

Intelligent Circuit Design and Implementation with **Machine Learning in Design Automation**

Zhiyao Xie Advisor: Yiran Chen, Hai (Helen) Li **Duke University**

Background and Takeaway	Interconnect of Netlist [ASP-DAC'21] [TCAD (Under-review)]	Routability Estimation of Layout [ICCAD'18]
ML for Chip Design ML for EDA in commercial tools cadence Codence Innovus	Highlights (my work Net ²) First GNN-based method for pre-placement net length estimation First ML-based detailed timing estimator before placement	Highlights (my work RouteNet) First deep learning-based DRV estimator, capturing global information Orders-of-magnitude speedup compared with accurate simulations
input in [2]; endmodule Synthesis Synthesis Synopsys ICC [™] II Cadence IIIIOVUS [™] Synopsys [®] Synopsys ICC [™] II 	 Key Method Extract global topology information through partitioning/clustering Customized graph attention network (GAT) method Pre-placement 	Overview Image along if isotion with CNN VS Image along if isotion with CNN
Image: Comp Design I	$ = \underbrace{\operatorname{riming}}_{\operatorname{reatures}} \operatorname{riming}_{\operatorname{reatures}} \operatorname{riming}_{\operatorname{riming}} \operatorname{riming}_{r$	$\begin{array}{c} \text{Layout 1} \\ \hline \\ \ \\ \text{Layout 1} \\ \hline \\ \ \\ \text{Layout 1} \\ \hline \\ \hline \\ \ \\ \text{Layout 1} \\ \hline \\ \ \\ \text{Layout 1} \\ \hline \\ \ \\ \ \\ \ \\ \text{Layout 1} \\ \hline \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \ \\ \$
Fabrication Fabrication Fabrication Fabrication Fabrication Fabrication Fabrication Facilitate early-stage chip optimizations Not just ML for chip, also ML in chip Targeting all major chip design objectives	Netlist Net ^{2a} / Net ^{2f} Using GAT Net size	 Key Method Define novel features capturing macro and long interconnect impact 3D input tensor constructed by stacking multiple 2D features

Experimental Results

High accuracy for individual net length prediction Improve slack estimations from commercial tools

Power Modeling of RTL [MICRO'21] (Best Paper Award)

Highlights (my work APOLLO)

- Fast and accurate design-time power model handling millions-of-cycles benchmarks in minutes
- Low-cost and accurate runtime on-chip power meter (OPM)
- Unprecedented per-cycle temporal resolution
- Fully automated development process for any given design

Key Method

Automatically select only ~100 RTL signals as input power proxies The selection is performed by MCP-based feature pruning algorithm Construct OPM hardware without multipliers, with weight quantization

IR Drop Estimation of Layout [ASP-DAC'21] [ICCAD'20]

Highlights (my work PowerNet)

- First method that claims to perform design-independent fast IR drop estimations, for **both** vectorless and vector-based estimations
- **30X faster** than simulation-based commercial IR drop analysis tools

Key Method

- **Time-decomposed** power density as input features
- The **max** estimated IR drop among all time frames as final prediction

Power map at

Experimental Results

Rate

Positive

True

Fast and high-fidelity routability prediction at the same time

Parameter Tuning for the Design Flow [ASP-DAC'20]

Highlights (my work FIST)

- First flow tuning method leveraging prior data from other designs
- An approximate sampling strategy which leverages the idea of semisupervised learning

Experimental Results

1.8% area improvement on industrial design compared with best solutions hand-tuned by designers

Experiment Setup

- Experiments on high-volume commercial microprocessors
- Training on auto-generated workloads, testing on Arm workloads

Experimental Results

• 90-95% accuracy of 17-million-cycles SPEC workload in minutes • 0.2% area overhead for on-chip meter without accuracy degradation

Experimental Results

Integrated to guide mitigation flow to reduce IR violations by 20-30% *** Interpretability:** showing violations triggered at different time frames

Dasian MD1	Violated	#
Design MD1	Cell	Hotspots
Before Mitigate	22185	5092
After Mitigate	17052	3778
Improvement	23%	26%
Decian MD2	Violated	#
Design MD2	Cell	Hotspots
Before Mitigate	31097	3627
After Mitigate	23941	2489
Improvement	23%	31%

Selected Related Publications

My Publications Presented in This Poster

- * <u>Zhiyao Xie</u>, et al. "APOLLO: An Automated Power Modeling Framework for Runtime Power Introspection in High-volume Commercial Microprocessors." In MICRO, 2021. (Best Paper Award)
- * <u>Zhiyao Xie</u>, et al. "Pre-placement Net Length and Timing Estimation by Customized Graph Neural Network." In TCAD, Under-review.
- Zhiyao Xie, et al. "Net²: A Graph Attention Network Method Customized for Pre-placement Net Length Estimation." In **ASP-DAC**, 2021.
- * <u>Zhiyao Xie</u>, et al. "PowerNet: Transferable dynamic IR drop estimation via maximum convolutional neural network." In ASP-DAC, 2020.
- * <u>Zhiyao Xie</u>, et al. "Fast IR Drop Estimation with Machine Learning." In **ICCAD**, 2020.
- Zhiyao Xie, et al. "FIST: A Feature Importance Sampling and Treebased Method for Automatic Design Flow Parameter Tuning." In ASP-**DAC**, 2020.
- Zhiyao Xie, et al. "RouteNet: Routability Prediction for Mixed-size Designs using Convolutional Neural Network." In ICCAD, 2018.

My Other Publications on This Topic

- Chen-Chia Chang, Jingyu Pan, Tunhou Zhang, <u>Zhiyao Xie</u>, et al.
- "Automatic Routability Predictor Development using Neural Architecture Search." In ICCAD, 2021.

