
generative process than object detection within the original input with bounding-box generation
as in [7, 8]. It is worth noting that our layout clip defect localization only requires the placement
information of defects, which is sufficient for layout clip classification, rather than locating their
precise coordinates as in [7, 8]. This makes complex object detection architectures for bounding-
box generation unnecessary. In addition, unlike the classifiers in [7, 8] that perform prediction
for each proposed hotspot region, our classifier predicts the input layout clip based on the entire
defect feature map and operates only once. Lastly, the hotspot prediction for the proposed clip
regions in [7, 8] relies on the CNN classifiers for automatic layout clip feature extraction (as in all
prior CNN hotspot detection works); the interpretability of these classifiers remains unknown.

7.10 Detection Accuracy Comparison between Our Two-stage CNN-based Hotspot

Detector and GNN-based Hotspot Detector

In addition to CNN-based architectures for lithographic hotspot detection, other neural networks
have been explored in prior works, such as GNN, as used in [38]. We reproduce the same GNN
architecture using the exact node and edge feature representations and evaluate our layout clip
dataset, as shown in Table 6. We obtain an HA of 97.5% and an FA of 5.3%. This is competitive
with our HA of 98.1% and FA of 4.0%, and it is the best performing compared to all three baseline
CNN architectures in Table 2. Layout clips in the form of metal polygons are structured data and
can be expressed using graph representation. With proper node and edge feature representation
of the layout graph, high accuracy of hotspot detection is feasible. Of particular note is the fastest
inference time of the GNN architecture, which requires only 0.06 ms per layout clip and is 100 times
faster than our architecture. This efficiency results from the fact that GNN typically has only a
small number of layers, and its architecture takes input from extracted graph features. In contrast,
all CNN-based methods take the entire layout clip image as input; complex feature extraction using
deep convolutional layers consumes large interference time. However, as interpretation methods
on GNNs are still being actively explored [1, 13, 17], their explanations are on the sub-graph level
presented as nodes and edges, which are less informative than the visual explanations of CNNs
and sometimes hard to be directly compared with hotspot root causes, i.e., error makers.

7.11 ROC Curves and AUC Scores of Various Architectures

In addition to the commonly used HA and FAR metrics as in all prior works, we present the
ROC curves and calculate the corresponding AUC scores for our proposed explainable CNN-based
hotspot detector and our baselines, as shown in Figure 11. We have similar findings in the ROC
curves and AUC scores that operate among various classification thresholds. Our proposed ar-
chitecture achieves the highest AUC score above all baselines. TCAD’20 and TCAD’22 perform
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Table 6. Accuracy (%) and Inference Time (ms) of GNN-based

Hotspot Detector Compared with Our Explainable Two-stage

CNN-based Hotspot Detector

HA FAR I.T.

DATE’22 97.5 5.3 0.06

Ours 98.1 4.0 6.52

I.T.: inference time.

Fig. 11. ROC curves and AUC scores of our proposed CNN-based hotspot detector and baseline

architectures.

similarly, and TCAD’19 is the least accurate. DATE’22, based on a GNN architecture for hotspot
detection, surpasses all prior CNN-based solutions except ours.

8 Related Work

8.1 Lithographic Hotspot Detection

Lithography simulation [12, 26] provides the most accurate hotspot detection but is also time-
consuming. With the increasing scale and complexity of chip layouts, it is hard to meet the re-
quirements of fast turnaround time for trial designs. PM-based methods [16, 42, 47] facilitate faster
hotspot detection but usually fail to generalize to unseen patterns. Recently, ML, especially CNN-
based, methods [45] are promising in lithographic hotspot detection by improving the detection ac-
curacy and generalizability compared to PM-based methods. Various research has been conducted
from the perspectives of feature extraction and model architectures. For example, hand-designed
feature engineering of layout patterns, such as DCT coefficients, is proposed [46], followed by a
CNN. End-to-end CNN learning for hotspots includes explorations of binary neural networks [19],
sophisticated Inception blocks with attention modules [15], or networks designed by neural archi-

tecture search (NAS) [9]. Our proposed two-stage CNN architecture joins the forces of feature
engineering and end-to-end learning by combining learned layout features and original layout
clips for hotspot detection. Other architectures for hotspot detection include graph neural net-
works [38] that use graph representations of layouts for classification.

Other works [7, 8, 14, 51] detect hotspots from an entire layout for faster detection speed; we
perform hotspot detection in fine-grained layout clips partitioned from a full layout. Other topics,
such as data sampling for training efficiency [43], have also been studied.
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However, in all prior work for lithographic hotspot detection, the interpretability analysis of
existing CNN models has yet to be considered, and explaining NAS [9] or GNN-based architec-
tures [38] still calls for more efficient solutions. We explore and enhance the interpretability of
CNN-based lithographic hotspot detectors by learning actual defect locations from simulated er-
ror markers, which are direct evidence for a hotspot as in lithography simulation.

8.2 CNN Interpretation

CNN interpretation methods have been extensively studied to explain why CNN models predict
what they predict in the computer vision domain [4]. Early work [3, 36, 37, 39] based on the gra-
dient information of the CNN generates saliency maps by backpropagating gradients of a specific
class to the input. However, these methods tend to produce noisy results and are susceptible to the
“gradient saturation” effect of the model. Post methods [27, 49] use models with good interpretabil-
ity, such as linear regression and decision trees, to fit partial data predictions of the CNN. They
then use the explanation of the agent model as a substitute for the original CNN. The downside is
their inability to fit complex decision boundaries of sophisticated tasks. Perturbation-based meth-
ods [30, 32] explore the importance of different input regions on CNN predictions by controlling
local variations with methods such as masking, but they usually suffer from high computational
costs as the number of perturbation combinations to the inputs is enormous. In our work, we
use SoTA CAM-based methods [5, 18, 34, 41] to explain CNN-based hotspot detectors, where a
weighted combination of the feature maps of convolutional layers highlights the specific input
areas that the CNN relies on for prediction.

9 Conclusion

In this article, we proposed a two-stage CNN-based lithographic hotspot detector that demon-
strates the highest hotspot accuracy, the lowest false-alarm rate, and the most accurate qualitative
and quantitative interpretation results compared with prior work under a series of CNN interpre-
tation methods. It sheds light on the enhancement of the interpretability of ML-CAD solutions
and calls for more explainable DL architectures and learning paradigms in developing future
ML-CAD tools.
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