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Chapter 3
Net-Based Machine Learning-Aided
Approaches for Timing and Crosstalk
Prediction

Rongjian Liang, Zhiyao Xie, Erick Carvajal Barboza, and Jiang Hu

3.1 Introduction

In digital circuit design, timing is a primary design objective that needs to be
considered since the very early design stages. Accurate timing prediction is very
challenging at early stages due to the absence of information determined by
later stages in the design flow. For example, locations of cells and the exact
routing topology are critical for timing analysis, but they are not available until
cell placement stage and detailed routing stage, respectively, have been executed.
However, early design stages have relatively ample room for changes that can fix
timing problems in a proactive manner. As a design proceeds to later stages, the
design flexibility diminishes although timing estimation becomes more and more
accurate. In addition, even at the sign-off stage where all detailed layout parameters
are determined, the license cost of EDA tools and the runtime overhead to consider
the complex signal integrity (SI) effects hinder the acquisition of accurate timing
reports.

In conventional VLSI design flow, two tactics are employed to address the
uncertainty in timing analysis. One is to take an overly pessimistic estimation to
ensure that no timing violations will occur after routing. However, such pessimism
causes overdesign that wastes power, area, and optimization time. The other is
to iterate back to early stages, i.e., cell placement or even logic synthesis stage,
when the desired timing-power trade-off cannot be achieved at sign-off. However,
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an additional iteration may not guarantee success, and multiple iterations would
grossly increase design turnaround time.

Crosstalk is one of the major threats to SI and timing closure in ASIC design.
Through capacitive coupling, a signal switching of one net causes crosstalk noise
and incremental delay at its neighboring nets [29]. Noise amplitude can even reach
up to 30% of VDD [25], which may exceed the threshold voltage of transistors
and lead to glitches, imposing a risk of logic errors and unwanted switching
power consumption. Moreover, the coupling capacitance itself serves as extra load,
increasing both signal delay and internal power dissipation; the incremental delay
due to coupling capacitance along a timing path can reach 300 ps [26], comparable
to clock periods of modern high-performance processors.

Similar to timing analysis, an accurate estimation of crosstalk effects is only
possible after detailed routing, where few rooms remain to fix all the crosstalk-
induced design problems, even if we identify every crosstalk issue [29]. In this
regard, many research efforts have been undertaken to predict and mitigate crosstalk
problems at earlier design stages, e.g., placement [20, 26]. However, a majority
of crosstalk-driven placement works resort to global routing or trial routing for
obtaining an approximate estimate of routing landscape and thereby capacitive
coupling of nets. An evident drawback here is that global or trial routing is time-
consuming and thus induces huge runtime costs.

In recent years, machine learning (ML) techniques have been adopted to improve
the predictability of timing and crosstalk effects at different stages of the chip
design flow. As for the preplacement stages, ML solutions have been developed
for the estimate of the overall wirelength of a netlist [19], lengths of a few selected
paths [12], and the net length as well as delay for each individual net [33]. Note
that wirelength/net length is an important optimization objective in VLSI design
since interconnect is a dominating factor for performance and power in advanced
technology nodes. Timing and crosstalk effect estimation at the cell placement
stage have been studied in [2] and [17], respectively. ML techniques have also
been leveraged to calibrate non-SI timing to SI timing [14], non-SI to non-SI, or SI
to SI between different timers [9]. Unlike conventional methods either being very
inaccurate or very runtime expensive, ML-aided solutions can be fast yet accurate,
reaching a new balance point between runtime and accuracy. Estimation results can
essentially benefit design automation by providing early and high-fidelity feedback
and guiding proactive actions in early stages to improve design outcomes.

A majority of the aforementioned methods utilize net-based models. Here, net-
based models include those modeling the timing or crosstalk properties of individual
cell, net, or logic stage. The timing performance of a design can be inferred by
propagating cell delays and net delays along the netlist. Crosstalk occurs between
physically adjacent nets. Hence, it is natural to build net-based models. Net-based
prediction results can be easily integrated into existing EDA flow, since various
timing and crosstalk optimization techniques target cells or nets, e.g., gate sizing [6],
buffer insertion [11], and layer assignment [30]. Compared with directly modeling
path delays or properties of a netlist, net-based estimation provides more detailed
information to guide optimization techniques.
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In this chapter, we will cover net-based machine learning-aided approaches for
timing and crosstalk prediction in detail. A comprehensive review is presented in
Sect. 3.2, followed by four representative case studies introduced in Sect. 3.3 to 3.6.
Finally, conclusions are drawn in Sect. 3.7.

3.2 Backgrounds on Machine Learning-Aided Timing and
Crosstalk Estimation

3.2.1 Timing Prediction Background

Timing analysis determines if the timing constraints imposed on a digital circuit
are met. According to whether input vectors are applied, there are two types of
timing analysis, i.e., static timing analysis (STA) and dynamic timing analysis.
STA checks static timing requirements without applying any input vectors, while
dynamic timing analysis applies input vectors and verifies whether output vectors
are correct. Compared to dynamic timing analysis, STA is faster as it does not
need to simulate multiple input vectors, and it is more thorough since it determines
the worst-case timing. All the timing prediction methods introduced in this chapter
belong to STA.

We use the example in Fig. 3.1 to illustrate the basic concepts in timing analysis.
A timing arc represents the timing relationship between two pins or input/output
ports. Timing arcs can be roughly divided into two categories, i.e., net arcs and cell
arcs. For example, in Fig. 3.1, the timing arc between Pin c in Net A and Pin y in
Net C is a cell arc, while the arc between Pin y and Pin e in Net C is a net arc. The
arc from an input pin of a net driver to a sink pin of this net describes the timing for
a logic stage. Some previous works develop separate models for net arcs and cell
arcs [33], while others build logic stage-based models [2, 14]. For simplicity, a few
pre-routing STA methods [2] do not differentiate among rising delays and falling
delays. A data path starts from an input port of a design or a clock pin of a sequential
cell (e.g., flip-flop/latch/register) and ends at a data input pin of a sequential cell or
an output port of the design. For example, in Fig. 3.1, the path from the input pin
of Flip-flop F1 to Pin g of Flip-flop F3 is a data path. A clock path starts from the
clock input port of the design to a clock pin of a sequential cell. Path delays can
be calculated by propagating cell delays and net delays along timing paths. Signal
arrival time is the time in which signal arrivals at the pins/ports. Slack is defined
as the difference between signal arrival time and the required arrival time. Positive
slacks mean that timing constraints are met, while negative slacks imply violations
of timing constraints.
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Fig. 3.1 A circuit example [2]

Aggressor

Victim Glitch

Fig. 3.2 Illustration of crosstalk noise

3.2.2 Crosstalk Prediction Background

Crosstalk refers to the undesirable electrical interaction caused by the capacitive
cross-coupling between physically neighboring nets [24]. In advanced technology
nodes, metal wires tend to be tall and thin and routed close to each other, leading
to increased coupling capacitance between neighboring nets. As shown in Fig. 3.2,
due to the coupling capacitance, the rising edge on the aggressor net causes a noise
bump or glitch on the victim net, which should be constant at logic 0 or 1. In
addition, crosstalk can also lead to signal delays by changing the times at which
signal transitions occur, as shown in Fig. 3.3.

3.2.3 Relevant Design Steps

The netlist of a design is generated at logic synthesis stage. It is possible to build net-
based models for timing and crosstalk estimation at every major design step since
logic synthesis. There is a trade-off between accuracy of timing/crosstalk prediction
and design flexibility across relevant design stages. An ideal timing closure and
crosstalk avoidance flow can be as follows:
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Fig. 3.3 Illustration of
transition slowdown or
speedup induced by
crosstalk [24]

1. During logic synthesis and placement stage, significant timing violations and
crosstalk risks are identified and resolved by leveraging the greater design
flexibility. Typical optimization techniques at logic synthesis and placement stage
include buffer insertion [11], gate sizing [6], and logic restructuring [21].

2. Most of the remaining timing violations and crosstalk risks are eliminated
in global routing via optimization techniques, such as buffer insertion, layer
assignment [30], and area routing [27].

3. In detailed routing, complete timing closure and crosstalk avoidance is achieved
with the precise timing and crosstalk evaluation.

In conventional design flows, there are mainly two kinds of timing models that
are often employed for circuit logic and physical synthesis. One is the sign-off
model that evaluates if a circuit design satisfies timing specifications. It estimates
gate delay using lookup tables [18] or current source model, where slew rate is con-
sidered, and wire delays use high-order models [23]. Additionally, sign-off timing
analysis tools consider many complicated details such as rising/falling switching,
crosstalk, false paths, and simultaneous switching. These models are accurate but
very slow. The other is a relatively fast model that is often invoked within synthesis
and optimizations. In this case, a gate is modeled as an RC switch and wires are
modeled as RC trees, and delay is computed using the Elmore method [7]. Gate and
wire delays are collected through addition/subtraction and max/min operations in
PERT traversals [4] to obtain signal arrival time, required arrival time, and slack at
each node in a circuit. However, such a model is not accurate, as it does not consider
potential wire detours due to congestion avoidance and layer assignment impact.
Moreover, higher-order interconnect model has no ground to carry out accurate
delay computation without wire parasitic information. The aforementioned reasons
have motivated recent research in ML-based approaches for fast yet precise timing
prediction.

A majority of previous crosstalk avoidance methods target at routing stages [22,
27, 29, 34], the placement stage solutions [20, 26] are still far from being practical
largely due to the dependence on trial/global routing, which can easily take more
than a half hour for a modern design. In addition, timing analysis tools that consider
complicated crosstalk effects at sign-off timing analysis are usually very slow. ML-
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aided methods for crosstalk prediction have shown great potential in addressing
these challenges.

3.2.4 ML Techniques in Net-Based Prediction

Machine learning techniques utilized in net-based prediction can be roughly divided
into three categories, i.e., graph neural networks (GNNs), decision tree-based
models, and traditional ML techniques. Netlists in fact are graphs; thus, it is
natural to apply GNNs for net-based prediction. In decision tree-based models,
knowledge is represented by a set of binary decision-making. Such high-level
interpretation of knowledge allows decision tree-based models to easily incorporate
features from different sources. Traditional ML techniques, such as linear models,
multilayer artificial neural networks (ANNs), and support vector machines (SVMs),
are also leveraged for timing and crosstalk prediction. We briefly introduce the
aforementioned ML techniques in the upcoming paragraphs.

Graph Neural Networks GNN [31] models are composed of multiple sequential
convolution layers, as shown in Fig. 3.4. Each layer generates a new embedding
for every node based on the previous embeddings. For node nk with node features
Ok , we denote its embedding at the t th layer as h(t)k . Its initial embedding is the
node features h(0)k = Ok . In each layer t , GNNs calculate the updated embedding
h
(t)
k based on the previous embedding of the node itself h(t−1)

k and its neighbors
h
(t−1)
b |nb ∈ N (nk).

We show one layer of graph convolutional network (GCN) [16], GSage [8], and
graph attention network (GAT) [28] below. Notice that there exist other expressions
of these models. The two-dimensional learnable weight at layer t is W(t). In GAT,
there is an extra one-dimensional weight θ (t). The operation [ || ] concatenates two
vectors into one longer vector. Functions σ and g are sigmoid and Leaky ReLU
activation function, respectively.

GCN (with self-loops):

Fig. 3.4 Illustration of the graph neural networks (adapted from [31])
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Here, we briefly discuss the difference between these methods. GCN scales
the contribution of neighbors by a predetermined coefficient akβ , depending on
the node degree. GSage does not scale neighbors by any factor. In contrast, GAT
uses learnable weights W , θ to firstly decide node nβ ’s contribution rkβ and
then normalize the coefficient rkβ across nk and its neighbors through a softmax
operation. Such a learnable akβ leads to a more flexible model. For all these GNN
methods, the last layer’s output embedding h

(t)
k is connected to a multilayer ANN.

Decision Tree-Based Models Knowledge is represented by a set of binary
decision-making in decision tree models. An advantage of these models is
that they can ensemble knowledge from different sources due to its high-level
interpretation of knowledge and problems. It is especially important for timing
and crosstalk prediction since layout, electrical, and logic parameters are all need
to be considered. Strong learners can be obtained by ensembling simple decision
trees. Random forest [3] and gradient boosted decision trees (GBDT) [5] (shown in
Fig. 3.5) are two popular ensemble models. In random forest models, decision trees
are used as parallel learners, and each tree is fit to a set of bootstrapping samples
taken from the original dataset. Bootstrapping means randomly selecting samples
from the original dataset with replacement. The final prediction result is obtained
by averaging the results of decision trees. In GBDT models, each decision tree is fit
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Fig. 3.5 Illustration of the random forest model and the GBDT model. (a) Random forest. (b)
Gradient boosted decision trees

to the residuals from previous ones, and the final result is obtained by summing up
the results of all trees.

Traditional ML Techniques Linear models, such as the linear regression and the
logistic regression, are also utilized for timing and crosstalk estimation. The main
advantage of the linear model is its simplicity. However, it might be too simple for
complicated learning tasks.

An ANN consists of multiple fully connected layers and activation layers (e.g.,
sigmoid and ReLu). A key strength is its ability to capture nonlinear attributes in
data [10]. Another advantage is that off-the-shelf neural network engines allow easy
customization to the loss function. The main drawback of neural network models is
the lack of interpretability.

SVMs find hyperplanes in a high-dimensional feature space that distinctly
separates data points from different classes. Key advantages of SVMs are their
robustness against noisy data and their effectiveness in high-dimensional spaces.

3.2.5 Why ML for Timing and Crosstalk Prediction

A significant challenge for timing and crosstalk prediction is that they are deter-
mined by the complicated joint effects of layout, electrical, and logic parameters.
Thanks to its strong data-driven learning capability, ML is a natural good fit for
such complex modeling tasks. Many previous ML-based solutions for timing and
crosstalk estimation put an emphasis on feature engineering. The extracted features
can be roughly divided into four categories, i.e., layout features, electrical features,
logic structure features, and timing reports generated by EDA tools. The extracted
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features are then fed into ML engines to deliver timing and crosstalk prediction
outcomes. The timing reports used as input are generated at early design stages
or without considering complicated crosstalk effects. They incorporate information
that is captured by EDA tools, but there exists a gap between these reports and the
timing outcome at later stages or at a more accurate analysis mode. Other features
enable ML-based estimators to further reduce the gap.

We introduce in detail four representative net-based ML-aided solutions for
timing and crosstalk prediction in the following sections. The first one targets
at the preplacement net length and timing prediction. The second and the third
one focus on pre-routing timing and crosstalk effect prediction, respectively. The
last one calibrates the non-SI timing to SI timing at sign-off. These four case
studies cover several design steps from logic synthesis to sign-off. Since the
available information varies at different steps, these case studies utilize different
input features. We emphasize the problem formulation, prediction flow, feature
engineering, and machine learning engines in the introduction of these case studies.

3.3 Preplacement Net Length and Timing Prediction

3.3.1 Problem Formulation

The work by Xie et al. [33] targets at the preplacement net length and timing
prediction. The net length refers to the half perimeter wirelength (HPWL) of the
bounding box of the net after placement. It is a key proxy metric for optimizing
timing and power. The timing report generated by an industrial timer after placement
is used as the ground truth for timing prediction. ML-based preplacement net
length and timing prediction contribute to accurate evaluation of timing and power
performance of synthesis solutions.

3.3.2 Prediction Flow

Figure 3.6 shows the overall preplacement flow for both individual net size and
timing predictions. It is applied before layout and predicts post-placement design
objectives. Prediction results can benefit optimization and evaluation for both
synthesis and placement. For the net length estimation, a fast version named Net2f

and an accuracy-oriented version named Net2a are developed. As Fig. 3.6 shows,
both versions extract features directly from the netlist, while Net2a further captures
global information by performing clustering on the circuit netlist.

The timing estimator is constructed and applied to directly predict the delay
of each individual timing arc, including cell arcs and net arcs. Besides features
used by net size prediction, the preplacement timing report from commercial EDA
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Fig. 3.6 The net size and timing prediction flow [33]

tools is also used as the input. The timing estimators also utilize the information
from net size predictions as important input features. Considering the different
properties between cell arcs and net arcs, two separate timing prediction models
are constructed. Then, based on the inference result, the slack of each circuit node
is obtained by traversing the graph with predicted delay values.

3.3.3 Feature Engineering

3.3.3.1 Features for Net Length Prediction

Both global and local topology information are incorporated in [33] for net
length and timing prediction. Graph distance between two nodes is evaluated by
the number of hops along the shortest path between them. Local information
includes the information about the estimated net itself or from its one- to two-
hop neighboring nets. In contrast, global information means the pattern behind the
topology of the whole netlist or the information from nets far away from the net to
be estimated.

The local information utilized for net length estimation is shown as follows:

• Physical features: the net’s driver area, the sum of areas of all the cells of a net
• Logic structure features: the fan-out size (number of sinks) of the net, the fan-

in size (number of input pins of the net’s driver cell), the summation and the
standard deviation of all neighboring nets’ fan-in and fan-out

To capture global information, an efficient multilevel partitioning method
hMETIS [15] to divide one netlist into multiple clusters/partitions is utilized. The
partition method minimizes the overall cut between all clusters and thus provides a
global perspective. A few novel global features are extracted based on the clustering
results. The most important intuition behind the global features extraction is that,
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Table 3.1 Preplacement
features for timing
prediction [33]

For each cell arc
Preplacement delay of the arc itself
Source pin information: capacitance, slew, slack
All net-size-relevant features of the following net
Predicted size of previous net
For each net arc
Source pin information: max capacitance, slew, slack
Sink pin information: capacitance
All net-size-relevant features of the net
Predicted size of the following net

for a high-quality placement solution, on average, the cells assigned to different
clusters tend to be placed far away from each other.

3.3.3.2 Features for Timing Prediction

Table 3.1 summarizes selected features for cell arcs and net arcs. All these features
in Table 3.1 are from the three main sources, as summarized below:

• All relevant slew, delay, and slack information from the preplacement timing
report.

• Electrical and logic structure information of all relevant nets and cells. It includes
the global information captured by performing clustering on the netlist.

• The prediction outcome of Net2f/Net2a.

3.3.4 Machine Learning Engines

3.3.4.1 Machine Learning Engine for Net Length Prediction

To apply graph-based methods, each netlist is converted to one directed graph, as
shown in Fig. 3.7. Different from most GNN-based EDA tasks, net length prediction
focuses on nets rather than cells. Thus, each net is represented by a node. For each
net nk , it is connected with its fan-ins and fan-outs through their common cells by
edges in both directions. The common cell shared by both nets on that edge is called
its edge cell. For example, in Fig. 3.7b, net n3 is connected with nets n4 and n5
through its sinks cG and cH ; it is connected with nets n1 and n2 through its driver
cD . The edges through edge cell cG is denoted as n3 → n5 and n5 → n3. The
edge cell cG can also be referred to as c35 or c53. Edges in different directions are
differentiated by assigning different edge features to n3 → n5 and n5 → n3. After
the directed graph is generated, a customized GAT model is applied to the graph to
deliver the net length estimation.
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Fig. 3.7 (a) Part of a netlist.
(b) The corresponding
graph [33]

3.3.4.2 Machine Learning Engine for Preplacement Timing Prediction

Based on extracted features of the two different types of timing arcs, one cell-arc
model and one net-arc model are developed based on the random forest algorithm.
Instead of directly predicting the ground truth post-placement delay of each arc,
the model by Xie, et al. is actually trained to predict the difference between
preplacement and the ground truth post-placement timing. Then, the final predicted
delay is the summation of both preplacement delay and the prediction of the
incremental delay. This strategy helps the model to directly capture wire-load-
induced delay based on the preplacement timing report.

3.4 Pre-Routing Timing Prediction

3.4.1 Problem Formulation

To handle timing uncertainty due to the lack of routing information, designers tend
to make very pessimistic predictions, which causes overdesign that wastes chip
resources or design effort. To reduce such pessimism, Barboza et al. [2] study
the problem of calibrating pre-routing timing to post-routing timing based on ML
techniques.

3.4.2 Prediction Flow

Figure 3.8 shows the pre-routing timing prediction flow proposed in [2]. An ML
model for predicting the slew of the individual logic stage is first constructed and
trained. Besides the pre-routing timing report and the extracted features, the output
of the slew model is used to train the model for the prediction of logic stage
delay. Then, these models are applied for inference of logic stage delays in PERT
traversals [4] of circuit graph in order to obtain arrival time, required arrival time,
and slack of each circuit node. The logic stage delay model does not differentiate
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Fig. 3.8 The pre-routing timing prediction flow

among multiple input pins of a driver gate. The different signal arrival times at
different input pins are considered during PERT traversal instead of net delay model.

3.4.3 Feature Engineering

Features form input to ML models and their selection is of critical importance for
the effectiveness of model application. Net-based delay and slew models share the
same features, which are elaborated as follows:

• Driver and sink capacitance: Driver output capacitance is generally propor-
tional to its driving strength. Total sink capacitance presents load to the driver.
Both of them are the determining factors for net delay and slew. For a net with
large capacitive load or on critical paths, buffers may be inserted after placement.
The effect of buffer insertion is contained in training data.

• Distance between the driver and the target sink: The model predicts delay and
slew of one sink at a time, and this sink is called target sink. The horizontal and
vertical distances from the driver of the target sink is generally proportional to
the corresponding wire delay, especially when buffers are inserted [1].

• Max driver input slew: It is obtained using its own ML model, as mentioned
above. Here, slew rate is defined to be the signal transition time. Hence, a small
slew means sharp signal transition. Both net delay and sink slew are affected by
driver input slew. As different types of logic gates may have different number
of input pins, we use the maximum slew among all input pins of net driver as
feature. This is to accommodate that a machine learning model normally requires
fixed input size.

• Context sink locations: When a model is applied to estimate the delay/slew of
the target sink of a net, the other sinks are called context sinks. For example,
consider Net C in Fig. 3.1. When the delay to sink e is estimated, sink f serves
as a context sink. Besides contributing to total load capacitance, the locations
of context sinks affect routing, buffering, and thus delay/slew at the target sink.
Since the number of context sinks varies from one net to another while machine
learning model requires input of fixed size, the characteristics of context sink
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locations are captured with statistical signatures. One is the median location of
all context sinks, which tells roughly how far the context sinks are from the driver.
The other is the standard deviations of context sink locations in x-y coordinates.
The standard deviation indicates how much the sinks spread out and correlates
with the corresponding interconnect tree size as well as the delay/slew at target
sink.

3.4.4 Machine Learning Engines

A couple of machine learning engines are constructed and compared in [2],
including a linear regression model with L1 regularization, an ANN model, and
a random forest model. Experimental results demonstrate that the random forest
model achieves the best performance among all the machine learning engines. It is
reported that the random forest-based pre-routing timing estimation solution reaches
accuracy near post-routing sign-off analysis.

3.5 Pre-Routing Crosstalk Prediction

3.5.1 Problem Formulation

The work by Liang et al. [17] targets three crosstalk classification tasks at placement
stage, i.e., identifying

1. The nets likely to have large coupling capacitance
2. The nets likely to have large crosstalk-induced noise
3. The nets likely to have long incremental delay due to crosstalk

Figure 3.9 shows the Venn diagram of the above three sets of crosstalk-critical nets.
We can find that these sets have overlaps, but they are not identical.

Fig. 3.9 The Venn diagram
of three crosstalk-critical net
categories [17]. The value on
each region shows the
proportion of the nets
belonging to the region,
normalized against the total
number of crosstalk-critical
nets
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Fig. 3.10 Crosstalk modeling flow

3.5.2 Prediction Flow

The crosstalk modeling flow is shown in Fig. 3.10. Input features and ground
truth information are extracted from the placement and the post-routing databases,
respectively. By training and evaluating the prediction performance of candidate
ML models, e.g., XGBoost, the most effective feature sets and the best models for
three crosstalk classification problems are determined, which can be used for fast
identification of problematic nets in new placement instances.

The raw input to the crosstalk prediction engine includes placed DEF file,
standard cell libraries, and the STA results generated after placement. The placed
DEF contains the circuit netlist and the locations of cells and input/output ports after
placement. The standard cell library files are used to get the physical, electrical,
and logical properties of the cells in the circuit. The STA results generated after
placement give timing information, such as cell delays, wire delays, and transition
times. Net-based features are extracted from these files and then fed intoMLmodels.
The ground truth information is extracted from the parasitic information file, and the
timing report in SI mode is generated after detailed routing.

3.5.3 Feature Engineering

3.5.3.1 Probabilistic Congestion Estimation

Routing congestion strongly correlates with crosstalk, since coupling capacitance
tends to occur in congested areas. A probabilistic technique for congestion analysis
–RUDY (elaborated in Chapter 2)– is employed in [17] due to its great runtime
advantage over other techniques and its good correlation with the post-routing
solution. Nets can be divided into long-range nets and short-range nets according to
their HPWL. In [32], it is shown that routing congestion has a stronger correlation
with long-range nets than with shorter ones. In this regard, a longRangeRUDY
feature is also extracted by considering only long-range nets when computing the
total wire volume.
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3.5.3.2 Net Physical Information

Net physical information is necessary for crosstalk estimation, because different
routing topology of a net exposes it to different aggressors. Also, it leads to different
electrical characteristics of interconnects, which have impacts on crosstalk noise and
incremental delay. A few net-topology-related features are extracted as follows:

• HPWL of the net’s bounding box
• area of the net’s bounding box
• fan-out of the driver cell, i.e., the number of sinks of the net
• max-ss-distance: the maximal distance between the driver cell and the sink cells

3.5.3.3 Product of the Wirelength and Congestion

As illustrated in [20], the total coupling capacitance of a net is proportional to the
product of its wirelength and the unit coupling capacitance. The product of the
HPWL and the RUDY/long-range-RUDY of a net is utilized as an indicator of its
coupling capacitance.

• HPWL-RUDY/HPWL-longRangeRUDY: the product of HPWL and RUDY/
longRangeRUDY of a net

3.5.3.4 Electrical and Logic Features

The electrical properties of cells play an important role in crosstalk. For example, the
crosstalk noise is affected by the driver cell’s resistance [26]. Also, the logic type of
the driver cell may affect the switching activity of the net and consequently affect the
noise and incremental delay. However, given the complicated timing models used
by modern cell libraries, it is difficult to capture all crosstalk-related properties of a
cell. To address this problem, a logic-based encoding is proposed in [17], along with
the output capacitance, to represent a cell. First, library cells are consolidated into
groups according to logic types. Each group contains cells with the same logic but
can have different fan-in counts (e.g., a two-input NAND and a three-input NAND
belong to the same group) and different sizes. A variant of the one-hot encoding is
utilized to encode the gate groups. Specifically, a vector of length Ng , the total
number of gate groups, with only one nonzero entry is used to describe which
group the cell belongs to. Unlike assigning 1 to the nonzero entry in the one-hot
encoding, the cell’s fan-in is assigned to the nonzero entry. An additional feature,
output capacitance, is used to capture the size of the gate. A few other electrical and
logical structure features are also extracted.

• l0 to lNg : the logic-based encoding of the driver cell
• sourceCap: the output capacitance of the driver cell
• sinkCap: the sum of the input capacitance of sink cells
• fan-in: the fan-in of the driver cell
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3.5.3.5 Timing Information

The pre-routing timing report gives a rough estimation of wire delays and slews,
which is informative for crosstalk prediction. For example, smaller slew often means
stronger driving strength, consequently more resistant to aggregator’s effect in terms
of incremental delay.

• wireDelay: the longest wire delay from the driver to the sinks. Note it is a rough
prediction from the pre-routing STA

• outputSlew of the driver cell from the pre-routing STA

3.5.3.6 Neighboring Net Information

Crosstalk noise and incremental delay depend not only on coupling capacitance
but also on the coupling location [26] (near the driver or sink cells) and the
aggressors’ driving strength. The coupling location is estimated according to the
relative location of the net’s bounding box and its neighbors’ bounding boxes.

• #Neighboring nets: the number of neighboring nets
• #Neighboring long-range nets : the number of neighboring long-range nets
• mean-, std-, max-overlapArea: the average/standard deviation/maximum of

overlap areas between the net’s bounding box and neighboring nets’ bounding
boxes

• mean-dist-source-overlap: the average distance between the driver cell and the
geometric centers of overlap regions

• weighted-dist: the average distance between the driver cell and the geometric
centers of overlap regions, weighted by the area of each overlap region

• dist-source-maxOverlap: the distance between the driver cell and the geometric
center of the largest overlap region

The sourceCap and the outputSlew features are used to represent the driving
strength of a net. If a net is surrounded by nets with strong driving strength, then
its aggressors are likely to have strong driving strength. The following features are
employed to capture neighboring nets’ driving strength:

• mean-, std-sourceCap: the average/standard deviation of sourceCap of neigh-
boring nets

• sourceCap-maxOverlap: the sourceCap of the neighboring net that has the
largest overlap with the target net

• mean-, std-outputSlew: the average/standard deviation of outputSlew of neigh-
boring nets

• outputSlew-maxOverlap: the outputSlew of the neighboring net that has the
largest overlap with the target net
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Fig. 3.11 Top 10 important features: (a) in coupling capacitance, (b) in crosstalk noise, and (c) in
incremental delay estimations [17]

3.5.4 Machine Learning Engines

Several popular ML techniques, i.e., logistic regression, ANN, random forest,
XGBoost, and GNN models, were constructed to model the mappings from the
extracted features to coupling capacitance, crosstalk-induced noise, and incremental
delay. For each technique, three independent models were trained and fine-tuned for
the three classification tasks. Experimental results show that the XGBoost method
achieves the best performance among all the ML engines.

After training an XGBoost-based model, users can check which features are
most important in building the decision trees. Importance can be defined from
various aspects. One commonly used metric is “Gain”, which is the improvement in
accuracy brought by a feature. Figure 3.11 shows the top 10 important features in
coupling capacitance, crosstalk-induced noise, and incremental delay predictions,
in terms of “Gain.” It can be seen that the layout features play an important role
in the three crosstalk estimation tasks because crosstalk heavily depends on layout.
As for crosstalk-induced noise and incremental delay prediction, it can be found
that electrical features (e.g., sourceCap and sinkCap), logical features (e.g., logic-
based encoding for the driver cell: l6, l10, and l11), the timing information (e.g.,
outputSlew), and the neighboring net information (e.g., the weighted-dist and the
max-dist-source-overlap) also have great importance.

3.6 Interconnect Coupling Delay and Transition Effect
Prediction at Sign-Off

3.6.1 Problem Formulation

The runtime and license costs of SI-enabled timing analysis are typically much
larger than those in non-SI mode. The work by Kahng et al. [14] investigates the
problem of calibrating sign-off non-SI timing to SI timing with ML techniques. To
be specific, the incremental slew, incremental delay due to SI, and SI-aware path
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Fig. 3.12 Flow of calibrating non-SI timing to SI timing

delay are estimated given the reports of a sign-off timer that performs only non-SI
analysis.

3.6.2 Prediction Flow

Figure 3.12 depicts the flow of calibrating non-SI timing to SI timing. Given a
post-routing instance, the non-SI timing report, the electrical and logic structure
parameters are extracted as input features. The model for predicting incremental
slew due to SI is first constructed and trained, whose outcome is used as input for
the training of the SI-induced incremental delay estimator. The predicted delay is
utilized for predicting the SI-aware path delay.

3.6.3 Feature Engineering

The following features are extracted for the prediction of SI-aware timing at sign-
off:

• Non-SI timing report: slew in non-SI mode, min/max rise/fall delta arrival times
between worst aggressor and victim, toggle rate of a victim net, path delay in
non-SI mode

• Electrical features: resistance of an arc, coupling capacitance of an arc, ratio of
coupling capacitance to the total capacitance, logical effort of the driver cell

• Logic structure: ratio of arc’s stage to the total number of stages

It is interesting to note that the work by Kahng et al. does not include layout
parameters as input features, since layout information is reflected in parameters such
as coupling capacitance, total capacitance, and wire resistance.
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Fig. 3.13 The ensemble
model for SI-aware timing
estimation (adapted
from [14])

3.6.4 Machine Learning Engines

An ensemble model that integrates an ANN and a SVM is leveraged in [14]. The
hybrid surrogate modeling (HSM) [13] is utilized to combine the predicted values
from the ANN and SVM models and obtain the final estimation, as shown in
Fig. 3.13.

3.7 Summary

In this chapter, we introduce net-based ML-aided approaches for timing and
crosstalk prediction. Timing and signal integrity are the fundamental objectives in
digital circuit design. Conventional timing and crosstalk effect prediction methods
are usually either too slow or very inaccurate. Recent ML-aided approaches have
demonstrated great potential in providing fast yet accurate prediction. Most of
these works build net-based models. After introducing the background on timing
and crosstalk modeling as well as relevant ML techniques, we present four
representative net-based ML-aided solutions, emphasizing the problem formulation,
prediction flow, feature engineering, and ML engines. The key difference between
these case studies is in the feature engineering part, since the case studies target
different design steps and/or different design properties. There are many other
related problems to be studied. A significant one is integrating the ML-based
estimators into EDA flows to investigate their impacts on the timing and SI closure.
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