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Multi-die FPGAs are widely adopted for large-scale accelerators, but optimizing high-level synthesis designs on these FPGAs

faces two challenges. First, the delay caused by die-crossing nets creates an NP-hard loorplanning problem. Second, traditional

directive optimization cannot consider resource constraints on each die or the timing issue incurred by the die-crossings.

Furthermore, the high algorithmic complexity and the large scale lead to extended runtime for legalizing the loorplan of HLS

designs under diferent directive conigurations.

To co-optimize the directives and loorplan of HLS designs on multi-die FPGAs, we formulate the co-search based on

bin-packing variants and present two iterative optimization lows. The irst (FADO 1.0) relies on a pre-built QoR library. It

involves a greedy, latency-bottleneck-guided directive search and an incremental loorplan legalization. Compared with a

global loorplanning solution, it takes 693X∼4925X shorter search time and achieves 1.16X∼8.78X better design performance,

measured in workload execution time.

To remove the time-consuming QoR library generation, the second low (FADO 2.0) integrates an analytical QoR model

and redesigns the directive search to accelerate convergence. Through experiments on mixed datalow and non-datalow

designs, compared with 1.0, FADO 2.0 further yields a 1.40X better design performance on average after implementation on

the Alveo U250 FPGA.
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Partitioning and loorplanning; 3D integrated circuits; Software tools for EDA; · Computer systems organization →

High-level language architectures; Data low architectures.
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1 INTRODUCTION

Guided by optimization directives, high-level synthesis (HLS) compiles high-level behavioral speciications to

register-transfer level (RTL) structures, supporting hardware accelerators’ ever-growing functional and structural

complexity. The various directives contribute to a large design space to search upon. For example, there are 26

directives in Xilinx Vitis HLS 2020.2 [14], each with a set of parameters and can be applied at diferent levels or

structures of the HLS source code. Previous works [25, 34, 35, 38, 39, 42, 46, 47, 52, 55] mainly use automated

design space exploration (DSE) algorithms to search for the Pareto-optimal directive conigurations, targeting

the lowest latency (execution time in the number of clock cycles) under a speciic resource constraint.

To deploy large-scale HLS designs on FPGAs, with consideration of chip yield in fabrication, larger FPGAs

with multiple dies emerge based on 2.5D/3D integration techniques. However, the concomitant long net delay

due to nets crossing die-boundaries harms the timing quality of the implemented designs. One of the multi-die

packaging technologies is the Stacked Silicon Interconnect (SSI) from Xilinx [37], where a silicon interposer

integrates multiple dies, also called super logic regions (SLRs). [4] states that the super long lines (SLLs) between

dies cause ∼1 ns delay, while [32] states that a typical medium-length routing wire within a single die has a

4X∼8X shorter delay under the same manufacturing process.

Furthermore, [9] highlights a crucial factor limiting the maximum achievable frequency (Fmax) to ∼300 MHz

when applying optimizations, including loorplanning and pipelining on HLS datalow designsÐa handshake-

based model for task-level parallelism. This limitation stems from the delay of SLLs and long routes detoured

by specialized IP blocks close to the I/O banks. These indings underscore the untapped potential for timing

improvement in multi-die FPGAs.

To mitigate the delay penalty on multi-die FPGAs, Xilinx proposes using the loorplanning method [19]

to keep critical timing paths on a single SLR. However, the ine-grained gate/cell-level loorplanning is very

time-consuming. In comparison, [9] requires that no function in the HLS datalow region should spread over

multiple SLRs and proposes a coarse-grained method to loorplan HLS functions at the SLR level to accommodate

the large-scale datalow designs and pipeline the wires crossing die-boundaries.

Min-cut loorplanning focuses on meeting the separate resource constraints on slots divided by SLR boundaries

or I/O banks and the SLL number constraints between SLRs. However, an initial min-cut loorplan would not

always support the latency-centric optimization of HLS directives. When a function’s directive coniguration

changes, its resource also changes, and the original loorplan could be illegal because of resource over-utilization.

For coordinating loorplanning with directive DSE, a straightforward solution is to call the global loorplanning

repeatedly, e.g., using integer linear programming (ILP) solver [9], whenever a new directive is applied. This

incurs an extended runtime of the DSE low. Thus, we try to replace the global ILP solution with an incremental

legalization algorithm to facilitate highly eicient integration of iterative directive search and loorplanning.

To address this challenge, we propose the automated loorplan-aware directive optimization, as Fig. 1 shows.

On the one hand, we try to search toward the Pareto-optimal HLS directive conigurations to minimize a design’s

latency under speciic resource constraints. On the other hand, we legalize the loorplan after every change of

resource utilization to maintain a high Fmax.

Fig. 2 shows our end-to-end solutionÐthe FADO framework, with two versions of optimization lows. It

co-optimizes HLS directives and loorplanning on multi-die FPGAs, thus beneiting both the latency and timing of

HLS designs. We irst formulate this complex co-optimization problem based on multi-choice multi-dimensional

bin-packing (MMBP) [33], then develop a highly eicient synthesis-based iterative solutionÐthe irst low, FADO

1.0. It involves a pre-processing stage where a Quality of Result (QoR) library is generated from the HLS synthesis

report for each leaf function. During each iteration of the main greedy search, we evaluate the latency bottleneck
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Fig. 2. Overview of Our FADO Framework, with New Modules in FADO 2.0 Flow Highlighted.

from the QoR library and pick a more eicient directive coniguration. Then, the resource utilization is passed to an

incremental loorplan legalization. Such legalization applies both the worst-it (WF) online bin-packing algorithm

and the best-it decreasing (BFD) oline algorithm [27]. The WF stage balances the resource utilization among

slots on an FPGA to avoid congestion, while the BFD stage breaks the balance with minimum cost to enable the

loorplanning of overlarge HLS functions. At the end of each iteration, FADO incrementally adds/updates/removes

the pipeline logic along the long wires crossing die-boundaries. This incremental loorplan update is much faster

than the global algorithms in previous works [9].

Experiments show that the synthesis-based FADO 1.0 improves the overall performance of designs deployed

on multi-die FPGAs with co-optimization and achieves high speed with its customized iterative solution. It makes

good utilization of the resources on FPGA under all constraints and proves to scale well to large accelerators

with both datalow and non-datalow kernels.

Behind the high performance of FADO 1.0, the synthesis-based QoR library becomes the major limitation. Due

to the long synthesis time of commercial HLS tools, it usually takes several hours to pre-process hundreds of
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design points. This timescale can cover all the individual directives, including unroll, pipeline, etc., for every

branch in a loop tree. However, it should be more efective when considering (1) the interplay between multiple

directives and (2) the combinations among diferent branches in a loop tree. As the size of the design space

increases exponentially, the solution in FADO 1.0 is to sample among the reasonable design points following the

descriptions in [14]. A key parameter of this samplingÐthe number of steps, is deined based on the range of

parameters for the directives, including loop pipeline and unroll. This simple solution occasionally prunes the

efective conigurations, leading to sub-optimal results. Furthermore, the sampling leads to a random selection

among BRAM, URAM, and LUTRAM without considering the balance in between, which limits the full utilization

of on-chip resources.

To overcome the limitations above, we present an enhanced lowÐFADO 2.0 in this extension paper. It achieves

better design performance by supporting a larger design space with a new analytical QoR model and developing

a more intelligent search strategy accordingly. The new modules are highlighted in Fig. 2. Through a non-trivial

development and calibration, we replace the QoR library and pre-processing stage with an analytical QoR model

built based on COMBA [55]. The model takes in an intermediate representation (IR) and a directive coniguration

for an HLS function. Then, it outputs the estimated latency for guiding the selection of the next design point and

the resource utilization to constrain the loorplanning. Accordingly, a more intelligent directive optimization

strategy is modeled and designed, helping FADO 2.0 converge faster toward lower latency than the 1.0 low.

Moreover, the new DSE strategy balances the utilization among BRAM, URAM, and LUTRAM, contributing to a

higher achievable frequency for most designs evaluated.

After the implementation of a set of optimized designs on the AMD Alveo U250 FPGA, HLS designs optimized

by FADO 2.0 are observed to yield a better execution performance of 1.40X on average (not including one

extreme case of 19.83X at most) compared with FADO 1.0. Compared to the new experimental results of analytical

DSE with global loorplanning, the incremental methods help FADO 2.0 deliver an average of 2.66X better

design performance. The latest version of FADO open source containing both 1.0 and 2.0 low is maintained in

https://github.com/RipperJ/FADO.

The core contributions in FADO 1.0 and 2.0 are as summarized below:

• To the best of our knowledge, we propose the irst precise mathematical formulation of this directive-

loorplan co-optimization problem on multi-die FPGAs. Accordingly, we design and implement the FADO

framework, the irst end-to-end solution to this problem.

• FADO supports two types of iterative, incremental lows: a synthesis-based solution (1.0) and an analytical

model-based one (2.0). They improve both latency and timing of complex HLS designs within a very short

runtime, achieving orders-of-magnitude speedup over global algorithms in prior works and better inal

design quality.

• Compared with [9], our FADO framework can automatically handle datalow benchmarks and large-scale

applications mixing datalow and non-datalow kernels.

• Compared with the best baseline using synthesis-based QoR libraryÐdirective search with the global ILP

loorplanning and pipelining [9], FADO 1.0 achieves 693X∼4925X speedup in exploration time with an

even higher and near-optimal inal design performance on FPGA for all six tested designs. The design

performance measured with overall workload execution time on each design improves 1.16X∼8.78X.

• In the second low, FADO 2.0, we develop and calibrate a new analytical QoR model in place of the synthesis-

based QoR library in FADO 1.0. It enables a much larger design space by exempting the time-consuming

pre-processing stage.

• We implement a more intelligent directive search strategy that converges faster and better than the previous

method relying on the QoR library. The new balancing mechanism among diferent types of on-chip RAMs

also opens new optimization opportunities for timing quality.

ACM Trans. Reconig. Technol. Syst.
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Table 1. Comparisons between FADO 2.0, FADO 1.0 and Previous Work

Directive Multi-die Floorplan-aware Floorplan-aware Analytical

Search Floorplanning Directive DSE (FADO 1.0) Directive DSE (FADO 2.0)

QoR
latency, timing latency, resource, latency, resource,

resource (frequency) timing timing

Design 1. directives 2. SLR-level
1 × 2 enlarged 1 × 2

Space & parameters func location

DSE syn-based: slow; slow (SA, ILP, syn-based slow pre-proc, analytical model� ,

Eiciency model�-based: fast bi-partition, ...) fast DSE fast DSE

Type of datalow or
datalow

mixed datalow mixed datalow

Benchmark non-datalow & non-datalow & non-datalow
� Generally with ixed data type and bitwidth. � Taking arbitrary data type and bitwidth as inputs.

• Through extensive experimentation, FADO 2.0 surpasses the analytical DSE with global loorplanning by

an average of 2.66X better design performance. Meanwhile, it outperforms FADO 1.0 with a 1.40X better

average performance of the optimized designs.

The subsequent sections of this paper are structured as follows. Section 2 summarizes the diference between

FADO and previous works on directive search or multi-die timing optimization and introduces bin-packing

basics. It also highlights the necessity and challenges of switching to an analytical model in FADO 2.0. Section 3

provides a motivation example to interpret the challenges and opportunities in directive-loorplan co-search.

Then, Section 4 provides the ILP formulation of the co-search problem. Section 5 presents implementation details

for each module in the framework, with emphasis on the newly introduced IR extraction (Sec. 5.1.3), analytical

QoR model (Sec. 5.2.2), smarter DSE strategy (Sec. 5.3), etc. Section 6 analyzes the superiority of FADO 2.0 and

1.0 by comparing them with previous solutions on various HLS designs.

2 RELATED WORK

As shown in Table 1, FADO performs co-optimization considering latency, resource, and timing during loorplan-

ning, while previous commonly used lows, either directive search or multi-die loorplanning, only targets one

or two optimization objectives. The design space for multi-objective optimization is enormous, deined by the

Cartesian product of HLS directive parameters and SLR-level function locations. Previous works may take a long

time to traverse such a large design space. We can break down the long runtime into two parts. First, in directive

search, synthesis-based methods are slow at either pre-processing a database/library or iteratively triggering

the HLS tools. Second, to pursue high loorplan quality, the time complexity of mainstream solutions is also

exceedingly high.

Accordingly, FADO tackles the QoR and runtime issues in two steps. First, with a one-of QoR library generation,

our efective incremental loorplanning assists FADO 1.0 in achieving orders-of-magnitude speedup in search

time. Moreover, existing loorplanning works for HLS designs [2, 9, 23] are dedicated to datalow applications.

FADO can automatically solve the loorplanning for non-datalow functions by adding additional constraints.

As the second step, to make the co-optimization low more powerful and user-friendly, FADO 2.0 includes an

analytical QoR model, which facilitates a smarter traversal throughout a broader design space and replaces the

pre-processing stage for QoR library taking hours in the low 1.0.

HLS Directive Optimization has been researched thoroughly. Below are the featured challenges.

• Directives and their parameters contribute to an enormous design space [43].

ACM Trans. Reconig. Technol. Syst.
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FADO 1.0: We collect the QoRs from the HLS reports of individual leaf functions in large designs to

construct a library. Then, it assists a latency-bottleneck-guided algorithm to minimize the overall latency

and speed up the DSE efectively.

FADO 2.0: Pre-processing is exempted by implementing an analytical model. The inference time falls

between milliseconds and seconds, greatly expediting the traversal across a more extensive design space.

• Directive conigurations have non-monotonic efects [43] on QoRs, which is also explained by [53] as inter-
dependency among directives and structures in the source code.
FADO 1.0: We deine the look-ahead/back sampling strategies based on the QoR library to avoid getting

trapped in local optima on the non-monotonic design space.

FADO 2.0: We formulate the interplay between the most efective directives. This analysis lays the founda-

tion for the new DSE strategy without global QoR knowledge.

The general techniques [40] for HLS directive DSE includes (1) synthesis-based approaches with (1.1) meta

heuristics [38, 39, 51] or (1.2) dedicated heuristics [34, 35, 43, 53], and (2) model-based approaches including (2.1)

machine learning [31, 46, 54] and (2.2) graph analysis [20, 42, 47, 52, 55]. Prior works on directive search mainly

optimize latency under an overall resource constraint of single-die FPGAs. To compare, multi-die FPGAs introduce

separate constraints on each slot and between SLRs, as well as the vital timing issue because of long wires crossing

die boundaries. Hence, we cannot directly apply the previous DSE algorithms to our co-optimization problem.

The directive search in FADO 1.0 partially belongs to (1.2) synthesis-based dedicated heuristics, which is

generally accurate but incurs a long pre-processing time when triggering commercial HLS tools for building

the QoR library. This overhead also limits the optimization opportunity to some extent. In this case, switching

to model-based approaches is a direct solution because of the short inference time. However, machine learning

models are easily trapped with accuracy and generality issues if they lack a comprehensive training dataset, even

for the latest GNN models [8, 48], especially when the control and data low of HLS designs varies. The GPU

memory would severely limit the holistic mapping of a big CDFG to GNN or other models. Based on our attempts

with some of the latest models, including GAT [44], GraphSage [11], etc., the GPU A100 40GB can only work for

designs with no more than ∼10K LUTs, under a typical setting of parameters including the number of layers,

batch size, etc. This is far from predicting QoRs for the designs implemented on modern multi-die FPGAs, taking

AMD Alveo U250 as an example, an FPGA with ∼1.7M LUTs.

By contrast, analytical models are free from the scalability problem. They try to extract or recover the core low

in commercial HLS tools. The main diiculty of adopting an existing analytical model is the need for calibration

due to the variance among diferent versions of commercial tools, e.g., Vivado HLS 2016.1 in [55], Vivado HLS

2019.1 in [52], and Vitis HLS 2020.2 in FADO 1.0 [7]. Besides, previous models generally consider only a speciic

data type, for example, a 32-bit integer or loating point [52, 55], while our work involves the use of arbitrary

precision integers [15], loat and double. All diiculties above call for migrating, calibrating, and generalizing an

existing analytical model towards our case. This motivates the development of FADO 2.0.

Multi-die Timing Optimization can be classiied by their objectives as Table 2 shows.

To mitigate the long delay crossing dies, existing solutions difer in their objectives, algorithms, and granularity.

The ine-grained method maps primitives/cells to the tile/site level, which is time-consuming. [6] proposes

optimization on the total wirelength and aspect ratio of face-to-face-stacked loorplans. [10] and [32] extend the

P&R tool VPR [3] to multi-die scenario by adding parameters to the cost function including wire-cut ratio, delay

increment, and number of cuts, while [32] also considers the congestion cost. [36] implements a partition-driven

placer and an aspect-ratio-aware cut scheduling algorithm.

Among the coarse-grained works, [28] minimizes the total wirelength while reducing total and die-crossing

delay. [9] applies ILP to minimize the number of die-crossing long wires. It runs iterative bi-partitioning rather

than N-way partitioning and prefers the most balanced loorplan across all slots divided by die-boundaries and

ACM Trans. Reconig. Technol. Syst.
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Table 2. Previous Works on Multi-die Timing Optimizations

Work

Objectives

Algorithm/Tool Granularity
Total Signal

# of Cut
Routing Aspect

Wirelength Delay Congestion Ratio�

[6] ✓ ✓ Partition-based ine

[28] ✓ ✓ Force-directed, SA coarse

[10, 32] ✓ ✓ ✓ VPR ine

[36] ✓ ✓ ✓ Partition-based ine

[2] ✓ ILP (balancing) coarse (HLS)

[9] ✓ ILP (min-cut) coarse (HLS)
� The aspect ratio of the bounding box of a design’s loorplan or placement.

I/O banks. [23] is an extension of [9] supporting an additional type of datalow channelÐthe RAM-based bufer

channel aside the original FIFO channel. [2] also applies ILP and resource balancing heuristics to partition datalow

accelerators and average congestion among diferent SLRs. It also discusses partitioning datalow accelerators

among multiple FPGAs through network interfaces. Although these coarse-grained lows reduce the problem

size, it is still slow if called repetitively when integrated with directive search.

In FADO 1.0 and 2.0, we mainly compare with [9] on the eiciency of coarse-grained loorplanning for large-

scale designs. We identify that the major frequency improvement in [9] comes from the insertion of pipelining

logic, while min-cut loorplanning works as a legalization for logic resources and die-crossings. Thus, we replace

the time-consuming min-cut ILP loorplanning with an incremental legalization algorithm, alongside a partial

pipelining update to speed up the DSE without sacriicing loorplanning quality.

Knapsack [30] and Bin-Packing Problems [29] are a series of classic combinatorial optimization problems

sharing a common ground with the directive-loorplan co-search. The basic version is the 0-1 Knapsack problem,

where multiple items with diferent weights and values are to be packed in a knapsack, and a binary choice is

made for packing the item or not. [22, 41] introduces the multiple-choice Knapsack problem, where the items

are classiied, and precisely one from each class is chosen to form a solution. The classes here map to the

directive conigurations for an HLS function in our problem. [24] introduces the multiple-dimensional Knapsack

problem, where the weight of each item and the capacity of knapsacks are in vectors. This corresponds with the

types and amounts of resources on each die of a multi-die FPGA. [1, 33] separately formulates the multi-choice

multi-dimensional Knapsack problem (MMKP) and bin-packing problem (MMBP). The optimal solution to this

problem can be found using branch-and-bound with linear programming, but the high time complexity does not

support a large number of variables and equations. Another approximation is using greedy approaches, generally

sorting items based on the values and the weights in a speciic order. We thus formulate our problem based on

the MMBP and combine online Worst Fit (WF) and oline Best-Fit Decreasing (BFD) [27] bin-packing heuristics

to solve it eiciently. Here, in the online algorithm, the decision to pack an item is irreversible, and the next item

is only visible after the previous packing gets settled. For oline algorithms, the values and weights of all items

are visible from the very beginning, and we can sort the items to improve the packing quality [21].

ACM Trans. Reconig. Technol. Syst.
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3 MOTIVATION

To show the diferent challenges of the directive-loorplan co-search problem on multi-die FPGAs, we use a toy

example with one step of loorplanning followed by directive optimization to explain why general loorplanning

algorithms and heuristics will not collaborate with directive search.

Suppose we have a toy multi-die FPGA with two slots, each with a constraint of 70% of the total available

resource, as suggested by [2, 9]. Although there are several diferent resources on a modern FPGA, such as

Look-up Tables (LUT), Flip-Flops (FF), Digital Signal Processors (DSP), Block-RAMs (BRAM), UltraRAMs [13]

(URAM), etc., in our experiments, we normalize and take the maximum among all resources as the inal utilization

ratio in evaluation.

Fig. 3 shows a design consisting of 2 datalow and 1 non-datalow kernel. A/B (or D/E) are functions connected

by the FIFO channels in the same datalow kernel (region), deined as an HLS function with the directive

"DATAFLOW," achieving task-level parallelism within the function through a handshake-based model. C is a

non-datalow function connected through RAM to other kernels. The channel width between A and B is 16, and

that between D and E is 8.

For latency optimization, diferent QoRs are caused by various directive conigurations in HLS. For example,

when applying a smaller initiation interval (II) to the directive PIPELINE, or a larger factor to the UNROLL, the
latency of an HLS design tends to decrease, while the resource utilization is likely to increase. In this example,

assume that we only have one directiveÐtwo conigurations for each function independently, either with or

without that directive. When the directive is applied to a function, its resource consumption increases and latency

decreases, as shown in Fig. 3.

For timing optimization, a design’s frequency can be ensured at a high level by pipelining as long as the

following loorplan conditions are satisied. The irst is having a legal loorplan meeting the resource constraint

on every single slot. Second, only FIFO channel connections are allowed to cross the slot boundaries (within a

limit on total width not relected in this toy example) because the handshake interface of FIFO is easy to pipeline.

In contrast, the complex RAM interface cannot be pipelined. Thus, functions connected through RAM should be

grouped and loorplanned on the same slot, while functions connected through FIFO channels can be partitioned

on diferent slots.

During directive DSE, we minimize the total latency of the design while ensuring the two loorplan conditions

above. Suppose that every function has no directive applied at the beginning of DSE. We irst ind an initial

loorplan using a speciic algorithm and then try to improve some functions by applying their respective directive,

subject to the resource constraint on each slot.

Fig. 3 shows the three loorplanning objectives compared in this toy example. The irst minimizes the width of

the FIFO channel crossing two slots (min-cut), as used in [9]. Since all functions cannot be packed in one single

slot, the solution to the min-cut problem is 8, which is the channel width between D and E. Thus, function E

should be assigned to the other slot. In this case, functions B and E can still it into their slots when applying

directives, and the inal total latency is improved to 16.

The second loorplan refers to the resource balancing heuristics [2]. Since functions B, C, and D are grouped

during loorplanning, as the largest one, they are initially loorplanned onto the other slot. After DSE, directives

are applied for B, D, and E, and the total latency is improved to 14.

To compare, an ideal loorplan for this design is partitioning between A and B, and the best point improves

total latency from 18 to 13 clock cycles, which is the minimum achievable latency for this case. If we have an

ideal loorplan at the very beginning, it is natural for DSE to reach the optimal latency without any efort to

change the loorplan. However, if we start with the other two loorplans, neither the min-cut nor the balancing

algorithm can further improve the achieved latency. In our FADO framework, the incremental loorplanning

algorithm smartly re-packs the functions from either of the two prior loorplans and always reaches the ideal
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Fig. 3. A Toy Example with 2 Dataflow Kernels and 1 Non-dataflow, with Diferent Latency (L) and Resource Consumption

(R). Three Diferent Floorplanning Methods and the Corresponding DSE Results Are Compared.

solution inally. Speciically, if FADO starts with the min-cut solution, A is identiied as the latency bottleneck

and has the top priority to apply the directive. When online packing inds no legal loorplan for A under the

min-cut loorplan, the oline re-packing stage groups B, C, D, and E. Thus, the ideal loorplan is found, and the

directive for A is successfully applied. It is a similar worklow if we start with the balanced loorplan. In Sec. 6,

the control experiments on real benchmarks all start with a min-cut loorplan, to fairly compare the efectiveness

of FADO with ILP loorplanning assisted DSE.
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From this example, we want to show that previous loorplanning techniques could fail to assist directive

optimization on multi-die FPGAs. On the contrary, an improper loorplan could prune the high-performance

points in a design space. That is why we propose loorplan-aware directive optimization, the FADO framework.

4 PROBLEM FORMULATION

Based on the multi-choice, multi-dimensional bin-packing problem, we formulate the directive-loorplan co-

search problem on multi-die FPGAs. To accurately describe the problem and show the complexity compared with

loorplanning in [9], we also present a ILP formulation below. Note that ILP is only used for a description of the

problem. In the implementation (Sec. 5), we use approximation heuristics for the objective and each constraint

instead of repetitively calling the ILP solver.

4.1 Symbol Definition

Table 3 shows the deinition of all the constants and variables used in our formulation.

Table 3. Symbols Used in Problem Formulation

Symbols Deinition

�,�
The number of datalow and non-datalow kernels

along the longest-latency path in an HLS design.

�,� Width/Height of an FPGA (by number of slots).

��� The total amount of resource � on slot � .

�ℎ Total number of SLLs on a die boundary.

�� �

The latency of the �-th function in the �-th kernel

along the longest-latency path. � ∈ {1, 2, ...,� + �},

� ∈ {1, 2, ...,�� }. �� = 1,∀� ≥ � + 1.

�� ��

Suppose that function � or kernel � has �� � directive

choices in total. �� �� = 1 when directive choice � is

applied to function � of kernel � . � ∈ {1, 2, ..., �� � }.

�� ��
�� �� = 1 when the sub-function � of kernel � is

loorplanned to slot � ∈ {1, 2, ..., �} among � slots.

�� ���

�� ��� represents the consumption of resource type �

of function � in kernel � , when directive choice �

is applied. � ∈ ����,���, ��, ���,���� .

��1, �1,�2, �2,���
��1, �1,�2, �2,� ���

��1, �1,�2, �2,∗ ∈ N. It’s positive when there exists a RAM

or FIFO connection from function �1 in kernel �1, to �2

in kernel �2, with a width of ��1, �1,�2, �2,∗. �1, �2 ∈

{1, 2, ...,� + �}, �1 ∈ {1, 2, ...,��1}, �2 ∈ {1, 2, ...,��2}.

�ℎ (�,��,�� )

�ℎ ∈ {0, 1}, it equals 1 when a source function on slot

�� goes through the die boundary indexed with �

and connects to a destination function on slot �� .

� = (�� , ��), �� ∈ {0, 1, ...,� − 1}, �� ∈ {0, 1, ..., � − 2}.

4.2 ILP Formulation

The objective function in our problem minimizes the total latency of an HLS design. To show the generality of

our problem, assume that we have a large accelerator containing multiple datalow and non-datalow kernels
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connected by RAMs. Minimizing the total latency is equivalent to minimizing the sum of latency of kernels ��
along the longest-latency path, as Eq. 1 shows.

minimize

�︁

�=1

�� (1)

Generally, a datalow kernel’s total latency is very close to the longest sub-function max� �� � in it, meanwhile

relatively much smaller latency comes from the depth of datalowÐthe cycle number it takes between each piece

of data appearing at the beginning of the datalow pipeline and at the end. We here approximate the total latency

of a datalow kernel � with the latency of the longest sub-function. Hence, for the longest-latency path with�

datalow kernels and � non-datalow kernels, the objective function can be re-written as:

minimize

�︁

�=1

max
�

�� � +

�+�︁

�=�+1

�� (2)

where � iterates on kernels, and � on sub-functions. There is no sub-function in non-datalow kernels indexed

from� + 1 to� + �.

Table 4. Directives in the Design Space of FADO

Directives Parameters

PIPELINE Initiation Interval (II) (<int>: {�����, ...,min(4 ×�����, �������)})

UNROLL Factor (<int>: {1, 2, 4, ..., ���������})

ARRAY_PARTITION

Type (Block/Cyclic/Complete)

Factor (<int>: in correspondence with the UNROLL factor)

Dimension (<int>)

BIND_STORAGE Implementation (BRAM/URAM)

4.2.1 Constraint 1: multi-choice packing problem. During the directive search, we have multiple choices of

directives and parameters for HLS functions, loops, and arrays. The directive design space of FADO is shown in

Table 4. For PIPELINE, the lower bound of II,����� , is determined by recurrence and resource analysis, and it is

also revealed by the HLS report when applying the minimum value possible for target II, i.e., 1. The upper bound

considers the iteration latency and four times the����� . For UNROLL, the applicable value for its factor ranges
from 1 to the loop bound. For ARRAY_PARTITION, we consider the three types of partitioning schemes and the

dimension of an array. For BIND_STORAGE, an array is implemented using either BRAM or URAM.

Every time we trigger the HLS, one group of directives and the corresponding QoR are applied for each function

(including the loops and arrays within it), described as the constraint in Eq. 3.

�� �︁

�=1

�� �� = 1, �� �� ∈ {0, 1} (3)

4.2.2 Constraint 2: multiple bins. Multi-die FPGA is partitioned into several slots during loorplanning by the die

boundaries and I/O banks. Eq. 4 guarantees that there’s no duplicated or missing loorplan for each HLS function.

�︁

�=1

�� �� = 1, �� �� ∈ {0, 1} (4)
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4.2.3 Constraint 3: multi-dimensional packing problem. In our problem, a single dimension of resource constraints

corresponds with one type of resource on the multi-die FPGAs. The following constraint in Eq. 5 assures that

functions on each slot with speciic directive conigurations respectively will not cause overlow in any type of

resource.
�+�︁

�=1

��︁

�=1

�� ���� ���� ��� ≤ ��� (5)

4.2.4 Constraint 4: grouping the RAM-connected functions. Another particular type of constraint is introduced by

the RAM connection between kernels, as shown in Fig. 4. Since the interface between RAMs and functions is not

the handshake model and is diicult to pipeline, the RAM-connected functions are grouped and assigned to the

same slot during loorplanning. As Equation 6 states, ��1, �1,�2, �2,�����1�1�1��2�2�2 = 0 guarantees that either there

is no RAM connection between two functions, or they are not separated on two diferent slots.

��1, �1,�2, �2,�����1�1�1��2�2�2 = 0, (�1 ≠ �2 ∨ �1 ≠ �2) ∧ �1 ≠ �2

��1, �1,�2, �2,��� ∈ N+, �1 ≠ �2 ∨ �1 ≠ �2
(6)

4.2.5 Constraint 5: Limited number of SLLs. As Fig. 5 shows, Alveo U250 FPGA is vertically partitioned into two

parts by the I/O banks and horizontally partitioned by die-boundaries into four parts. Suppose we have a source
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function "s" and a destination function "d" placed on SLR3:Slot0 and SLR0:Slot1, respectively. No matter which

route between "s" and "d" is chosen, it crosses three horizontal die boundaries. For each boundary with vertical

index �� , the route passes through either the left half or the right half of it. The corresponding constraint is:

� −1︁

��=0

��1�1�1��2�2�2�ℎ (�,�1,�2) sgn(��1, �1,�2, �2,� ��� ) = 1 (7)

Since the number of SLLs is limited between two dies, we have the formulation in Eq. 8.
︁

�1, �1,�2, �2,�1,�2

��1�1�1��2�2�2�ℎ (�,�1,�2)��1, �1,�2, �2,� ��� ≤ ��ℎ, (8)

where � is the upper limit of SLL utilization. It is set to 90% in our implementation.

5 IMPLEMENTATION

To solve the ILP formulation above, we develop the FADO framework (Fig. 2), which can be split into the following

parts.

Sec. 5.1 introduces the input generation for the core co-search of FADO, featuring the newly added HLS front-

end script in this extension paper. Next, as the foundation of DSE, the pre-processing for synthesis-based QoR

library in FADO 1.0 and the analytical QoR model in FADO 2.0 are introduced in Sec. 5.2. Then, we describe the

objective and multi-choice constraint (Eq. 3) in the DSE algorithm (Sec. 5.3), highlighting the redesigned directive

search strategy in FADO 2.0. Other constraints are included in the loorplanning algorithms (Sec. 5.4). Then, the

optimized loorplan after each iteration will be passed to the incremental pipelining module as elaborated in

Sec. 5.5. Last but not least, the interaction between FADO and external tools is explained in Sec. 5.6.

5.1 FADO Initialization

5.1.1 Common initialization in 1.0 and 2.0: As Fig. 2 shows, at the very beginning, the input to FADO is an HLS

design without any directive of PIPELINE, UNROLL, ARRAY_PARTITION, and BIND_STORAGE. We parse the

source code in "Func/Loop/Array Parser" to generate labels and hierarchy for nested loops. The labeled code

is synthesized by an external HLS tool. Then, the initial HLS report is analyzed by a graph constructor, where

connections through FIFOs and RAMs are identiied. Next, the graph is passed to the min-cut loorplanner of

AutoBridge [9] to generate an initial legal loorplan, which is passed on to FADO core low for directive-loorplan

co-optimization.

5.1.2 FADO 1.0: The results from "Func/Loop/Array Parser" help identify HLS functions of the same template.

Then, we sample a group of eicient design points for each template, which means that unreasonable design

points are excluded, such as mismatched factors for loop unrolling and array partitioning, and that the interplay

between directives is included, e.g., outer loop pipelining infers automatically and fully unrolling the inner loops.

These design points are then added into the QoR library ���_��� during pre-processing.

5.1.3 FADO 2.0: HLS Front-end script. During the initialization stage, IRs are generated for each HLS function

and will be directly reused later in the main search process together with a model and various HLS directives

to infer QoRs. The analytical models in previous works [52, 55] only consider limited data types or bitwidthsÐ

32-bit integer or loating point. By contrast, FADO additionally considers 64-bit loating point and arbitrary

precision integers, "ap_[u]int<W>" from the Vitis HLS library. This is achieved by a sequence of clang, clang-tidy,
llvm-link, and opt instructions extracted from the "autopilot.low.log" of Vitis HLS’s front end. They can run in a

stand-alone mode to get the link-time optimized (LTO) IR within milliseconds. We notice that the bitwidth of

some IR instructions in the LTO stage could be diferent from that of IRs in later stages or the corresponding

registers/signals in the generated Verilog. However, we cannot run till later stages because the HLS tool doesn’t
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Fig. 6. The Updated Components in FADO 2.0’s Analytical QoR Model.

support standalone execution of the middle/back end. Besides, the original intention of designing this model

is to avoid the long synthesis time. Accordingly, we adopted some additional LLVM passes after the LTO pass

sequence to reveal the correct bitwidth at front end. For example, a pair of "trunc" and "zext|sext" instructions can

sometimes hide the real bitwidth. We accordingly adopt the "instcombine" pass to recover the correct bitwidth.

5.2 Pre-processing: Library vs. Model

5.2.1 Synthesis-based QoR Library. In a large-scale HLS design, many functions could be based on the same

template. When running an HLS over the entire design, excessively long synthesis time is wasted on repeatedly

analyzing functions from the same template. Besides, it is hard for existing graph analysis or machine learning

methods to accurately predict the QoR of an HLS design with various coding styles, complicated control and data

low, and lexible compilation optimization.

Considering the small size of each function template, it only takes a short period to sample the most efective

directive choices of them and build a function-level QoR library based on the HLS synthesis report to facilitate

the whole worklow. To be speciic, in FADO 1.0, we classify the functions by either the template of C++ generics

or custom naming rules, e.g., all functions whose names match the regular expression r"funcA_[0-9]_[0-9]" will
map to "funcA" in the QoR library. To apply directives to the C++ template, we follow [16]. As for custom regex,

it is straightforward since they have distinct names. Accordingly, we only need to look up QoRs in the library

during DSE instead of repeatedly running the HLS low for an entire design.

5.2.2 Analytical QoR Model. In FADO 1.0, we sample the efective directives to speed up building QoR libraries

to minutes or hours. This is where the completeness of the design space gets sacriiced to some extent, and

this way of generating the QoR library is poor at generalization towards new designs. To completely avoid the

pre-processing overhead and to generalize our framework, in FADO 2.0 low, we build an analytical model based

on COMBA [55]. Now, let us break down the model building into several steps and zoom in on the "Analytical

QoR Model" part, as Fig. 6 shows.

First, re-build the micro-benchmarks. Due to the process advancement of FPGAs, the operation-level delay

and resource model in HLS tools also change. For all the diferent types of operations in LLVM IR, we focus on

those directly related to the on-chip resources, including most of the binary, logical, memory/addressing, and
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Algorithm 1: The Top-level of FADO Framework

Input:���_���, ����������_����� , � : look-ahead step number, � ���: search mode

Output: Optimal Directives, Legal Floorplan

1 while True do

2 (�1, �1 ) = argmax1�,� (�� � ) ; // the longest functions

3 �(�2, �2 ) = max2�,� (�� � ) ; // the 2nd-longest latency

4 if � ��� == "FADO 1.0" then

5 ��1 = Prune(���_���, (����,1, ����,1 ) , �����,2, ����,2);

6 �� = ��1[−1], break if �� is ���� ; // Constraint Eq. 3

7 if � ��� == "FADO 2.0" then

8 ��2 = find_next_DP(����������_����� , (����,1, ����,1 ) , �����,2, ����,2);

9 �� = ��2[−1], break if �� is ���� ; // Constraint Eq. 3

10 �� = balance_BRAM_URAM_LUTRAM((�1, �1 ) , ��);

11 � �_������� = incremental_floorplan((�1, �1 ) , ��);

12 exit_condition_check (� �_�������);

cast operations. For each of these operators, we build micro HLS benchmarks for each of the commonly used

data types (int, loat, double, etc.) and bitwidths (i16, i128, loat32, double64, etc.), covering all the possible cases

in the benchmarks to get tested. Then, HLS and logic synthesis for hundreds of these benchmarks can be done in

parallel within several minutes, even for the largest bitwidth covered in our case, 512 bits.

Second, revise the data collectors. In COMBA [55], some conigurations for arrays, loops, and HLS functions

are manually computed and hard-coded into the C++ source code to adapt to speciic HLS designs. In order

to adapt this model to FADO’s low, the irst step is to upgrade the IR parser in the "Static Info. Collector" to

automatically extract the conigurations from IR, such as parsing the metadata according to Vitis HLS’s IR format

and extracting the correspondence between loop labels and headers. As for the "Dynamic Info. Collector", we

calibrate the operation chaining rules based on the pre-characterized operation delays in the irst step. The delay

of each operation is extracted from the verbose HLS scheduling report of the micro-benchmarks, where each

operation in the inite-state machine has a predetermined delay value by the HLS tool.

Third, calibrate the resource and latency model. For BRAM and URAM, we update the coniguration

choices (width and depth) according to [18] to derive the correct utilization given the bitwidth and number of

elements in an array. With the ground truth of DSP and LUT utilization from all the micro-benchmarks and some

revision on the resource-sharing mechanism, we accurately predict DSP and LUT for most of our test cases. As

for FF, since it is suicient on FPGA [55] and seldom becomes the bottleneck during our experiments, we remove

it from the loorplan constraint in FADO 2.0. Meanwhile, the latency (cycle) estimation is based on the delay of

each operation determined in the second step. Accordingly, we calibrate the performance model for directives in

Table 4 to improve latency estimation. The quality of latency estimation is analyzed in Sec. 6.4.2.

5.3 Directive Optimization

The top-level loorplan-aware directive optimization is described in Alg. 1. In every iteration, based on either the

QoR library or the analytical model, we identify the functions with the longest and second-longest latency among

thewhole HLS design, i.e., the sub-function �1 of kernel �1 is the bottleneck, represented by (�1, �1) = argmax1�, � (�� � ),

and the second-longest function is (�2, �2).

In FADO 1.0, we apply the latency-bottleneck-guided search [25, 55] in Prune(), which extracts all design

points of (�1, �1) from the QoR library with smaller latency compared with the second-longest function’s �(�2, �2 ) .
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Algorithm 2: New Directive Search Strategy in FADO 2.0

Input: ����������_����� , (����,1, ����,1 ) : the longest function, �����,2, ����,2 : second longest latency

Output: �� : all design point until �� as the last one to try loorplanning

// find_next_DP(����������_����� , (����,1, ����,1 ) , �����,2, ����,2)

1 ��_�����_�� = []; ������_����_������� = {};

// ������_����_�� (�� ��� , �� ��� ): list[list[dict]]

// list: first level loops -> list: design points -> dict: directives and parameters

// ������_����_����� (�� ��� , �� ��� )
: list[int], counting design points visited, initialized with 0

2 for ����� in len(������_����_�� (����,1, ����,1 ) ) do

3 if ������_����_����� (����,1, ����,1 ) [�] < len(������_����_�� (����,1, ����,1 ) [����� ]) then

4 ���������� = ������_����_�� (����,1, ����,1 ) [����� ][������_����_����� (����,1, ����,1 ) [�]];

5 ��� = run_analytical_model(����������);

6 ������_����_�������[����� ] = (���������� , ��� );

7 if ������_����_������� then

8 while True do

9 � , ���������� , ��� = max(������_����_������� , key = latency);

10 ������_����_����� (����,1, ����,1 ) [�] += 1;

11 if ��� [latency] < �����,1, ����,1 then

12 append ���������� to ��_�����_�� ;

13 if ��� [latency] < �����,2, ����,2 then

14 return(sorted(��_�����_�� )); // sorted by latency in decreasing order

15 if ������_����_����� (����,1, ����,1 ) [�] < len(������_����_�� (����,1, ����,1 ) [����� ]) then

16 ���������� = ������_����_�� (����,1, ����,1 ) [����� ][������_����_����� (����,1, ����,1 ) [�]];

17 ��� = run_analytical_model(����������);

18 ������_����_�������[����� ] = (���������� , ��� );

19 else

20 pop the ����� from ������_����_������� ;

21 Similar to the single-loop search above, search on�����_����_�� (����,1, ����,1 ) ;

22 return(��_�����_��);

These points form a next-step design space ��1 (a set of directive conigurations and their respective QoRs).

Although applying any of the conigurations in ��1 to function (�1, �1) would make (�2, �2) the new latency

bottleneck of the whole design, FADO will not make one-of latency improvements for bottleneck functions or

choose the design point with the lowest resource utilization. On the one hand, aggressive latency improvement

usually results in a dramatic increase in the resource utilization of current function(s), and potential latency

improvement for future bottlenecks could be precluded because of a lack of resources. On the other hand, since

resource utilization is calculated by taking the maximum utilization ratio among diferent resources, considering

the non-monotonic design space, when utilization of one resource is minimized, others could still increase. Hence,

we always assign the top priority to the design point �� , which has the largest latency among ��1, for further

loorplan legalization. Note that functions having the same latency with (�1, �1) will be considered as a batch for

eiciency.

In FADO 2.0, since we don’t have the global knowledge of the design space from the QoR library, we need to

redesign an efective search strategy, as Alg. 2 shows, to choose every next design point at each iteration. Given
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that most HLS functions are made up of nested loop trees, we analyze all the loops within a function and derive

two parts of the design space.

Func 1:

L1-loop1

L1-loop3

L2-loop1

L2-loop2

L3-loop1

L3-loop2

L3-loop3

...

L1-loop2

L2-loop3

L3-loop4

Order Index Loops� whose directives are included

In ������_����_�� (�� ���1, �� ���1 ) ["L1-loop1"]

0 L3-loop1, L3-loop2, L3-loop3

1 L2-loop1, L2-loop2

2 L1-loop1

In ������_����_�� (�� ���1, �� ���1 ) ["L1-loop2"]

0 L3-loop4

1 L2-loop3

2 L1-loop2

In ������_����_�� (�� ���1, �� ���1 ) ["L1-loop3"]

0 ...
� Arrays accessed in the loops are also considered.

Fig. 7. An Example: The Level Order of Loops and Arrays Considered in ������_����_�� (�� ��� , �� ��� ) .

The irst part is ������_����_�� (�� ��� , �� ��� ) . For each function, there is a list of irst-level (outermost) loops on

the loop tree. For each irst-level loop, we build the list of directives by a reversed level-order traversal on its

sub-loops, as Fig. 7 shows. For the list of directives indexed by loop L1-loop1, we start by checking the last-level

(innermost) loops, L3-loop1, L3-loop2, and L3-loop3. After all conigurations in the current level are inished, we

move towards the second innermost level to check the directives of L2-loop1 and L2-loop2. Finally, we explore

the directives of L1-loop1. This process repeats for every irst-level loop. During the traversal, we take a record of

the maximum loop bound of loops in each level, and compute the product from the last level to the irst. If the

cumulative loop bound exceeds a certain threshold (2048 in our experiments), the exploration of this subtree

terminates, and we move on to the next irst-level loop. This is to avoid unrolling the inner loops with an excessive

factor.

Table 5. Exploration Order of Directive Configurations in Each Level within ������_����_�� (�� ��� , �� ��� )

Order Index Directive Latency Model (Iter. Lat.=���� , Tripcount=��) Parameter Order

1 Unroll� (factor = � ) ���1 =
���� ·��

�
factor↗

2 Pipeline ���2 = ���� + (�� − 1) · �� II ↘

3 Unroll+Pipeline ���3 = ���� + ( ��
�
− 1) · �� factor↗, II↘

� The parameters of array partition directives are set according to unroll and pipeline.

Given the traversal order on the loop tree, we consider the directive conigurations for each level of loops in

the descending order of latency, as Table 5 shows. This order is based on the assumption that �� is usually much

smaller than the iteration latency ���� , and the tripcount �� is usually in the same order of magnitude with the

unroll/partition factor � . Hence, one can add, remove, or change the order of any potential conigurations to

adapt to speciic designs and trade of the size of the directive search space against the search time.

The second part,�����_����_�� (�� ��� , �� ��� ) is the Cartesian product of the directive choices of all irst-level

loops (������_����_�� (�� ��� , �� ��� ) [����]) in an HLS function. Speciically, to maintain the descending order

of latency, we sort all elements in the �����_����_�� (�� ��� , �� ��� ) by the sum of all indices in their original

������_����_�� (�� ��� , �� ��� ) .
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Algorithm 3: Incremental Floorplanning

Input: �������_� �������� starting from (�1, �1 ) , design point �

Output: � ��

// incremental_floorplan()

1 � �� = online_packing((�1, �1 ) , p);

2 if not � �� then

3 � �� = offline_repacking();

4 if � �� then

5 � �� = online_packing((�1, �1 ) , p);

6 if not � �� then

7 if FADO 1.0 then

8 iterative look_ahead(� ), online_packing; // FADO 1.0 only

9 if FADO 2.0 then

10 iterative find_next_DP(...), online_packing; // FADO 2.0 only

11 if not � �� then

12 iterative look_back(), online_packing;

Based on these two orders, we redesign the find_next_DP() strategy (Alg. 2) for choosing every new design

point. We start by checking the ������_����_�� (����,1, ����,1 ) . Following the order in Table 5, we evaluate one new

directive coniguration for every irst-level loop and choose the one with the minimum latency improvement (line

9, Alg. 2) at each step. Whenever the newly evaluated design point has a lower latency than the previous longest

function, we append it to the ��_�����_�� list (line 12, Alg. 2). When we ind a design point with a latency

smaller than the second-longest function, the search stops and the ��_�����_�� is returned (line 14, Alg. 2) for

loorplanning. Otherwise, we continue to check the�����_����_�� . Finally, all the points within ��_�����_��

could be used for look_back() in the next section.

After getting the design point �� , in line 10 of Alg. 1, we design a storage binding mechanism to balance the

BRAM, URAM, and LUTRAM utilization. Since the analytical model in FADO 2.0 provides BRAM and URAM

estimation, we will bind the storage type of a design point to LUTRAM when URAM and BRAM utilization are

both higher than a certain threshold�1. Meanwhile, the diference between LUT and URAM/BRAM is larger than

another threshold �2. We mainly use �1 = 0.45 and �2 = 0.1 in our design. If these conditions are not met, we

decide between BRAM and URAM based on a lower total utilization ratio among the board after applying this

design point. At this point, the updated �� is ready for loorplanning.

5.4 Incremental Floorplanning

The initial loorplan input to FADO is generated by an iterative min-cut ILP bi-partitioning in the "AutoBridge

Floorplanner [9]" shown in Fig. 2. During FADO’s iterations, we irst apply a resource-bottleneck-guided online

WF algorithm. When this online packing fails to ind a legal loorplan, an oline BFD re-packing compacts the

existing loorplan before calling the online packing again. The deinition of "online" and "oline" algorithms

refers to [21]. During online packing, HLS functions are optimized one after another, and the previous loorplan

of a function will be kept unchanged. In contrast, without applying new directives, the oline stage re-orders all

functions by heuristics to improve the packing quality.

5.4.1 Online Packing. To avoid routing congestion from a high-abstraction view, the online packing tends to

balance the utilization ratio among diferent resources and diferent slots, i.e., if a function fails to it into its

original slot after applying a new directive coniguration, we try to loorplan it into other slots according to the
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Algorithm 4: Online Packing

Input: �������_� �������� and QoRs �� � , �� � , design point �

Output: � �� , ���� � �_����

1 � �� = False, ���� � �_���� = [], ��� ��_� ���� = [];

2 for � ��� in longest_functions do

3 if � ��� still its in the current slot �� then

4 update directives for � ��� , and resource util. for �� ;

5 �� � , �� � = �� , �� ; � �� = True;

6 else

// check constraint Eq. 6, Eq. 7 and Eq. 8

7 calculate overlow ratio, and sort ��ℎ��_����� by��;

8 for each �� in ��ℎ��_����� do

9 if no overlow when moving � ��� to �� then

// check constraint Eq. 5

10 update directives for � ��� ;

11 update util. for �� , �� ; // constraint Eq. 4

12 append (� ��� , �� ) to ���� � �_���� ;

13 �� � , �� � = �� , �� ; � �� = True; break;

14 if not it then

15 append � ��� to ��� ��_� ���� ;

16 if any func in ��� ��_� ���� then

17 clear ���� � �_���� ; � �� = False;

18 else

19 update the loorplan according to ���� � �_���� ;

non-decreasing order of critical resource (CR). CR refers to the type of resource having the highest overlow

percentage among BRAM, DSP, FF, LUT, and URAM. If multiple slots have the same CR amount, we sort them by

the average utilization of the other four non-critical resources. The online packing algorithm is shown in Alg. 4.

5.4.2 Ofline Re-packing. Since online_packing() tends to spread functions evenly on each slot, and when

there is an aggressive move in directive search with a sharp increase in resource utilization, the balance could

preclude the new design point from taking efect. Thus, oline re-packing sorts all the slots ��� by resource

utilization in non-increasing order. Then, it respectively sorts all the functions �� � on each slot ��� by resource in

non-increasing order as well. The re-packing starts with moving the �21 from the second fullest slot ��2 to the

fullest ��1, and then the second largest function �22 from ��2 to ��1, etc. When ��1 is full, or ��2 is empty, we

turn to move functions �31, �32, etc., from the third fullest slot ��3 to ��1, then to ��2. A general step of re-packing

the�-th fullest slot is to move ��1, ��2, ..., ���� to ��1, ��2, ..., ���−1 in turn.

Fig. 8 shows the loorplanning of 5 functions onto 4 slots. We reduce multiple resources to one dimension by

taking the maximum ratio among them. Through directive search, the resource of the blue function expands

from 0.3 to 0.6. However, since other gray functions were ixed during the online stage, the expanded function

its nowhere. To compare, the re-packing stage sorts the slots by utilization in non-increasing order and executes

six trials in order. Trials 1/2 fail because slot 1 is full. During trial 3, a gray function is moved from slot 2 to slot 0.

Trials 4/5 also fail because the destinations, slots 0 and 1, are full. Trial 6 is canceled because the destination, slot 2

has been found empty. With re-packing, the expanded function its in slot 2 after a new round of online packing.
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Fig. 8. An Example of Ofline Re-packing.

Fig. 9. Comparison of Resource Utilization vs. II between CNN and LU Benchmarks.

Re-packing applies diferent strategies for functions in datalow kernels and non-datalow kernels. The loorplan

change is free for datalow functions if the SLL utilization constraint is met. For non-datalow parts, since their

connections with other adjacent functions are not through the FIFO channel, the long wires could not be broken

by inserting pipeline logic. Hence, instead of moving them, we force other datalow functions with no RAM

connection to diferent slots. Thus, FADO assigns more resources to the slots containing non-datalow for further

DSE.

5.4.3 Look-Ahead and Look-Back. If �� is still not successfully loorplanned after online packing and oline

re-packing, we will keep trying other design points. This is because, in realistic HLS designs, greedy DSE and

loorplanning could easily get stuck in local optima. Fig. 9 shows the diferent trend of resource utilization as

the PIPELINE initiation interval (II) changes in two designs, CNN from [5] and LU from [45]. As II increases,

latency also increases in both designs. It reduces the utilization of the three types of resources in the CNN

benchmark because computation instances are shared among multiple cycles. However, in contrast, there are a

lot of loop-carried dependencies in the LU benchmark; the results from the previous iteration cannot be directly
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Fig. 10. Efect of Look-Ahead in FADO 1.0 Flow with Step # � , and Look-Back.

passed to the next, and extra logic is used to bufer the results. Together with the efect of resource sharing, the

utilization irst increases as II increases from 1 to 2, and then decreases when II continues increasing.

To handle the non-monotonic design space in the QoR library, FADO 1.0 proposes the sampling methods

of look_ahead() and look_back(). When the irst two stages of loorplanningÐonline packing and oline

re-packing fail to ind a legal loorplan for �� , we further check the loorplan for a limited number of design

points with lower latency yet potentially fewer resources. This is referred to as the look-ahead stage. If it still

fails in loorplanning, we turn to check the points with larger latency than �� in the look-back stage. These

points are more likely to have lower resource utilization and a legal loorplan.

Here is an example of how FADO 1.0 samples within the QoR library. Fig. 10 shows a snapshot of directive

search for the current bottleneck function (�1, �1). QoR values are normalized for clarity. The design point with the

top priority for loorplan checking is �� , with a resource utilization of 0.5 and a latency of 0.3 (the longest latency

smaller than �(�2, �2 ) = 0.4). However, only 0.35 resource is left for the current function, and no legal loorplan is

found for �� during online packing and oline re-packing. We now look ahead/back for other improvement

opportunities with fewer resources. When we set the step number � to 1 during look_ahead(), the next design

point consumes 0.6 utilization and also fails to be loorplanned. Thus, when look_ahead() also fails to ind a

point with a legal loorplan, look_back() traverses all the points with latency from 0.3 to 0.8. When � is set to 2

or 3, the directive coniguration with a latency of 0.15 is found during look_ahead().

For HLS designs, FADO 1.0 decides the step number � of look_ahead() by analyzing the range of parameters

for PIPELINE and UNROLL, two of the most efective directives. We deine the � as the largest number of diferent

conigurations on a single nested loop. To exclude the directive conigurations that over-utilize resources, we

check at most three levels for each nested loop from the innermost level. For each nested loop of � levels, we

index the innermost loop with 1, and the outermost loop with �. (1) For directive PIPELINE, since [17] suggests a
maximum loop bound of 64 for auto pipelining, we set the range of II to the logarithm of the minimum between

64 and the iteration latency �� from HLS report. (2) For directive UNROLL, similar to PIPELINE, we take the
minimum between 64 and the loop bound �. (3) For the combination of PIPELINE and UNROLL, since all the inner
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Fig. 11. Incremental Update of Pipeline Registers.

loops are completely unrolled when an outer loop is pipelined, we consider only the directive combination in 2

levels of loops. In all, the resulting step number � for a design with� nested loops is:

�1 = max
1≤�≤�

max(3,�� )︁

�=1

log2 min(64, ��� � )

�2 = max
1≤�≤�

max(3,�� )︁

�=1

log2 min(64, �� � )

�3 = max
1≤�≤�

max(2,�� )︁

�=1

log2 min(64, �� � )

� = �1 + �2 + �3

(9)

On the lip side, the look-ahead sampling strategy for FADO 2.0 is more straightforward and free from the

� above, because the sampling order shown in Table 5 secures a promising converging direction. We can keep

calling find_next_DP() (line 10 of Alg. 3) until no new design point is available or the upper limit for loop

tripcount is reached.

5.5 Incremental Pipelining

When loorplanning HLS functions from one slot to another, as Fig. 11 shows, each time a path crosses a boundary

between two slots (SLR boundary or I/O banks), additional pipeline registers should be added beside the boundaries

to break down the long wires. We here set a constraint of 90% (Eq. 8) for SLL utilization and incrementally update

the pipelining logic of long wires crossing slot boundaries. As Fig. 11 shows, when function "d" is moved from

Slot 0 to Slot 3, two groups of additional pipeline registers are added between "s" and "d."

5.6 Exit Condition and External Tools

During iterative optimization, when there is no legal loorplan found for the next design point of the current

longest function or when no other directive coniguration could improve the bottleneck’s latency further, it is

excluded in future iterations. FADO stops when there is no function left for the bottleneck analysis. Then, it dumps

the optimal directives to a TCL ile to guide the re-synthesis of the HLS code to generate a high-performance RTL

design. FADO also delivers the inal loorplan to the global router, latency balancer, and datalow RTL generator

within [9] to update the pipelining of datalow kernels in the Verilog code and generate another TCL script to

guide the loorplanning during implementation in Vitis.
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6 RESULTS

6.1 Benchmarks and Experiment Setings

To efectively evaluate FADO, the benchmarks’ resource utilization and the number of HLS functions are essential

metrics. If the resource utilization is too low, it would not challenge the quality of loorplanning. If only a

few functions exist, it will not fully demonstrate the co-search eiciency. Both cases would reduce the co-

search problem to a pure directive optimization problem. Hence, we mainly adopt large-scale open-source

HLS designs with compatible interfaces for evaluation and ilter out many commonly used but unsuitable

benchmarks. To be speciic, most of the designs in Vitis Libraries [49], CHstone [12], Rosetta [56], etc., occupy

less than 10% of the resources on the Alveo U250 FPGA. They only have several functions to consider during

coarse-grained loorplanning, which is not challenging even if we increase the design size, e.g., by applying a

larger bitwidth. Besides, interface incompatibility makes it diicult to scale up by connecting multiple designs

from these benchmarks. Hence, we generate large datalow kernels CNN, MM, and MTTKRP using PolySA [5]

and AutoSA [45]. For non-datalow designs, we use 2MM, COV, and HEAT from PolyBench [26], which are

general programs also used in CPU, GPU, etc. To best show the generality of our solution, we assemble six large

benchmarks mixing the datalow and non-datalow kernels above to evaluate the performance of our framework,

as Fig. 12 shows. Their number of functions (datalow sub-functions + non-datalow) ranges from 175 to 350.

When diferent directives are applied, their maximum utilization ranges from ∼20% to over 80% of the on-chip

resources within our designated dies after implementation. The kernels connect through RAMs, which enlarges

the design space compared with a single datalow kernel.

To show the scale of our problem, we visualize the HLS-function-level data low graph of the CNN*2+2MM*1
benchmark in Fig. 13. The two yellow bounding boxes mark the two CNN13x2 datalow kernels, each containing

tens of sub-functions. The red circles on the top of this igure are the non-datalow 2MM kernel and the two RAMs

connected to it. The RAM "temp_xin1_V_U" is connected to two input sub-functions of CNN13x2 Kernel 1, and
RAM "temp_xout0_V_U" is connected to one output sub-function of CNN13x2 Kernel 0. Since their connections
are not through FIFO channels, they are grouped during loorplanning and always placed in the same slot. As for

a datalow kernel, the green boxes are FIFO channels, and the blue circles are datalow sub-functions. Datalows

can be partitioned, loorplanned, and pipelined on any slot as long as the resource constraints are met. The overall

design space of FADO is the Cartesian product of directive space and loorplan space. For directive search, the

space ranges frommillions to billions in our benchmarks, considering the parameters in Table 4. For loorplanning,

it maps hundreds of functions to four slots, and the space size is four to the power of hundreds.

We use the AMD Xilinx Vitis HLS 2020.2 for HLS synthesis and Vitis for implementation. We evaluate our

framework on the AMD Alveo U250 FPGA, which contains eight slots deined by the 4 SLRs and an I/O bank
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Fig. 12. The 6 Benchmarks Used to Evaluate FADO.
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Fig. 13. The Scale of the CNN*2+2MM*1 Benchmark.

in the middle. Note that the rightmost column (∼1/8) of clock regions is occupied by Vitis platform IP. Hence,

the resource calculation excludes that column. We tightly limit the loorplanning of HLS designs to the lower

half1 (4 slots on SLR 0 and SLR 1) of the FPGA to post more challenges to the optimality of our results. In our

experiments, we ind that the resource constraint of 70% still leads to placement or routing failure sometimes.

Hence, in FADO 1.0, we tighten the limit to 65% for each slot during DSE. Meanwhile, in FADO 2.0, the LUT

utilization is sometimes higher than the actual number after logic synthesis because the resource sharing and

operation chaining are not as comprehensive as the commercial tool. Together with the balance mechanism

between BRAM, URAM, and LUTRAM, we loosen the limit to 80% or even larger for diferent types of resource

utilization estimated by the model.

6.2 Comparative Experiments

Table 6 mainly compares FADO 2.0 and FADO 1.0 with diferent directive-loorplan co-search lows and the global

loorplanning in [9]. We report the total runtime (consisting of the DSE time and the pre-processing time) and

the quality of each implemented design with its resource, latency, maximum achievable frequency, and overall

execution time. Among all metrics, overall execution time combines latency and timing quality, relecting the

ultimate design performance on FPGA. We highlight the best latency, Fmax, and overall execution time in

each column.

In Table 6, the irst row, "Original (directive-free)" shows the resource and latency of the 6 benchmarks when

removing all directives and turning of every optimization, such as auto-pipelining. This coniguration generally

has the least resource utilization and thus is used as the starting point for directive-loorplan co-search. Before

evaluating the automated co-search lows, two other conigurations in the second and third rows also deserve

our attention. Since AutoSA-generated designs are originally manually optimized with rich sets of directives,

1The lower half of the Alveo U250 FPGA, excluding the rightmost column of clock regions, contains 2016 BRAMs, 5184 DSPs, 1319040 FFs,

659520 LUTs, and 544 URAMs. These are the total resource considered in Table 6 and Table 7.
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we try to keep them, to not only observe the gap between our automated low and the manual optimization,

but also reveal the necessity of automating the directive-loorplan co-search. We have also turned on the auto-

pipelining since PolyBench designs originally contained no directives. About "Original (directive-rich, no FP)",

since the designs are not loorplanned, they can spread all over the 4 dies of the Alveo U250 FPGA. Manually

optimized HLS directives indeed lead to the lowest latency in most (5 out of 6) cases, but it either results in sub-

optimal frequency (e.g., MM*1+COV*2 and MM*2+2MM*2) or implementation failures, such as over-utilization

in BRAM (MTTKRP*2+HEAT*2), DSP (CNN*3+COV*2), and net conlicts during routing (MTTKRP*2+COV*2).
As for "Original (directive-rich, AutoBridge FP)", when we constrain the designs to the lower half of the FPGA,

only the smallest CNN*2+2MM*1 can be successfully implemented. To briely summarize, these two series with

manual optimization are floorplan-unaware. With a one-of latency optimization to the extreme, the aggressive

resource expansion leads to sub-optimal frequency or implementation failure.

Then, we compare three types of automated co-search lows. The directive search in each low either uses a
synthesis -based QoR library for evaluation or relies on the analytical model.

The irst type of baselines, "Initial FP -> Iterative Syn-/Ana-DO," perform the directive optimization using a

one-of initial loorplanning. They apply the min-cut ILP loorplanning from [9] only once, and then all HLS

functions’ positions are ixed during the iterative directive search. The limited optimization opportunities caused

by the ixed initial loorplan lead to an under-utilization of resources. This severely limits the latency optimization,

resulting in the longest latency among all benchmarks. The synthesis-based one fails in the implementation of

MTTKRP*2+HEAT*2 because two HEAT kernels are loorplanned on the same slot, each having a large array

using more than one column of BRAM or URAM, which triggers an exception during placement. Similar issues

are found in the analytical baseline for the MTTKRP*2+COV*2.
The "Iterative (Syn-/Ana-DO + AutoBridge FP)" baselines run the min-cut ILP loorplanning iteratively after

applying each new directive coniguration. Note that the heuristics of look-ahead and look-back are also applied

in these cases for fairness when compared with FADO. The synthesis-based one results in orders-of-magnitude

longer search time than FADO due to repetitively calling the ILP solver when meticulously traversing the QoR

library. In comparison, the analytical one converges in fewer steps with the redesigned directive search strategy

(Alg. 2). Besides, the balance mechanism among BRAM, URAM, and LUTRAM reduces the utilization ratio of

the critical resource in some cases, making it easier for the solver to reach feasible solutions. Meanwhile, since

AutoBridge [9] applies iterative bi-partitioning rather than a one-of eight-way partitioning2, optimality is not

guaranteed. As relected by the execution time, the design implementation quality of these baselines is inferior to

the corresponding low of FADO in all six benchmarks. In summary, these methods incur longer search time

while still resulting in sub-optimal designs.

As for FADO 1.0, the online packing and oline re-packing strategies alternatively balance and compact the

loorplan, contributing to better utilization of resources on multiple dies (the highest utilization ratio under

resource constraint of 65% in ive out of all six benchmarks). Accordingly, the high-quality loorplan strongly

supports exploring a larger design space during the directive search. Thus, our FADO 1.0 achieves 33.12% smaller

latency on average comparedwith the time-consuming "Iterative (Syn-DO +AutoBridge FP)" and attains the lowest

latency for all benchmarks over all synthesis-based baselines. The latency improvement varies because of the

nature of benchmarksÐit is more signiicant when FADO 1.0 legalizes the loorplan for some bottleneck functions

with a great latency-resource tradeof, as the cases MM*1+COV*2, MTTKRP*2+HEAT*2, and MTTKRP*2+COV*2
show. As for frequency, experiments show that when the utilization gets close to 65%, although the frequency

could vary to some extent due to non-determinism in loorplanning and further implementation, our incremental

solution still outperforms the baselines, with both a higher average Fmax of 290.96 MHz and lower variance.

2Eight-way partitioning runs even more than 10x slower compared with bi-partitioning in directive-loorplan co-search experiments using

benchmarks above.
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Table 6. QoR Comparison among FADO 2.0/1.0 and Other DSE Strategies ( Synthesis vs. Analytical )

Benchmarks CNN*2+2MM*1 (175 functions) MM*1+COV*2 (176 functions)

Res.� Runtime� Latency� Fmax� Exe_time� Norm.ℎ Res. Runtime Latency Fmax Exe_time Norm.

Original (directive-free) 28% - 8933 - - - 20% - 131,839 - - -

Original (directive-rich, no FP) 42% - 91.4 302.39 302 1.24 115% - 1,344 149.75 8,977 1.65

Original (directive-rich, AutoBridge FP) 42% - 91.4 347.10 263 1.09 115% - 1,344 Failure - -

Initial FP� -> Iterative Syn� -DO� 28% 2.24+��
� 735 300.45 2,445 10.08 19% 0.16+�� 131,839 282.86 466,094 85.90

Initial FP -> Iterative Ana� -DO 26% 4.44 8504 400.80 21,218 87.47 42% 13.65 2,700 305.25 8,846 1.63

Iterative (Syn-DO + AutoBridge FP) 48% 1658+�� 92.7 235.89 393 1.62 41% 10307+�� 2,549 278.84 9,141 1.68

Iterative (Ana-DO + AutoBridge FP) 42% 55.89 90.8 353.48 257 1.06 42% 37.42 4,777 153.66 31,090 5.73

Iterative (Syn-DO + Incr FP) (FADO 1.0) 55% 2.39+�� 91.2 269.95 338 1.39 41% 2.17+�� 1,647 274.47 6,001 1.11

Iterative (Ana-DO + Incr FP) (FADO 2.0) 43% 26.41 87.2 359.45 243 1.00 42% 35.49 1,683 310.37 5,426 1.00

Benchmarks MTTKRP*2+HEAT*2 (242 functions) MM*2+2MM*2 (350 functions)

Res. Runtime Latency Fmax Exe_time Norm. Res. Runtime Latency Fmax Exe_time Norm.

Original (directive-free) 57% - 8,147,919 - - - 40% - 259,516 - - -

Original (directive-rich, no FP) 84% - 63,753 Failure - - 79% - 2,580 229.57 11,239 1.01

Original (directive-rich, AutoBridge FP) 84% - 63,753 Failure - - 79% - 2,580 Failure - -

Initial FP -> Iterative Syn-DO 46% 1.36+�� 8,138,605 Failure - - 59% 1.13+�� 258,842 274.10 944,335 89.39

Initial FP -> Iterative Ana-DO 54% 7.77 1,360,021 368.19 3,693,801 11.85 69% 31.75 260,710 399.36 652,820 58.69

Iterative (Syn-DO + AutoBridge FP) 62% 3554+�� 598,532 159.97 3,741,525 12.00 60% 32656+�� 67,652 Failure - -

Iterative (Ana-DO + AutoBridge FP) 86% 56.25 391,089 309.79 1,262,436 4.04 79% 143.77 6,112 400.16 15,275 1.37

Iterative (Syn-DO + Incr FP) (FADO 1.0) 63% 1.95+�� 128,104 300.45 426,374 1.37 58% 6.63+�� 66,158 300.00 220,527 19.82

Iterative (Ana-DO + Incr FP) (FADO 2.0) 74% 22.15 102,982 330.36 311,726 1.00 79% 76.37 2,696 242.37 11,124 1.00

Benchmarks CNN*3+COV*2 (263 functions) MTTKRP*2+COV*2 (242 functions)

Res. Runtime Latency Fmax Exe_time Norm. Res. Runtime Latency Fmax Exe_time Norm.

Original (directive-free) 31% - 18,130 - - - 38% - 8,113,234 - - -

Original (directive-rich, no FP) 681% - 259 Failure - - 155% - 63,143 Failure - -

Original (directive-rich, AutoBridge FP) 681% - 259 Failure - - 155% - 63,143 Failure - -

Initial FP -> Iterative Syn-DO 39% 2.03+�� 6,716 300.45 22,354 6.00 42% 2.18+�� 8,113,234 300.45 27,003,607 130.37

Initial FP -> Iterative Ana-DO 34% 1.65 27,953 355.37 78,660 21.12 51% 3.54 1,962,240 Failure - -

Iterative (Syn-DO + AutoBridge FP) 62% 8301+�� 1,278 222.01 5,754 1.54 61% 12627+�� 562,017 300.45 1,870,585 9.03

Iterative (Ana-DO + AutoBridge FP) 86% 103.77 1,367 337.27 4,052 1.09 82% 50.96 339,519 Failure - -

Iterative (Syn-DO + Incr FP) (FADO 1.0) 63% 5.04+�� 1,233 300.45 4,105 1.10 64% 4.89+�� 126,921 300.45 422,437 2.04

Iterative (Ana-DO + Incr FP) (FADO 2.0) 86% 73.73 1,250 335.46 3,725 1.00 82% 21.22 63,769 307.88 207,123 1.00
� The max HLS-reported util. ratio among BRAM, DSP, FF, LUT and URAM. � DSE time in seconds (+�� pre-processing time for syn-based methods) .
� Execution time of HLS designs in kilo clock cycles. � Maximum achievable frequency in MHz. � FP: Floorplanning. � DO: Directive Optimization.
� Overall performance (cycle #/frequency) of optimized HLS designs in microseconds (�s). ℎ The overall performance normalized to FADO 2.0’s result.
� Using synthesis-based QoR lib, corresponding with FADO 1.0. � Using analytical QoR model, corresponding with FADO 2.0 in this extension paper.
� �� is the pre-processing time for generating the synthesis-based QoR library. It varies for diferent benchmarks, ranging from hours to 10s hours.

Moreover, since our incremental legalization leads to a minimum change of loorplan in each iteration of co-

optimization, it is much more eicient than updating all functions’ locations globally. This eicient legalization

contributes to a speedup of 693X∼4925X in the search time of the entire co-optimization when excluding the

pre-processing overhead. With the FADO 1.0 optimization low, the design implementation quality relected in

the overall design execution time is 1.16X∼8.78X better than the best synthesis-based baseline.

After extending to the analytical FADO 2.0, although triggering the QoR model requires several more seconds

in each iteration than directly looking up in the QoR library, our total runtime is still shorter than all baselines

and even FADO 1.0. One reason is the removal of the pre-processing time �� (hour-level). Another reason is the

new smarter directive search strategy (Sec. 5.3). Compared with the synthesis-based counterparts, the DSE time

of "Iterative (Ana-DO + AutoBridge FP)" is signiicantly shorter. This is because the new directive optimization

converges more efectively, resulting in fewer rounds of ILP loorplanning (sec to 10s-sec-level each round),

which is much more signiicant than the time diference between using the QoR library (�s to ms-level) and
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the analytical model (ms to sec-level). On the lip side, the DSE time for FADO 2.0 is witnessed to have slightly

increased compared with FADO 1.0. This is because the inference overhead of the analytical model is more

signiicant compared with our eicient incremental loorplanning (�s-level).

The new exploration strategy of FADO 2.0 (Sec. 5.3) is more efective than the library-based greedy search

in FADO 1.0 and further optimizes the latency to the extreme. On average, FADO 2.0 achieves 45.79% and

24.74% smaller latency than "Iterative (Ana-DO + AutoBridge FP)" and FADO 1.0, respectively. As for Fmax, the

balanced storage binding helps FADO 2.0 to gain a 9.18% higher frequency. Altogether, the overall improvement in

optimized design performance is 2.66X over the strongest analytical baselineÐ"Iterative (Ana-DO + AutoBridge

FP)." Compared with FADO 1.0, there is one outlier with 19.83X better design performance. The dramatic

improvement comes from a new optimization opportunity opened by the enhanced search algorithm and storage

balancing. Excluding this point, FADO 2.0 concludes with a 1.40X better design performance over FADO 1.0 on

average. This demonstrates the efective integration of incremental loorplanning with the analytical model and

new search strategy.

Alongside the statistics above, we visually examine the implemented designs from the device view in Vivado,

as Fig. 14 shows. By highlighting the leaf cells of each module (HLS datalow sub-functions and non-datalow

kernels) in diferent colors, we use "Original (directive-rich, no FP)" and FADO 2.0 to demonstrate the importance

of directive-loorplan co-search. Except for the medium-size CNN*2+2MM*1 and large-sizeMM*2+2MM*2, we here
add one additional tiny design, SCMM (modiied from [50]), with only 10 functions to show FADO’s capability

of scaling down. SCMM and MM*2+2MM*2 are two extremes. The former contains a small number of huge

functionsÐits three main functions consume 52% of the total DSP available, and the latter comprises the largest

number of functions with over 70% utilization of both LUT and DSP. When targeting a high frequency during

implementation, these challenging cases can easily incur routing congestion or hold violations. Results prove that

while "(directive-rich, no FP)" cases with manual directive optimization attain even slightly better latency, FADO

2.0 achieves superior frequency and overall design execution time by using only (lower) half of the FPGA. This is

Fig. 14. Comparing "Original (directive-rich, no FP)" with FADO 2.0 from the Post-implementation Device View Using Three

Designs with Various Number of HLS Functions and Resource Utilization.
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attributed to FADO’s iterative and incremental search, which gradually takes full utilization of the designated

dies without violating the loorplanning rules with regard to die boundaries and I/O banks.

6.3 Analysis of DSE StagesÐCase Study (Syn-/Ana-based Search, CNN*2+2mm*1)

To analyze the efectiveness of the multiple stages in FADO, we visualize the directive-loorplan co-search process

for the CNN*2+2MM*1 benchmark using FADO 1.0/2.0 and the baseline Iterative (Syn-DO + AutoBridge FP)

in Fig. 15. The horizontal axis takes the maximum utilization of resources on the FPGA, and the vertical axis

shows the latency in the number of clock cycles. The light cyan points represent the whole directive design space

Fig. 15. Syn-/Ana-based DSE Stages and Results on the CNN*2+2MM*1 Benchmark.
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Table 7. Stages of Floorplan-Aware Directive Optimization

FADO 1.0

Benchmarks CNN*2+2MM*1 MM*1+COV*2 MTTKRP*2+HEAT*2 MM*2+2MM*2 CNN*3+COV*2 MTTKRP*2+COV*2

Stages Resource� Latency� Resource Latency Resource Latency Resource Latency Resource Latency Resource Latency

Online 28.27% 735 40.66% 5,167 63.15% 163,241 40.28% 259,516 31.79% 4,718 62.95% 141,260

Oline 40.12% 132 40.66% 5,167 64.67% 153,927 40.28% 259,516 31.79% 4,718 62.95% 141,260

Ahead-Back 54.56% 91.2 40.66% 1,647 63.25% 128,104 57.53% 66,158 63.32% 1,233 64.49% 126,921

FADO 2.0

Benchmarks CNN*2+2MM*1 MM*1+COV*2 MTTKRP*2+HEAT*2 MM*2+2MM*2 CNN*3+COV*2 MTTKRP*2+COV*2

Stages Resource Latency Resource Latency Resource Latency Resource Latency Resource Latency Resource Latency

Online 49.57% 635 42.28% 1,683 79.98% 548,302 79.01% 5,183 33.20% 17,605 81.79% 288,622

Oline 42.54% 90.8 42.28% 1,683 73.57% 102,982 79.01% 4,607 33.20% 17,595 81.79% 63,769

Ahead-Back 42.75% 87.2 42.28% 1,683 73.57% 102,982 79.01% 2,696 85.69% 1,250 81.79% 63,769
� The maximum HLS-reported util. ratio among BRAM, DSP, FF, LUT, and URAM. � Execution time of HLS designs in number of kilo clock cycles.

formed by the QoR library in FADO 1.0 without any loorplan legality check, with the red dots showing its Pareto
front. Our search starts from the point with the highest latency (28.27%, 8,933,000).

In the irst stage, the cranberry arrows (FADO 1.0 P0) show online loorplanning, which stops at (28.27%,

734,592) because of a sharp resource increase of the large non-datalow kernel 2MM. Similarly, the purple arrows
(FADO 2.0 P0) reach (49.58%, 635,132) when coniguring a diferent pipeline II for 2MM. In the second stage, the

oline re-packing of FADO 1.0 (pink arrows) clears out the datalow sub-functions on the least-occupied slot and

continues until (40.12%, 131,752), the top pink point in Fig. 15 (3). Meanwhile, FADO 2.0’s oline loorplanning

(blue arrows) helps the non-datalow 2MM ind a design point with both less latency and resources. Guided by the

directive search order in Table 5, FADO 2.0 continues with online and oline heuristics until breaking through

the Pareto front (red dots) formed by FADO 1.0’s QoR library and reaches (42.54%, 90,788). However, based on the

QoR library, the next design point from the top pink point in sub-igure (3) for FADO 1.0 consumes signiicantly

larger resources and triggers online and oline loorplanning failure. This forces FADO 1.0 to enter the third

stage of look-ahead (yellow arrows). It continues sampling for points with less utilization of the current critical

resource. As Fig. 15 (3) shows, with the help of look-ahead (yellow arrows), the search reaches (55.01%, 91,384),

and inally stops at (54.56%, 91,164) after one additional step of look-back (the light green arrow in sub-igure

(4)). To show the optimality of FADO 1.0’s result within the design space constrained by the QoR library, we

check the loorplan legality for all design points in the QoR library with less latency than our result of 91,164

cyclesÐall the gray points have no legal loorplan when running global ILP loorplanning solely. Freed from the

QoR library, FADO 2.0’s last step (the cyan arrow) signiicantly shortens the design’s latency and converges to

(42.75%, 87,192). By contrast, the baseline directive search (dark green arrows) with global ILP loorplanning stops

earlier at (47.59%, 92,700).

Table 7 shows the DSE results of diferent optimization stages in FADO 1.0 and 2.0. Note that the stages run

sequentially in each iteration, and the latency/resource in this table is not the result of each stage acting alone,

except for "Online." For example, the stage "Ahead-Back" includes the joint efort of (1) online packing, (2) oline

re-packing followed by another round of online packing, and (3) look-ahead + look-back followed by online

packing, as described in Alg. 3. It is possible that we only use (1) or (1)+(2) for some iterations while using

(1)+(2)+(3) in the worst cases. The QoR of each stage shown in Table 7 measures the legal design point with the

smallest latency achieved before calling the next stage for the irst time. For example, the results in "Online" are

the legal point with the smallest latency achieved before the irst time calling offline_repacking().

For some benchmarks, e.g.,MTTKRP*2+HEAT*2 in FADO 1.0 results andMM*2+2MM*2 in FADO 2.0, each stage

is more efective than the previous one on avoiding local optima. However, the oline method fails to improve the

results in some other cases, such as MM*1+COV*2 and CNN*3+COV*2 in both FADO 1.0 and 2.0. This problem
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happens when there are oversized design points incurred by aggressive directive conigurations, such as fully

unrolling a loop or completely partitioning an array. For example, the non-datalow COV kernel consumes 30

DSPs without any directive. However, when we unroll the loop containing the multiplication operation, the DSP

number increases to 1920, more than the total number of DSPs available in any slot. Thus, the oline stage fails to

optimize the loorplan, and the bottleneck DSP utilization remains the same value during DSE in MM*1+COV*2.
For CNN*3+COV*2, since COV kernel has a longer latency than CNN, signiicant improvements are enabled by

the look-ahead and look-back.

6.4 Analytical QoR Model Evaluation

6.4.1 Prediction Eficiency. To reason the necessity of having an analytical model, alongside our motivation of

removing the time-consuming pre-processing stage, the most fundamental reason is that the HLS synthesis stage

is too slow. Thus, we extracted 36 diferent HLS functions from all benchmarks, to compare their synthesis time

in Vitis HLS 2020.2, and the inference time in our analytical model. Because directives usually complicate the

latency/resource computation and incur a longer runtime for analysis, we choose two design points for each

function. One point has no directive; the other is the best point encountered during the search in FADO 2.0.

Experiments show that our analytical model’s average speedup (Vitis HLS synthesis time/estimation time) is

231.84X and 208.80X respectively for the unoptimized and optimized cases.

6.4.2 Prediction uality. Model estimation for resources is generally more accurate and reliable than latency. As

mentioned in previous works, the accuracy of DSPs and BRAMs is guaranteed. The estimation error (mostly

over-prediction) for LUTs is, to some extent, tolerated by tuning the resource constraint. However, our operator

delays and chaining rules difer signiicantly from the previous results in [52, 55] because of the gap between

diferent versions of HLS tools together with the new data types and bitwidths considered. If the prediction of

a module’s LUT number is 10% more than the actual utilization, a secure resource constraint would still help

ind a legal loorplan. However, even if the latency estimation of one design point is only two cycles of from

the ground truth, it could possibly reverse the search order of this point with another one, and the DSE process

would miss an optimization opportunity.
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Fig. 16. Rank Correlation for Latency Computed by Vitis HLS and Our Analytical Model.

Hence, we validate our model’s latency estimation quality in the following way. First, we randomly extract

∼1000 directive conigurations for various functions from all the benchmarks. Then, we run Vitis HLS synthesis

and model-based prediction for them and rank the latency results respectively, as Fig. 16 shows. The Spearman

coeicient of 0.9137 and Kendall’s Tau of 0.7732 show that the predicted results strongly correlate with the
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ground truth from Vitis HLS. This prediction quality assures us that FADO generally converges in a very eicient

direction.

7 CONCLUSION

Our work produces the FADO framework, an open-source, end-to-end solution that co-optimizes the directives

and loorplan of HLS designs implemented on multi-die FPGAs. It provides two optimization lows, either

with a synthesis-based library (1.0 version) or with an analytical QoR model (2.0 version). FADO integrates a

latency-bottleneck-guided directive optimization and an incremental loorplanning algorithm mixing various bin-

packing heuristics. On the one hand, our incremental loorplanning signiicantly improves over the corresponding

synthesis/analytical-version global ILP loorplanning [9]. On the other hand, our co-optimization enables full

utilization of resources on multiple dies and greatly beneits both the latency and timing. Among all six large-scale

benchmarks mixing datalow and non-datalow kernels, FADO 1.0 optimizes their execution time by 1.16X∼8.78X

compared to the synthesis-based DSE with global loorplanning. Further, the optimized HLS designs from FADO

2.0 achieve 2.66X better design performance over the analytical-based solution with global loorplanning and,

meanwhile, 1.40X over FADO 1.0.
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